A Partial Ordering for Inhomogeneous Markov Chains : Motivations and Applications to several MCMC algorithms...

Florian Maire*, UCD

joint work with : Randal Douc (Telecom SudParis, Évry, France)

Jimmy Olsson (KTH Institute of Technology, Stockholm, Sweden)

Working Group on Statistical Learning, 5th of February 2014

while at ONERA & Telecom SudParis

Outlines

1 Motivations & main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

F. Maire (UCD)

Outlines

1 Motivations & main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

A toy example to start

Consider the joint probability distribution whose density function is defined on $(\{1,\ldots,4\},\mathbb{R}^2)$ by:

$$\pi(i,x)=\frac{1}{4}g_i(x)\;,$$

where $\{g_i, i \in (1,4)\}$ is the Gaussian density function with mean

$$\mu_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mu_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \mu_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \mu_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

and covariance matrix $\Sigma = \sigma^2 \text{Id}_2$.

 \Rightarrow We want to sample $(I,X)\sim\pi$ (and imagine no exact sampling is available)

Inefficient Gibbs sampler... (1/2)

Gibbs sampler (1984): transition $(I_n = i, X_n = x) \rightarrow (I_{n+1}, X_{n+1})$ writes

- (i) $X_{n+1} | I_n = i \sim g_i$,
- (ii) $I_{n+1} = i' \mid X_{n+1} = x' \propto g_{i'}(x')$.

Table: Illustration of the Gibbs Markov chain under different σ^2

$$\sigma^2 = 0.125$$

$$\sigma^2 = 0.1$$

$$\sigma^2 = 0.075$$

$$\sigma^2 = 0.075$$
 $\sigma^2 = 0.005$

F. Maire (UCD)

Inefficient Gibbs sampler... (2/2)

Table: Empirical model transition probability obtained by the Gibbs sampler with different σ

$$\sigma^2$$
 | 0.125 | 0.1 | 0.075 | 0.005 | $\hat{\mathbb{P}}[I_{n+1} \neq I_n] (10^{-6})$ | 2300 | 860 | 85 | 1.2

■ The well known Gibbs trapping state problem:

$$x \sim g_i \implies x$$
 fits model $i \implies \mathbb{P}[i \to j \neq i \mid x] \ll 1$.

This problem is all the more important when models are distinct *i.e* when $\{\pi(\cdot | i), i \in (1, 4)\}$ are class informative

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · 釣९@

Another argument

- Formalism: Z = (I, X) and π defined on (Z, Z),
- Previous example is a particular case of the more general model where the state space writes

$$Z = \{ i \in I, X \in X^{(i)} \} ,$$

- A Gibbs sampler **cannot simulate** a Markov chain on (Z, Z) \Rightarrow the Gibbs scheme would allow samples $(i, x \in X^{(j)}) \notin Z$,
- From now on, suppose all the parameters live in the same space *i.e*

$$Z = \{i \in I, x \in X\}.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q Q

A more appropriate sampler

- Suppose a mixture of C models i.e $I \in I$ ($I = \{1, ..., C\}$),
- Carlin & Chib (1995) propose the extended target distribution

$$\tilde{\pi}(i, x^{(1)}, \dots, x^{(C)}) = \pi(i, x^{(i)}) \prod_{j \neq i} \zeta_j(x^{(j)}),$$

where $\{\zeta_i, i \in I\}$ are "samplable" probability distributions refered to as *pseudo-priors*.

■ Note that:

$$\int \cdots \int \tilde{\pi}(i, dx^{(1)}, \ldots, dx^{(i-1)}, x^{(i)}, dx^{(i+1)}, \ldots, dx^{(C)}) = \pi(i, x^{(i)}),$$

and thus

$$(I, X^{(1)}, \dots, X^{(C)}) \sim \tilde{\pi} \Longrightarrow (I, X^{(I)}) \sim \pi$$
.

Carlin & Chib

- The Carlin & Chib sampler is a Gibbs on the data-augmented state-space $I \times \underbrace{X \times \cdots \times X}_{C}$
- Given $(I_n, X_n^{(1)}, \dots, X_n^{(C)}) = (i, x^{(1)}, \dots, x^{(C)})$, the transition writes
 - (i) $X_{n+1}^{(i)} \sim \pi(\cdot \mid i)$,
 - (ii) $\forall j \neq i$, $X_{n+1}^{(j)} \sim \zeta_j$,
 - (iii) draw $I_{n+1}=i'$ with proba. $\propto \tilde{\pi}(i',X_{n+1}^{(1)},\ldots,X_{n+1}^{(C)})$.

Table: Marginal sequence $\{(I_n, X_n^{(I_n)}), n \in \mathbb{N}\}$ when $\sigma^2 = 0.005$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Influence of the *pseudo-priors*

- We would like to have $\zeta_i \approx \pi(\cdot | i)$
- Marginal probabilities of the class after 5000 MCMC iterations

classes		1	2	3	4
Gibbs		0	0	1	0
CC	$\zeta_j = g_j$	0.26	0.24	0.25	0.25
CC	$\zeta_j = \mathcal{N}(0,1)$	0.24	0.27	0.23	0.26
CC	$\zeta_j = \mathcal{N}(0, 0.2)$	0.44	0.17	0.25	0.14

lacksquare Evolution of the empirical variance of $\mathbb{P}[I=1]$ throughout MCMC

F. Maire (UCD) 10 / 27

Theoretic considerations

Is there any theoretic argument behind the (obvious) link between

(i) the ability of the Markov chain to switch models (ii) the MCMC asymptotic variance?

Formalizing the *ability to switch between models* leads to the **off-diagonal** ordering:

- Let P_0 and P_1 two Markov kernels on some general state space $(\mathsf{Z}, \mathcal{Z})$
- lacksquare P_1 dominates P_0 in the off-diagonal sense if $\forall A \in \mathcal{Z}$

$$P_1(z, A \setminus \{z\}) \ge P_0(z, A \setminus \{z\}), \quad \pi$$
-a.e.

(we note $P_1 \succeq P_0$)

Tierney's Theorem

Tierney (1994) Theorem (extending Peskun's (1973)) state that :

Under (A1) and (A2)

• (A1) P_0 and P_1 are π -reversible kernels *i.e* for $i \in \{0,1\}$:

$$\forall (A,B) \in (\mathcal{Z} \times \mathcal{Z}) , \qquad \int_A \pi(\mathrm{d}z) P_i(z,B) = \int_B \pi(\mathrm{d}z) P_i(z,A) ,$$

• (A2) $P_1 \succeq P_0$,

Then, for all $f \in \mathcal{L}^2(\pi)$

$$v(f,P_1) \leq v(f,P_0) ,$$

where for $i \in \{0, 1\}$,

$$v(f,P_i) := \lim_{n \to \infty} \frac{1}{n} \operatorname{Var} \left[\sum_{k=1}^n f(X_k^{(i)}) \right] , \quad X_k^{(i)} \sim P_i^{(k)}(z_0,\cdot) .$$

Limitations

- Some popular kernels may not have feature the off-diagonal ordering
- (A1) $(\pi$ -reversibility) is a strong assumption ...
- ...and is not verified by either Gibbs or Carlin & Chib sampler
- To obtain a π -reversible Markov chain, Gibbs sampler (and Carlin & Chib) should be rewritten as :

$$\begin{pmatrix} I_{n} = i \\ X_{n} = x \end{pmatrix} \rightarrow \begin{pmatrix} I_{n+1} \sim \pi(\cdot \mid x) \\ X_{n+1} \sim \delta_{\{x\}}(\cdot) \end{pmatrix} \rightarrow \begin{pmatrix} I_{n+2} \sim \delta_{\{i'\}}(\cdot) \\ X_{n+2} \sim \pi(\cdot \mid i') \end{pmatrix} \rightarrow \cdots$$

■ that is **Inhomogeneous** Markov chain

$$Z_n \xrightarrow{P} Z_{n+1} \xrightarrow{Q} Z_{n+2} \xrightarrow{P} Z_{n+3} \xrightarrow{Q} \cdots$$

which is not in Tierney's Theorem scope.

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Question

Is there any way to extend Tierney's Theorem to cover the inhomogeneous Markov chain study?

Tierney's proof essentially relies on

(i) the following expression of the variance:

$$\frac{1}{n} \operatorname{Var} \left[\sum_{k=1}^{n} f(Z_k) \right] = \|f\|^2 + \frac{2}{n} \sum_{k=1}^{n} (n-k) \left\langle f, P^k f \right\rangle ,$$

(ii) a spectral decomposition Theorem for self-adjoint operators:

$$\forall n \geq 0, \quad \langle f, P^n f \rangle = \int z^n \mu_{f,P}(\mathrm{d}z) \ .$$

A similar Proof cannot be derived for inhomogeneous chains.

Outlines

1 Motivations & main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

Our Main result

Under (A1') and (A2')

- (A1') for all $i \in \{0,1\}$, P_i and Q_i are π -reversible kernels
- (A2') $P_1 \succeq P_0$ and $Q_1 \succeq Q_0$

Then, for all $f \in \mathcal{L}^2(\pi)$ such that

$$\sum_{k=1}^{\infty} \left(|\mathsf{Cov}(f(Z_0^{(i)}), f(Z_k^{(i)}))| + |\mathsf{Cov}(f(Z_1^{(i)}), f(Z_{k+1}^{(i)}))| \right) < \infty , \quad (1)$$

we have

$$v(f, P_1, Q_1) \leq v(f, P_0, Q_0)$$
.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト 9 Q (C)

Sketch of the proof

- ⇒ Revisiting Tierney's proof without spectral decomposition Theorem
- (1) Under assumptions (A1) and (A2) and for f such that (1)

$$v(f,P) = ||f||^2 + 2\sum_{n=0}^{\infty} \underbrace{\operatorname{Cov}(f(X_1), f(X_n))}_{\langle f, P^n f \rangle},$$

- (2) Define $\begin{cases} \forall \alpha \in (0,1) & P_{\alpha} = (1-\alpha)P_{0} + \alpha P_{1}, \\ \forall \lambda \in (0,1) & w_{\lambda}(f,P_{\alpha}) = \sum_{n=1}^{\infty} \lambda^{n} \langle f, P_{\alpha}^{n} f \rangle, \end{cases}$
- (3) We show that $\forall \lambda \in (0,1)$, $\alpha \to w_{\lambda}(f,P_{\alpha})$ is decreasing over (0,1).
- (4) Proof completed by a Dominated Convergence Theorem $\lambda o 1$:

$$\langle f, P_1^n f \rangle \leq \langle f, P_0^n f \rangle$$
.

⇒ This proof is compatible with inhomogeneous Markov chain.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

A significant Corollary

- Imagine Z = (X, U) where X is the variable of interest and U some auxiliary data
- In many situation the transition kernel K_i isn't π -reversible

$$Z_n^{(i)} \xrightarrow{K_i} Z_{n+1}^{(i)} \xrightarrow{K_i} Z_{n+2}^{(i)} \cdots$$

and thus $K_1 \succeq K_0 \Rightarrow v(f, K_1) \leq v(f, K_0)$ (with Tierney Theorem)

■ Possibility to "force" π -reversibility by artificially introducing a freezing step

$$\tilde{Z}_n = \left(egin{array}{c} ilde{X}_n^{(i)} \\ ilde{U}_n^{(i)} \end{array}
ight) \stackrel{P_i}{\longrightarrow} \left(egin{array}{c} ilde{X}_{n+1}^{(i)} \\ ilde{U}_{n+1}^{(i)} = ilde{U}_n^{(i)} \end{array}
ight) \stackrel{Q_i}{\longrightarrow} \left(egin{array}{c} ilde{X}_{n+2}^{(i)} = ilde{X}_{n+1}^{(i)} \\ ilde{U}_{n+2}^{(i)} \end{array}
ight) \stackrel{P_i}{\longrightarrow} \cdots$$

Note that $\{\tilde{Z}_{2n}^{(i)}, n \in \mathbb{N}\} = \{Z_n^{(i)}, n \in \mathbb{N}\}$ and our Theorem leads to $v(f, K_1) \leq v(f, K_0)$

Outlines

1 Motivations & main Problematic

2 A new Theorem for Markov chains comparaison

3 Applications to some MCMC algorithms

The mixture Model problem

Rewriting the Gibbs and the Carlin and Chib samplers:

$$P_{\rm G} \begin{cases} I_n^{({\rm G})} \sim \pi(\,\cdot\,|\,x) & Q_{\rm G} \begin{cases} I_{n+1}^{({\rm G})} \sim \delta_{i'}(\,\cdot\,) \\ X_n^{({\rm G})} \sim \delta_x(\,\cdot\,) \end{cases} & Q_{\rm G} \begin{cases} I_{n+1}^{({\rm G})} \sim \delta_{i'}(\,\cdot\,) \\ X_{n+1}^{({\rm G})} \sim \pi(\,\cdot\,|\,i') \end{cases} \end{cases}$$

$$Z_{2n+1}^{({\rm G})} = \begin{pmatrix} I_n^{({\rm G})} = i' \\ X_n^{({\rm G})} = x \end{pmatrix} \qquad Z_{2n+2}^{(i)} = \begin{pmatrix} I_{k+1}^{(i)} = i' \\ X_{k+1}^{(i)} = x' \end{pmatrix}$$

$$Z_{2n+2}^{({\rm CC})} = \begin{pmatrix} I_{k+1}^{(i)} = i' \\ X_{k+1}^{(i)} = x' \end{pmatrix} \qquad Z_{2n+2}^{(i)} = \begin{pmatrix} I_{k+1}^{(i)} = i' \\ X_{k+1}^{(i)} = x' \end{pmatrix}$$

$$P_{\rm CC} \begin{cases} \forall i \neq j \ U_i \sim \zeta_i(\,\cdot\,) \\ U_j \sim \delta_x(\,\cdot\,) \\ I_n^{({\rm CC})} \sim \pi(\,\cdot\,|\,u_1, \ldots, u_C) \end{cases} \qquad Q_{\rm CC} \begin{cases} I_{n+1}^{({\rm CC})} \sim \delta_{i'}(\,\cdot\,) \\ X_{n+1}^{({\rm CC})} \sim \pi(\,\cdot\,|\,i') \end{cases}$$

(i) P_{CC} is π -reversible, (ii) $Q_{\text{CC}} = Q_{\text{G}}$, (iii) $P_{\text{CC}} \stackrel{?}{\succeq} P_{\text{G}} \Rightarrow v(f, \text{CC}) \leq v(f, \text{G})$.

20 / 27

Pseudo-Marginal Algorithms

Pseudo-Marginal (Andrieu & Robert, 2009): no exact expression of the target distribution π *e.g*

$$\pi(x) = \int \pi(x, \mathrm{d}u)$$

for all $(x, x') \in X^2$, $\pi(x)/\pi(x')$ intractable

⇒ Idea: simulate a Markov chain targeting

$$\tilde{\pi}(\mathrm{d}x,\mathrm{d}u) = \underbrace{\pi(\mathrm{d}x)w_u(x)}_{\hat{\pi}_u(\mathrm{d}x),\text{calculable samplable}} \underbrace{R(x,\mathrm{d}u)}_{\text{samplable}}$$

(note that $\int \tilde{\pi}(x, du) = \pi(x)$)

For example, use Importance Sampling estimate:

$$\hat{\pi}_{u}(x) = \frac{1}{n} \sum_{k=1}^{n} \frac{\pi(x, u^{(k)})}{R(x, u^{(k)})}, \quad U^{(k)} \stackrel{i.i.d}{\sim} R(x, \cdot).$$

Monte Carlo within Metropolis (MCWM)

A Markov chain $\{X_n, n \in \mathbb{N}\}$ on (X, \mathcal{X}) : given $X_n = x$, X_{n+1} is obtained as follows

- (i) propose $X' \sim K(x, \cdot)$
- (ii) simulate aux. var. for both states X_n and X': $U \sim R(x, \cdot), U' \sim R(x', \cdot)$
- (iii) accept $X_{n+1} = x'$ w.p

$$\hat{\alpha}(x,x',u,u') = 1 \wedge \frac{\hat{\pi}_{u'}(x')K(x',x)}{\hat{\pi}_{u}(x)K(x,x')}$$

MCWM is not π -reversible but targets an approximate of $\pi(x)$... \Rightarrow noisy algorithm!

Grouped-Independence Metropolis Hastings (GIMH)

A Markov chain $\{(X_n, U_n), n \in \mathbb{N}\}$ targeting $\tilde{\pi}$ such that given $(X_n, U_n) = (x, u), (X_{n+1}, U_{n+1})$ is obtained as follows

- (i) propose $X' \sim K(x, \cdot)$
- (ii) simulate aux. var. for the state X': $U' \sim R(x', \cdot)$
- (iii) accept $(X_{n+1}, U_{n+1}) = (x', u')$ w.p

$$\hat{\alpha}((x,u),(x',u')) = 1 \wedge \frac{\hat{\pi}_{u'}(x')K(x',x)}{\hat{\pi}_{u}(x)K(x,x')}$$

GIMH is **Metropolis-Hastings** algorithm $\Rightarrow \tilde{\pi}$ -reversible.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

23 / 27

Remark

- MCWM & GIMH cannot be properly compared with Tierney's Theorem
- They may be rewritten artificially as:

MCWM:
$$\left(\begin{array}{c}X_{n}^{(M)}\end{array}\right) \xrightarrow{P_{M}} \left(\begin{array}{c}X_{n}^{(M)}\\U\end{array}\right) \xrightarrow{Q} \left(\begin{array}{c}X_{n+1}^{(M)}\end{array}\right) \xrightarrow{P_{M}} \cdots$$
GIMH: $\left(\begin{array}{c}X_{n}^{(G)}\\U_{n}^{(G)}\end{array}\right) \xrightarrow{P_{G}} \left(\begin{array}{c}X_{n}^{(G)}\\U_{n}^{(G)}\end{array}\right) \xrightarrow{Q} \left(\begin{array}{c}X_{n+1}^{(G)}\\U_{n+1}^{(G)}\end{array}\right) \xrightarrow{P_{G}} \cdots$

A Random-Refreshment Pseudo Marginal algorithm

A Markov chain $\{(X_n, U_n), n \in \mathbb{N}\}$ targeting $\tilde{\pi}$ such that given $(X_n, U_n) = (x, u), (X_{n+1}, U_{n+1})$ is obtained as follows:

- (i) (a) propose a new aux. var. for state X; $\tilde{U} \sim R(x, \cdot)$ (b) refresh the aux. var. U_n by \tilde{U} with a certain probability $\omega_{u,\tilde{u}}$
- (ii) propose $X' \sim K(x, \cdot)$
- (iii) simulate aux. var. for the state X': $U' \sim R(x', \cdot)$
- (iv) accept $(X_{n+1}, U_{n+1}) = (x', u')$ w.p

$$\hat{\alpha}((x,u),(x',u')) = 1 \wedge \frac{\hat{\pi}_{u'}(x')K(x',x)}{\hat{\pi}_{u}(x)K(x,x')}$$

Comparing GIMH & Random Refreshment

GIMH:

$$\left(\begin{array}{c} X_n^{(G)} \\ U_n^{(G)} \end{array}\right) \xrightarrow{P_G} \left(\begin{array}{c} X_n^{(G)} \\ U_n^{(G)} \end{array}\right) \xrightarrow{Q} \left(\begin{array}{c} X_{n+1}^{(G)} \\ U_{n+1}^{(G)} \end{array}\right) \xrightarrow{P_G} \cdots$$

$$\text{Random Refreshment:} \quad \left(\begin{array}{c} X_n^{(R)} \\ U_n^{(R)} \end{array} \right) \stackrel{P_R}{\longrightarrow} \left(\begin{array}{c} X_n^{(R)} \\ \tilde{U} \end{array} \right) \stackrel{Q}{\longrightarrow} \left(\begin{array}{c} X_{n+1}^{(R)} \\ U_{n+1}^{(R)} \end{array} \right) \stackrel{P_G}{\longrightarrow} \cdots$$

Our Theorem holds and show that for any $f \in \mathcal{L}^2(\pi)$ verifying (1)

$$v(f,R) \leq v(f,G)$$
.

Perspectives

Our Theorem extends Tierney's and Peskun's works and allows

- to compare inhomogeneous Markov chains (by nature)...
- lacktriangle and even (non necessarily π -reversible) homogeneous Markov chains

Open questions remain!

- \blacksquare what about inhomogeneous Markov chain with n > 2 kernels
- possibility to find other applications such that ABC computation, and "MCMC for doubly intractable distributions", (Single Auxiliary Variable Method, Exchange Algorithm...)