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Context & Motivations

General context

Let 7 be a probability distribution defined on (X, X), X C R

Aim: getting samples (Xy,...,X,) ~ 7

to: estimate any expectation E[h(X)]

Given that m might be:
m complicated — not belonging to usual families
m high-dimensional — Bayesian inference with X =6, d > 1
m multi-modal — clustering problems
" ...
but we assume that 7 is known (possibly up to a constant)...
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Context & Motivations

Terminology

Two main universal approaches sharing a common philosophy

Particle based methods
A set of particles sampled from an
instrumental density:

(X1,...,Xn) ~iid. Q

weighted by an importance function

m(Xk)
Q(Xk)

concern: weight degeneration

Wi ox W(Xy) =

F. Maire (UCD)

Markov chain based methods
A Markov chain { Xy, k € N} with
proposal

X ~ P(Xk,")
accepted / rejected with probability

(X, K) = 11 TXVPX Xi)
’ 7(Xk) P(Xk, X)

concern: bad mixing
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Context & Motivations

Asymptotic estimate

To be useful, these methods must come with asymptotic guarantees
e.g CLT:

Vi (n(Xa - Xn) = Ex [A(X)]) 2 N0, 62(X1, ..., X))

Particle based methods Markov chain based methods

. Sy WX A(Xe)

(Xt ..., Xp) = ,, an(X1,..., Xy) = — h(X
( TSI weg e X = O

and the variance write:

20X, ..., Xy) = Ao

E, [WOO(H(X) — Ex (OO Var [h(X ( 2Zpk>
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Context & Motivations

Independence sampler: an "hybrid" case

A Markov chain {X, k € N} with proposal distribution
X~Q (independent of Xi!)

accepted / rejected w.p.

(K@) _ |, WX)

(X)) Q(X) W (X)

= Apparently of limited interest as we lose the local exploration offered by
the markovian proposal...

a(Xk,)?) =1A

But, if ever Q =~ , X will be accepted w.p. — 1

— Cov(h(Xk), h(Xks1)) — 0 (X L Xir1) = 62(X1, ..., Xn) — Vars[h(X)]
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How to get Q ~ 77

Adaptive algorithms:

m Adaptive Importance sampling: AMIS, Adaptive Multiple Importance
Sampling (Cornuet et al, 2012), IMIS, Incremental Mixture of
Importance Sampling (Raftery and Le Bao, 2010), ...

m Adaptive Markov chain Monte Carlo: Adaptive Proposal (Haario et
al, 1999), Adaptive Metropolis (Haario et al, 2001), Delayed
Rejection Adaptive Metropolis (Haario et al, 2006), . ..

Idea: use the knowledge of the past particles / states to define a sequence of

instrumental kernels {Qx, k € N} such that Qx — ...

Bad aspect: Adaptive MCMC methods lose most of the nice theory that
MCMC rely on
=> new arguments required to prove stationarity, reversibility, ergodicity...
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Adaptive MCMC

e Most frequent approach:

m the proposal distribution Q belongs to a parameterized family:
QkEQQk7 (eke@ng)

m samples of the chain are recursively used to build a sequence of
parameter {0y, k € N} optimizing a criterion (acceptance rate,
moment matching with 7, Kullback-Leibler minimization w.r.t. 7r)

m also connected with the EM literature

= issue: needs some apriori knowledge of 7 to chose a reasonable @y &
constrain a bit the adaption

e Some non-parametric approaches have also been proposed
m Interpolation of a set of support point to match 7
= issue: seems to struggle in dimension higher than 1
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Some elements of related work

Adaptive IS: Incremental Mixture of Importance Sampling,
Raftery and Le Bao, 2010—motivations

IMIS aims at building a collection of Gaussian kernels {¢1,...,¢m} s.t.
m
Ry, = (l/m)Z@ T
(=1

m A particle Xi with an high importance weight Wy highlights a region
of the support lacking of particles (Wi = W(Xk)/>>_1 W(Xj))

m By construction, IMIS recursively populates with new batch of
particles these regions

m This is achieved by specifying a Gaussian distribution ¢, covering
this part of the support (and then populating by sampling from ¢.,)
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IMIS — initiation

IMIS starts with a naive / defensive / flat distribution Q, very
uninformative w.r.t. ...
First steps:

(i) samples (Xi,...,Xn,) ~ Q (an instrumental kernel)
(ii) set I = argmaxjeqa,.. noy W), where W is the j-th particle IS weight
(iii) set ¢1 = N(u1,X1) where

1
p=X,  Ti=io——— Y (x—m)(x — )T
9UX) -1 xEN(X))

MN(X)) denoting a neighborhood of X;
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IMIS — key point

The key point is to resample N new particles through

(XN0+17 s 7XN0+N) ~ Qsl

and to regard the Ny + N particles {X1,..., Xny,+n} as being iid
realizations of the proposal mixture

Q= (1/2)Q + (1/2)¢n

the following reweighting step for all j € {1,..., No+ N}

_ 7(X;) N
WilX) > Q) (- w)an(X) T Mo+ AN

keeps the weighted particles target .
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IMIS - iterations

At iteration k, we have the particles {X1, ..., X—_1)n+n,} and the
collection of Gaussian kernels {¢1, ..., ok}
(i) simulate N new particles {X(x—1)n4np+15 - s XkN+No } ~ Pk

(i) reweight all the particles for all j € {1,..., kN + No}

(X))

Wi (X;) NoQ(X;) + N (p1(Xj) + ... + ¢k(X)))

(iii) get the next Gaussian kernel ¢x11 = N (fks1, Lxr1) Where
= argmax;eq1,. kn+noy Wi(X;)

1
et =X e S e -1

-----

Y (= ) (x = )

XEW(X/)
MN(X)) denoting a neighborhood of X;
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Some elements of related work

Perspectives

m IMIS is "Fully adaptive" in a sense that it follows the generation of
particles (limited apriori knowledge required)

m Main issue: an ever increasing set of particles Xi, ..., Xintn,
m when k > 1 the reweighting step starts to be prohibitively slow...

m (In practice, IMIS is combined with an optimization step which maps
the state space beforehand — this fastens convergence and a
reasonable limited number of iterations is then achievable)

Our question:
e Is it possible to derive an "MCMC" equivalent to the IMIS Methodology?

Motivation
e the sequential nature of the chain well suited to a long exploration
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Incremental Mixture MCMC: unfolding IMIS

m A sequence of random variable {X,, n € N}

Xo~Q
AP 0

where K, is a M—H kernel with independent proposal dist.

Qn:WnQ+(1_Wn Z¢E

Mn 5

and acceptance Ozn(Xm)N() =1A VV;‘//:(());?)

m is meant to emulate the population {X,, n € N} (obtained after k
generations of IMIS),

(X1, .o, X)) ~ w0k Q@+ (1 — wi) = Z@, (n = kN + No)

weighted by the function Wj(x)
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Building on the analogy

m 1 iteration of IMIS = 1 new component ¢,
m But, we want 1 iteration IMMCMC # 1 new component ¢!
m for a better match, a new kernel should be designed after N iterations

But
e Adding a component every N iteration, deterministically sounds odd:

= What if Xy lies in an area well supported by Qn?

m We rather suggest letting the incremental kernel develop
stochastically:
m At iteration n, increase the mixture if

{Wn(x) > W1, X ~ Qn

= "add a component when it worths it"
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Adaptive Incremental Mixture MCMC

Main challenge: How to choose W7

Two alternatives:
(1) constant W} = ¢
m needs off line calibration

® too much dependency on the sample path
m instable

(2) bounded in probability by a sequence of parameter {¢,, n € N}
Po[{Wa(X) > W;}] < e,

m more control

m still how to define a suitable W} achieving the bound in probability?

PA{Wa(R) > Wit = | Tiw,gep= sy () 0u(15)

R
AR Lwoaswey (X)) (2)
k=1
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Example with a challenging target

We consider X = R?

TI'(dX) = (D(fb(x)v 1, Z)dx,
where

m x — §(x, p, X) is the two-dimensional Gaussian density function with
mean u and covariance matrix X

m f, : R?2 — R? is the mapping defined by

e X)L X
b y y + bx?> — 100b

We have used b = 0.1, ;= [0,0] and X = diag([100, 1])
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Adaptive Incremental Mixture MCMC

Banane shape distribution (or Twisted Gaussian)

Samples from it 3D Histogram of n

100}
s
E

120} I Y

-1401

-160 "
=50 0 50

= Simulation
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Adaptive Incremental Mixture MCMC

Samples of the two approaches

-100 -100 s
N N
-120 -120
-140 -140
T40 30 20 -10 0 10 20 30 40 T40 30 20 -10 0 10 20 30 40

Figure: Support (blue), Sample paths (black), Confidence interval (0.5)
Incremental Components (green) :

o Constant threshold (left)

e Bounded in proba. (right)
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Adaptive Incremental Mixture MCMC

Incremental kernel design in simulation - constant threshold

Constant thresholds W} = ¢ (100 independent run of 40, 000 it.)

m, (Nb components created)

P W(X)>10]
°
3
2
5
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Adaptive Incremental Mixture MCMC

Incremental kernel design in simulation - bound in proba

P, [Wa(X) > W*] < 0.005

Pr[W(x)>w;y

~ iy

0.005 WVV W W VW VBN

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
m m,

Figure: Threshold W;; (left) and probability P,[W,(X,) > W;] (right)

m much more consistent than using Markov bound
m after n = 40,000 it. m, = 166 kernels designed,
(40,000 x 0.005 = 200)
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Adaptive Incremental Mixture MCMC

Incremental kernel design in simulation - bound in proba

180

200 . 160
. 140
120
100
80
60
40
20

25 3 35 4 0
x10*

0 05 1 15

2
MCMC it

Figure: Right: evolution of the number of kernels in the proposal as MCMC
progresses (blue) and "theoretic rate" (black) — left: for 100 runs

= More consistency than the fixed threshold
=- Obviously, we don't want to keep adding kernels infinitely
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Adaptive Incremental Mixture MCMC

Simulation with a specific sequence of ¢,

F. Maire (U
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A word about convergence of IM-MCMC

m Instead of Roberts and Rosenthal assumptions,
(i) diminishing adaption: transition kernels tend to become closer and
closer in probability
(i) containment: each transition kernel is a finite time step away from an
e-ball centered on the target (relaxation of the simultaneous ergodicity)

m Holden's proof of geometric convergence for adaptive chains with
independent proposals, seems more straightforward in our case,

(i) main assumption: a strong Deeblin condition — it exists a function
Yn 0 Y™ —]0,1) such that for all (x,y) € X3

7(2) < 1

Qn(z) ~ (9"
where 7 € Y" is a history dependent vector.

which holds (by construction) for IM-MCMC.
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Comparison with some other methods Banana shape target

Outlines

Comparison with some other methods
m Banana shape target
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Banana shape target
Adaptive Metropolis, AM (Haario,2001-Bernoulli,7(2))

A Metropolis algorithm with proposal

n( ns )— ( ) n<No+1/’n( n ‘)]ln>No

m @ is the "naive" proposal or prior

m Y, is a Gaussian with mean X, and covariance matrix
Yp=54n+sqely

where ', = cov(X1, ..., Xp_1), sq = (2.4)2/d (d is the dimension of
the state) and € < d a constant parameter (allowing to have ¥,
positive definite)
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Comparison with some other methods Banana shape target

Time normalized comparison with IM-MCMC

method (sd,€) acc rate  mp, Nb Iterations
AM (2.88,0.001)  0.10 - 90,000
AM (0.01,1) 0.52 - 90,000
IM-MCMC - 0.52 96 40,000
Table: Estimation over 100 runs
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Comparison with some other methods
Tail exploration

Banana shape target

We want to assess the sampling quality of the tail of 7

F. Maire (UCD)

Do
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Ealaablpelote
Adaptive Metropolis — setup 1

AM - setup 1 AM - setup 1

><1 (samples first component)
X, (samples second component)

-100
-120
-40 -140
2 4 6 8 10 0 2 4 6 8 10
n a n a

m 3754 states out of 90,000 are such that X,% < 40
m but only 48 unique points

m average waiting time in the tail ~ 80 iterations!

F. Maire (

32/ 48



Banana shape target
What about ADA IMIS?

ADA IMIS - Monte Carlo ADA IMIS - Monte Carlo

><1 (samples first component)

X, (samples second component)

m 807 states out of 40,000 are such that X,f <40
m and 467 unique points

m average waiting time in the tail ~ 1.7 iterations!

53745



Comparison with some other methods Banana shape target

Assessing the sampling efficiency

Kullback Leibler divergence between two measures on (X, X), say (p,v):

w5 (0)

For an observed Markov chain xy., € X", let rA‘XLn be a kernel approximation
of the empirical distribution n=1 37 _; &y,

KL (| F,) = /X log (;%)) 2(x)A(dx)

X1:n

~ KL <7r | ;A‘XM> Z log <? I ))> 7 (Xm)dA (discretisation)
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Comparison with some other methods Banana shape target

KL for the three previous runs

samples - AM setup 1 samples - AM setup 2 samples ~ ADA IMIS Monte Carlo

0 0 R 0
-20 -20 -20
-40 ./ 1 -40 -40
-60 5 -60 -60
-80 -80 wof f \"
-100 -100 -100
-120 -120 -120
-140 -140 -140
a0 20 ) 20 w0 -0 20 0 20 w0 a0 20 0 20 40

local KL map - AM setup 2 local KL map ~ ADA IMIS Monte Carlo

local KL map - AM setup 1

Figure: samples and discretised KL heat map (same scale) for 1 run of each setup
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Comparison with some other methods Banana shape target

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

X, (samples second component)
><2 (samples second component)

n x 10 x 10"

Figure: 1 run — acc rate HMC: 0.37 (ADAIMIS: 0.51) — time spent in tail HMC:
0.0033 (ADAIMIS: 0.02)
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Banana shape target
Variability over 100 independent runs

70

60

50

401

KL

301
20F

101

m account very well for mixing & exploration simultaneously
m ADA IMIS performs much better than AM on this example

F. Maire (UCD)
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Comparison with some other methods Ridge like target

Outlines

Comparison with some other methods

m Ridge like target
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2 TS
Comparison IM-MCMC vs IMIS

m Ridge-like simulated example in (Raftery et al)

7(0) o< N(ui, Di, 8) N(pio, Do, ()
prior likelihood

pi € R% and o € R* - mapping g deterministic.

m Run IMIS until the "expected fraction of unique points in the
resample is at least 1 — 1/¢e"

m get the Effective sample size from IMIS

N 2
ESSIMIS _ 1/ Zk;ll(wk)

where N is the nb of particles when IMIS stops.
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2 TS
Comparison IM-MCMC vs IMIS

m for the same amount of wallclock time run IM MCMC and compare

ESS/M[S with
N

ESS = ———
IMMCMC = 1775 S

where N is the nb of iterations of the Markov chain during the given
time and py is the estimated lag k autocorrelation function of the

chain.

F. Maire (UCD) 40 / 48



Comparison with some other methods Ridge like target

Effective Sample Size

m IMIS: 46,200 particles (67 generations) and m, = 67 components

ESSivmis = 0.04

m IM-IMIS: 2,500 MCMC iterations and m,, = 77 components

component

ESSiv—mcmc

61
0>
03
04
05
t6

F. Maire (UCD)

0.11
0.05
0.08
0.03
0.09
0.07
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Comparison with some other methods Ridge like target

Here we are...

m the IM-MCMC methodology aims at extending IMIS to a sequential
context

m early simulation results are encouraging

m interesting work as it allows to see analogies between particle base
method and MCMC

Other interesting things to derive
m how to compare properly particle based methods and MCMC

m refine convergence rate by using the non-ordinary IM-MCMC
transition...

Thank you for your attention!
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IM-MCMC with "bad proposal”

Figure: sample path of one Markov chain with "bad" initial proposal displayed by the thick

ellipse (upper right hand side) — note the sequence of kernels created by IM-MCMC in rainbow

style
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|
IM-MCMC with "bad proposal"—even worst!

x10° x10°

Figure: sample path of one Markov chain with "bad" initial proposal displayed by the thick
ellipse (upper right hand side) — note the sequence of kernels created by IM-MCMC in rainbow
style
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Function evaluations

IMIS at generation k

m Target evaluation
M3 (k) = No + kN

™

m Gaussian evaluation

o3 (k) = k(N + (k — 1)N)

F. Maire (UCD)

IM-MCMC at iteration n

m Target evaluation

FMmeme oy

™

m Gaussian evaluation

n

T(LM'MCMC(n) = Z(m;—i—l)—i—mn
i=1
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Gaussian function evaluation for IMIS

generation | ¢p = Q b1 P2 ?3 e Prk—1
1 No - - - -
2 N No + N - - -
3 N N No + 2N - -
4 N N N No+3N | - -
k N N N N o | No+(k—1)N

Table: Gaussian pdf evaluation for each component of the incremental kernel per
generation

At generation k:

B ¢k_1 has just been created w.p. 1 thus the previous population consisting of
No + (k — 2)N particles needs to be evaluated for ¢x_1

m in addition to that, the N new particles need to be evaluated for ¢o, ..., Px_1

m the nb of Gaussian pdf eval. since the generation 0 is the sum of all integers in the table
(constant over the columns...)
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Gaussian function evaluation for IM=-MCMC

At iteration n:

m either m, = m,_1, in which case, the proposed new state X needs to
be evaluated at ¢o = Q, ¢1,...,Pm,, i.e m, + 1 Gaussian pdf

m either m, = m,_1 + 1 and in addition of the m, + 1 evaluations
caused by X, the current state X, needs to be evaluated at the newly
created kernel ¢,

This leaves with

n

T(;M-MCMC(n) = Z(m,- +1)+ m,
i=1

Gaussian pdf evaluation since starting with Xj
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IMIS: 48,600 particles (71 generations) and m, = 71 components

normalisation

\ time \ target \gaussian function

it. completed n | 9,264 | 51,600 | 40,367 40,441

samples retained | 1,000 | 20,000 | 20,000 20,000
mp 57 117 113 113
01 A1 15 14 .15
6> 11 14 15 15
03 .07 13 15 14
04 11 12 .16 13
s 13 15 14 14
06 .06 15 15 14

Table: ESS/M7MCMC

F. Maire (UCD)
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