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Motivations & main Problematic

Bayesian inference at large

Modelling & Data Analysis using Bayesian methods :

{Y1,Y2, . . . ,YN}

Data
• Physical measurements,
• Experimentation results,
• Surveys, etc...

Black Box
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Robustness and simplicity are attracting for a wide range of people /
domains
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Motivations & main Problematic

Estimation of the parameter

The data are random var. on (Y,Y) (typ. Y ⊆ Rp)
The parameter θ is (regarded as) random var. on (Θ, ϑ) (typ.
Θ ⊆ Rd)
Given:
(i) a likelihood model fθ ≡ f (· | θ) on (Y,Y),
(ii) a prior dist. p for θ on (Θ, ϑ)
define the posterior distribution of θ given Y1:N = (Y1, . . . ,YN) ∈ YN

π(θ |Y1:N) ∝ f (Y1:N | θ)p(θ)

our primary objective is to gain knowledge of π, (we assume likelihood
model and prior known and fixed...)
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Motivations & main Problematic

Markov chain Monte Carlo: the black box!!

Seminal papers late 80’s/early 90’s 1 popularised the use of Markov
chains targeting π to explore the state space Θ
The Metropolis-Hastings (M–H) sampler being the most
straightforward black box
Start from some initial state θ0 ∈ Θ. At step k:
(i) Propose a move θ̃ ∼ Q(θk , ·)
(ii) Set θk+1 as the next state of the chain if event Ek is realized:

Ek =
{
U ≤ f (θ̃ |Y1:N)p(θ̃)Q(θ̃, θk)

f (θk |Y1:N)p(θk)Q(θk , θ̃)
, U ∼ Uni(0, 1)

}

What if N becomes larger and larger?? (e.g N > 106)

1Tanner & Wong (1987), Gelfand & Smith (1990), Tierney (1994),...
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Motivations & main Problematic

The N case

A likelihood function evaluation has a complexity in O(N)
M–H (or other MCMC’s) & optimization methods are severely
hampered by a large N
When comparing MCMC algorithms
(i) Autocorrelation
(ii) Asymptotic Variance
(iii) Time of transition
From this perspective, one can expect M–H to be badly ranked!
Example: for a likelihood function

f ( · | θ) = 0.8N (0.3, 0.8) + 0.2N (4, 1)

and i.i.d. data

N 1.000 10.000 100.000 106 107
M–H trans. CPU Time 0.016 0.151 1.53 15.40 151.87
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Motivations & main Problematic

Main Problematic

How to rescue the traditional Bayesian analysis methods

(i) from being overwhelmed by N,

(ii) while still preserving the black box thing?
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Some recent Approaches

Profusion of Research on this topic over the last years

Exact Methods:

• Using unbiased estimate of f (θ |Y1;N) for all θ ∈ Θ
(Pseudo-Marginal literature, Andrieu & Vihola 2012, Doucet et al 2012)

• A sub-optimal M–H transition kernel
Accelerating M–H algorithms: Delayed acceptance with prefetching, Banterle et al, 2014

• An auxiliary variable MCMC, under strong assumptions
FireFly Monte Carlo: Exact MCMC with subsets of data, MacLaurin et al, 2014

Approximated Methods with error control

• A proxy of the M–H kernel with complexity ≤ O(N)
Austerity in MCMC land: Cutting the M–H budget, Korattikara et al, 2013
Towards scaling up MCMC: an adaptive subsampling approach, Bardenet et al, 2014
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Some recent Approaches

And also at UCD!

Connected with other Research activities at UCD
Bayesian inference in large networks
• Aidan Boland: Noisy M–H / Application to the Ising model
• Lampros Bouranis: Composite Likelihood Inference / Application to

Exponential Random Graph model
• and probably others!
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Some recent Approaches

Korattikara et al. / Bardenet et al.

Roughly share the same idea:
Rewrite the acceptance step of M–H as the realization of the event

Ek =
{
1
N

N∑
k=1

log f (Yk | θ̃)
f (Yk | θk) ≥

1
N logU p(θ̃)Q(θ̃, θk)

p(θk)Q(θk , θ̃)
, U ∼ Uni(0, 1)

}

Draw wo replacement, sub batch of data from the data set
(successively) up until the event E` is realized:

Ẽk,` =
{∣∣∣∣∣ 1n`

n∑̀
k=1

log f (Yuk | θ̃)
f (Yuk | θk) − ψ(θk , θ̃,U)

∣∣∣∣∣ > η`

}

The threshold η` is defined so that

P[Ek = Ẽk,`] ≥ ε
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Some recent Approaches

So why should we keep on asking questions?!

Three main reasons:
As the Markov chain gets closer to equilibrium n` → N i.e all data are
used
Computational gains are highly model specific:

Figure: Two different classification tasks (Covtype Dataset (l) and a
Synthetic 2D binary decision (r) in Bardenet et al.)

only applicable for independent data
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Some recent Approaches

Our Motivations

Design a new MCMC approach so that, by construction, each
transition’s complexity is deterministic in O(n), n� N
Do not restrict to i.i.d. data
• Markov models,
• Time series,
• Networks...

While all the mentioned approaches have stand by the standard
posterior distribution π( · |Y1:N), we rather investigate the feasibility /
efficiency to learn from a changing subset data of size n� N
We don’t consider a pre-processing data reduction step (ACP,
clustering,...) as we want a method as simple as it can gets,
(black-box)
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Approximated Bayesian Inference

Learning from a proxy of π

We fix n ∈ N, n� N
Let Un be the set of all possible integer combinations such that:

Un = {U = (U1, . . . ,Un) ∈ [1,N]n, ∀(i , j) ∈ [1, n], Ui 6= Uj}

The question we address is twofold:

(i) Does it exist a subset U?n ⊆ Un s.t.

for U ∈ U?n , π(θ |Yk , k ∈ U) := π(θ |YU) ≈ π(θ |Y1:N)

(ii) How can we find such U?n?
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Approximated Bayesian Inference

Representativeness of a subset of data

We introduce a Summary Statistics mapping, projecting a batch of data
{YU , U ∈ Un} onto a space of smaller dimension S ⊆ Rm

Sn : Un → S

Define the probability measure νn,ε on the discrete state space (Un,Un)

∀U ∈ Un, νn,ε(U) =
Φ
(
‖S(U)− s‖

/
ε
)∑

V∈Un Φ
(
‖S(V )− s‖

/
ε
)

where:
• Φ : R+ → R+ is a kernel function
• ε > 0 is a bandwidth attached to Φ
• s = SN({1, . . . ,N}) the summary statistic vector of the full data set
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Approximated Bayesian Inference

Heuristic

The intuition is that for all (U,V ) ∈ U2n

νn,ε(U) > νn,ε(V ) ; d(π; π̃( · |YU)) ≤ d(π; π̃( · |YV )), (1)

for some distance measure on the set of proba on (Θ, ϑ).

(1) requires a reasonable choice of Sn to be meaningful
Connection with ABC (Approximated Bayesian Computation)

ABC Subset Inf.
θ ∼ Q U ∼ R

Ỹ ∼ f (· | θ) θ ∼ π( · |YU)
Accept θ with probability
νN,ε(Ỹ ) νn,ε(U)

Take advantage of ABC literature to design relevant Sn
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Approximated Bayesian Inference

The case of curved exponential family models

Consider i.i.d. observations from some exponential model
Yk ∼ f ( · | θ), where

f (y | θ) = exp 〈h(θ),S(y)〉
/∫

Y
exp

〈
h(θ),S(y ′)

〉
dy ′

Here, the choice of Summary Statistics in our approach is naturally
provided by the Sufficient Statistics of the exponential model
In this special case, we show that given U ∈ Un

KL (π ‖ π̃( · |YU)) ≤ Ψ(n,N,Y1:N , p) + B(U) , (2)

where B : Un → R+ such that for all U ∈ Un

B(U) = 0⇐⇒ 1
N

N∑
k=1

S(Yk) = 1
n
∑
k∈U

S(Yk) .
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Approximated Bayesian Inference

Regarding U as a missing parameter of the model

These two arguments give credit to the intuition that "some subsets
are better than others"
Issues:
• U?n is unlikely to be restricted to a single element (esp. as d ↗)
• and even in such a case, wouldn’t it be more interesting to account for

a collection of good subset
A collection of good subsets may act somehow complementarily to
track π
Define the proxy of the target as

π̃n,ε(θ |Y1:N) =
∑

U∈Un

π̃(θ |YU)νn,ε(U)

yielding a mixture model with
(n

k
)
components...
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Approximated Bayesian Inference

First example: Probit model–1

Sample (Y1, . . . ,YN) ∈ ({0}, {1})N , independently from the model

(i) Xk ∼ N (µ, 1), (ii) Yk = 1{Xk>0}

Can we estimate µ ∈ R from π̃n,ε rather than from π?
Settings: N = 1000, n = 100, ε = 1, Sn(U) = 1

n
∑

k∈U Yk

In this toy example, the likelihood evaluation is NOT in O(N) and the
exact posterior writes:

π(θ |Y1:N) ∝ p(θ) (1− α(θ))N
(

α(θ)
1− α(θ)

)∑N
k=1 Yk

,

π( · |Y1:N) can be explored through standard M–H
Similarly, given U ∈ Un, π̃( · |YU) can be estimated by standard M–H
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Approximated Bayesian Inference

First example: Probit model–2
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Figure: Density estimation – Sn(U1) = 0.71, Sn(U2) = 0.77, Sn(U3) = 0.84, SN = 0.843

At first sight, π̃n,ε remains far from π...
However, our main interest is to approximate the expectation∫

Θ
H(θ)π(dθ |Y1:N) by

∫
Θ
H(θ)π̃n,ε(dθ |Y1:N)
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Approximated Bayesian Inference

First example: Probit model–3
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Approximated Bayesian Inference

First example: Probit model–4

Variance of the TCL estimate

σ2L = 1
LVar

( L∑
k=1

µk

)
σ2L = 0.0105 for π, σ2L = 0.0305 for π̃n,ε for L = 10.000
but when we "time normalize":
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Approximated Bayesian Inference

A general approach

In general, sampling from the mixture

π̃n,ε(θ |Y1:N) =
∑

U∈Un

π̃(θ |YU)νn,ε(U)

is not feasible (N � n, model more complex than the Probit
example...)
We propose an MCMC algorithm on the extended state space
(Θ× Un, ϑ⊗Un) with target distribution

π̃n,ε(θ,U |Y1:N) = π̃(θ |YU)νn,ε(U)

The Markov chain {(θk ,Uk), k ∈ N} will marginally target
π̃n,ε( · |Y1:N)
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Approximated Bayesian Inference

The ideal Markov chain

The desired scheme of the chain would be as follow:

U0

(. . .)

Uk Uk+1 Uk+2 . . .

θ0 θk θk+1 θk+2 . . .

Figure: Intertwined structure of the desired Markov chain

To avoid getting stuck on some optimal block of data:
(i) make two distinct decisions for a move on Θ and on Un

(ii) Uk+1 should depend only on Uk for optimal mixing
mimicking independence sampler (if νn,ε could be drawn from!)
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Approximated Bayesian Inference

The Markov chain we actually use...

U0

(. . .)

Uk

(i) propose: U′ ∼ r(Uk , ·)

(ii) accept wp α1(Uk ,U′)
Uk+1

copy Uk+2 = Uk+1 . . .

θ0 θk
copy

θk+1 = θk

(i) propose: θ′ ∼ q(θk+1,Uk+1; ·)

(ii) accept wp α2(θk+1,Uk+1; U′)

θk+2 . . .

Figure: A Markov chain with two independent decisions

We haven’t been able yet to find a proper way to make the marginal chain
{Uk , k ∈ N} independent of {θk , k ∈ N}
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Approximated Bayesian Inference

ARMA model
Observation {Yt , t ∈ N}

Yt+1 = αYt + βZt + Zt+1 + γ

where
• Zt+1 ∼ N (0, σ2)
• α = 0.5, β = 0.7, γ = 1, σ = 1
• Summary statistic: autocorrelation time
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Figure: Realization of an ARMA of lenght T = 10.000
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Approximated Bayesian Inference

Influence of ε on α estimate

Figure: M–H top left & Approxinated Bayesian Inference bottom (five different ε)
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Approximated Bayesian Inference

Influence of ε on γ estimate

Figure: M–H top row Approxinated Bayesian Inference bottom (three different ε)
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Approximated Bayesian Inference

Optimal behaviour

Same kind of trend of β estimate
For a fixed choice of summary statistics, there seems to exist an
optimal ε

It is not that surprising, indeed
ε� 1 ⇒ the choice of subset is not discriminant enough
ε� 1 ⇒ in contrary we have

π̃n,ε(θ |Y1:N)→ π̃(θ |U?)

so a proper mixture lies in-between...
Guidelines: if we trust Sn, then ε can be arbitrary low
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Approximated Bayesian Inference

A last example in high dimension

Reconstruction of template images from a handwritten digits data set. The
parameter α we estimate has dimension d = 256, we have N = 10.000
observations each of size 15× 15. Here n = 100 and Sn the mixture index.

Figure: Distance from true templates: blue M–H and black Approximates
Bayesian Inference
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Approximated Bayesian Inference

Perspectives

Our approach targets a proxy of the true posterior which, provided a
decent choice of summary statistics, achieves satisfactorily Bayesian
inference at a fixed computational time
Bardenet et al. & Korratikara don’t know precisely the distribution
they target...
Theoretical analysis of the algorithm is difficult since

π̃n,ε(θ |Y1:N) =
∑

U∈Un

π̃(θ |YU)νn,ε(U)

is intractable...

Further...
Compare with Bardenet et. al simulations
Search for the Intertwined Markov chain kernel...
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