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Motivations & main Problematic

Bayesian inference at large

m Modelling & Data Analysis using Bayesian methods :

Model selection:
Likelihood fy
Y1, Y, ..., Y,
{ 1, 12, ) N}w Black Box s
Data

e Physical measurements,
e Experimentation results,

Model fitting:

e Surveys, etc... L . |
Y Post. Distribution 6 *

m Robustness and simplicity are attracting for a wide range of people /
domains
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Motivations & main Problematic

Estimation of the parameter

m The data are random var. on (Y,)) (typ. Y C RP)

m The parameter 0 is (regarded as) random var. on (©, ) (typ.
O C RY)

m Given:

(i) a likelihood model fp = f(-|6) on (Y,)),
(i) a prior dist. p for 6 on (©, 1)

m define the posterior distribution of 6 given Y.y = (Y1,..., Yn) € YN
(0] Yi.n) o F(Yin | 0)p(0)

m our primary objective is to gain knowledge of 7, (we assume likelihood
model and prior known and fixed...)
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Markov chain Monte Carlo: the black box!!

m Seminal papers late 80's/early 90's ! popularised the use of Markov
chains targeting 7 to explore the state space ©
m The Metropolis-Hastings (M—H) sampler being the most
straightforward black box
m Start from some initial state 6y € ©. At step k:
(i) Propose a move 6 ~ Q(6x, )
(i) Set fx41 as the next state of the chain if event Ej is realized:
F(6] Yin)p(8) Q(4. 0x)

B = {U D AL L N 1)}

What if N becomes larger and larger?? (e.g N > 10°)

!Tanner & Wong (1987), Gelfand & Smith (1990), Tierney (1994), .
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The N case

m A likelihood function evaluation has a complexity in O(N)
m M-H (or other MCMC's) & optimization methods are severely
hampered by a large N
m When comparing MCMC algorithms
(i) Autocorrelation
(if) Asymptotic Variance
(iii) Time of transition
m From this perspective, one can expect M—H to be badly ranked!
m Example: for a likelihood function

f(-16) = 0.8N(0.3,0.8) + 0.2\ (4,1)

and i.i.d. data

N | 1.000 | 10.000 | 100.000 | 10° | 107
M-H trans. CPU Time | 0.016 | 0.151 | | 15.40 | 151.87
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Motivations & main Problematic

Main Problematic

How to rescue the traditional Bayesian analysis methods

(i) from being overwhelmed by N,

(i) while still preserving the black box thing?
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Some recent Approaches

Profusion of Research on this topic over the last years

m Exact Methods:

o Using unbiased estimate of f(6| Yi.y) for all § € ©
(Pseudo-Marginal literature, Andrieu & Vihola 2012, Doucet et al 2012)

o A sub-optimal M—H transition kernel
Accelerating M—H algorithms: Delayed acceptance with prefetching, Banterle et al, 2014

o An auxiliary variable MCMC, under strong assumptions
FireFly Monte Carlo: Exact MCMC with subsets of data, MacLaurin et al, 2014

m Approximated Methods with error control

o A proxy of the M—H kernel with complexity < O(N)
Austerity in MCMC land: Cutting the M—H budget, Korattikara et al, 2013
Towards scaling up MCMC: an adaptive subsampling approach, Bardenet et al, 2014
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Some recent Approaches

And also at UCD!

m Connected with other Research activities at UCD
m Bayesian inference in large networks

e Aidan Boland: Noisy M-H / Application to the Ising model

e Lampros Bouranis: Composite Likelihood Inference / Application to
Exponential Random Graph model
e and probably others!
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Korattikara et al. / Bardenet et al.

Roughly share the same idea:
m Rewrite the acceptance step of M—H as the realization of the event

() o 1y p@00.00) )
{ §:| 3@|@)2/ngUmaJka§y U~U mJ)}

m Draw wo replacement, sub batch of data from the data set
(successively) up until the event Ey is realized:
> W}

6) ‘ %

= log AV 10) p(0k,0,U
Ero = {| Z f(Yuk|9k) — (0k, 0, U)
m The threshold 7y is defined so that

PEx = Exy] > ¢
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Some recent Approaches

So why should we keep on asking questions?!

Three main reasons:

m As the Markov chain gets closer to equilibrium ny, — N i.e all data are
used

m Computational gains are highly model specific:

0. 0.52
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5 || - 31%o0fn 5046 -~ 96%ofn
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oo T 10 10 106 10° 10° 10! 10° 10° 10 10°
wallclock time [s] wallclock time [s]

Figure: Two different classification tasks (Covtype Dataset (1) and a
Synthetic 2D binary decision (r) in Bardenet et al.)

m only applicable for independent data

F. Maire (UCD) 13 /33



Some recent Approaches

Our Motivations

m Design a new MCMC approach so that, by construction, each
transition’s complexity is deterministic in O(n), n < N
m Do not restrict to i.i.d. data
e Markov models,
e Time series,
e Networks...
m While all the mentioned approaches have stand by the standard
posterior distribution 7( - | Y7.p), we rather investigate the feasibility /
efficiency to learn from a changing subset data of size n < N

m We don't consider a pre-processing data reduction step (ACP,
clustering,...) as we want a method as simple as it can gets,
(black-box)

F. Maire (UCD) 14 / 33



Approximated Bayesian Inference

Outlines

Approximated Bayesian Inference

F. Maire (U 15 / 33




Approximated Bayesian Inference

Learning from a proxy of 7

mWefixneN ng< N

m Let U, be the set of all possible integer combinations such that:
Uy ={U=(U1,...,U,) € [1,N]", V(i,j) e[l n], U # U}

m The question we address is twofold:

(i) Does it exist a subset U} C U, s.t.

forUGZ//,f, W(()’Yk,kGU)Z:W(9|Yu)%7r(9‘yl;/\/)

(i) How can we find such U;?
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Representativeness of a subset of data

We introduce a Summary Statistics mapping, projecting a batch of data
{Yu, U € U,} onto a space of smaller dimension S C R™

S, U, — S

Define the probability measure v, . on the discrete state space (U, %)

o (IS(U) = s||/e)
VUEUn vndlU) = = o S(V) — sl /)

where:

e ®: Rt — RT is a kernel function

e ¢ > 0 is a bandwidth attached to ¢

e s=5y({1,...,N}) the summary statistic vector of the full data set
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Approximated Bayesian Inference

Heuristic

The intuition is that for all (U, V) € U?
Vne(U) > vne(V) ~ d(m 7(-| Yu)) < d(m7(-| Yv)), (1)

for some distance measure on the set of proba on (©, ).

m (1) requires a reasonable choice of S, to be meaningful
m Connection with ABC (Approximated Bayesian Computation)
ABC Subset Inf.
0~ Q U~R
Y~ £(-16) | 6 ~n(-| V)
Accept 0 with probability
VN,E(Y/) ‘ Vn,e(U)

m Take advantage of ABC literature to design relevant S,
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Approximated Bayesian Inference

The case of curved exponential family models

m Consider i.i.d. observations from some exponential model
Yi ~ f(-|6), where

f(y|0) =exp(h //exp(h y'))dy

m Here, the choice of Summary Statistics in our approach is naturally
provided by the Sufficient Statistics of the exponential model

m In this special case, we show that given U € U,
KL (7 || 7(-| Yu)) < V¥(n, N, Yi.n, p) + B(U), (2)
where B : U, — R such that for all U € U,

1 N
B(U)zO@NZS(Yk) Zs Ye) -
k=1 keU
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Approximated Bayesian Inference

Regarding U as a missing parameter of the model

m These two arguments give credit to the intuition that "some subsets
are better than others"

m Issues:

e U} is unlikely to be restricted to a single element (esp. as d )
e and even in such a case, wouldn't it be more interesting to account for
a collection of good subset

m A collection of good subsets may act somehow complementarily to
track w

m Define the proxy of the target as

Fne(0] Yin) = D 70| Yu)vne(U)
Uel,

yielding a mixture model with (}) components...
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Approximated Bayesian Inference

First example: Probit model-1

Sample (Y1,..., Yn) € ({0}, {1})", independently from the model
(I) X NN(M: 1)7 (”) Yi = ]l{Xk>0}

Can we estimate ;1 € R from 7, . rather than from 77
m Settings: N =1000, n =100, e =1, S,(U) =1,y Y

m In this toy example, the likelihood evaluation is NOT in O(N) and the
exact posterior writes:

(6) )ZkN—l i

7(60] Vi) o< p(6) (1 — a(6))" (1_049)

9

m 7(-| Y1.n) can be explored through standard M-H
m Similarly, given U € Uy, 7(-| Yu) can be estimated by standard M—-H
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Approximated Bayesian Inference

First example: Probit model-2

0.091
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0.011

Figure: Density estimation — S,(U1) = 0.71, Snp(Us) = 0.77, Sn(Us) = 0.84, Sy = 0.843

m At first sight, 7, remains far from 7...
m However, our main interest is to approximate the expectation

/@ H(O)r(d8 | Yin) by /@ H(O)7n (A0 ] Yi.n)
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Approximated Bayesian Inference

First example: Probit model-3

Sample mean for tand 3 proxys
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Density estimation for different n
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Approximated Bayesian Inference

First example: Probit model—4

m Variance of the TCL estimate

1 L
oF = ZVar (Z ,uk>

k=1

Jf = 0.0105 for 7, af = 0.0305 for 7y for L = 10.000
m but when we "time normalize":

1.03

1.02

F. Maire (UCD)
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Approximated Bayesian Inference

A general approach

m In general, sampling from the mixture

7hfn,e(e‘ Yl:N) = Z 7’%(9‘ YU)VfLe(U)
Uel,

is not feasible (N >> n, model more complex than the Probit
example...)

m We propose an MCMC algorithm on the extended state space
(© x Up, Y @ %,) with target distribution

Tne(0,U| Yin) =70 Yu)ne(U)
m The Markov chain {(0x, Ux), k € N} will marginally target
'Frn,e( : ’ Yl:N)
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The ideal Markov chain

The desired scheme of the chain would be as follow:

0 O11 Ok+2

Figure: Intertwined structure of the desired Markov chain

To avoid getting stuck on some optimal block of data:
(i) make two distinct decisions for a move on © and on U,
(ii) Uky1 should depend only on Uy for optimal mixing
mimicking independence sampler (if v, could be drawn from!)
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Approximated Bayesian Inference

The Markov chain we actually use...

(i) propose: U’ ~ r(Uy,-)

co
Uk Uk+1 ik

\ /(,,) accept wp az(Ug, U')
/ \

Uk = Ugy1 ——m—— -

(i) propose: 0’ ~ q(Ok+1, Uky1;°)
copy
O ——————— Okp1 =0k Ok+2

(i) accept wp a2(0kt1, Ukt1; U')

Figure: A Markov chain with two independent decisions

We haven't been able yet to find a proper way to make the marginal chain
{Uk, k € N} independent of {0, k € N}
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ARMA model

Observation {Y;, t € N}
Yeri =aYe+ e + Zey1 +

where

o Zii1 ~N(0,0%)

e a=0508=07,vy=1,0=1

e Summary statistic: autocorrelation time

8
6
4

I
2

I I I I I I
0 100 200 300 400 500 600 700 800 900
t

Figure: Realization of an ARMA of lenght: T ='10.000

|
1000
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Influence of € on « estimate
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Figure: M—H top left & Approxinated Bayesian Inference bottom (five different €)
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Approximated Bayesian Inference

Influence of € on ~ estimate

‘Samples v, = T=10000 - MH - run=1000
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Figure: M—H top row Approxinated Bayesian Inference bottom (three different ¢)
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Approximated Bayesian Inference

Optimal behaviour

m Same kind of trend of 8 estimate

m For a fixed choice of summary statistics, there seems to exist an
optimal €

It is not that surprising, indeed
m ¢ > 1 = the choice of subset is not discriminant enough

B ¢ <1 = in contrary we have
Tne(0] Yin) — 7(6 ] U¥)

B SO a proper mixture lies in-between...

Guidelines: if we trust S,,, then € can be arbitrary low
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A last example in high dimension
Reconstruction of template images from a handwritten digits data set. The

parameter o we estimate has dimension d = 256, we have N = 10.000
observations each of size 15 x 15. Here n = 100 and S, the mixture index.

-

time (min)

Figure: Distance from true templates: blue M—H and black Approximates
Bayesian Inference
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Approximated Bayesian Inference

Perspectives

m Our approach targets a proxy of the true posterior which, provided a
decent choice of summary statistics, achieves satisfactorily Bayesian
inference at a fixed computational time

m Bardenet et al. & Korratikara don't know precisely the distribution
they target...

m Theoretical analysis of the algorithm is difficult since

Fne(0] Yin) = Z #(0] Yu)vne(U)
Uel,

is intractable...

Further...
m Compare with Bardenet et. al simulations

m Search for the Intertwined Markov chain kernel...
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