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A toy example to start

Consider the joint probability distribution whose density function is defined
on ({1,...,4},R?) by:
. 1
w(i,x) = Zg,-(x) ,

where {g;, i € (1,4)} is the Gaussian density function with mean

(o (3o

and covariance matrix ¥ = o2ld,.

= We want to sample (/,X) ~ 7

(and imagine no exact sampling is available)
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Inefficient Gibbs sampler... (1/2)
Gibbs sampler (1984): transition (I, = i, X, = x) — (In+1, Xnt+1) writes

(i) Xot1ll =i~ gi,
(i) lhp1 =1"| Xnp1 = x" < g (x') .

Table: Illustration of the Gibbs Markov chain under different o2

w B
. *

02 =0.125
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Inefficient Gibbs sampler... (2/2)

Table: Empirical model transition probability obtained by the Gibbs sampler with
different o

o? [ 0.125 | 0.1 | 0.075 | 0.005
Plln1 # 1) (107°) | 2300 | 860 | 85 | 1.2

m The well known Gibbs trapping state problem:

X~g = X fits model | — ]P’[[—)_/#I|X]<<1

This problem is all the more important when models are distinct

i.e when {m(-|i),i € (1,4)} are class informative
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Another argument

m Formalism: Z = (/,X) and 7 defined on (Z, Z),

m Previous example is a particular case of the more general model where
the state space writes

Z={iel, XeXx},

m A Gibbs sampler cannot simulate a Markov chain on (Z, 2)
— the Gibbs scheme would allow samples (i,x € X)) ¢ Z

m From now on, suppose all the parameters live in the same space i.e

Z={iel, xeX}.

F. Maire (UCD) 7 /27



A more appropriate sampler

m Suppose a mixture of C models i.e /€l (I={1,...,C}),
m Carlin & Chib (1995) propose the extended target distribution

7, xM, . x(©y = x(i, xU HCJ 0))
J#i

where {(;, i € I} are "samplable" probability distributions refered to
as pseudo-priors.

m Note that:
[ [ ARG 0, ax ), ad) = (i, x0)

m and thus
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Carlin & Chib

m The Carlin & Chib sampler is a Gibbs on the data-augmented
state-space | x X x -+ x X
————

C
m Given (/,,,X,gl), e ,X,SC)) = (i,xM, ..., x(), the transition writes
() X321 ~ 7],
(i) Vi#i. Xh~g,
(iii) draw I,41 = i’ with proba. o ﬁ(i’,X,(,Bl, .. ,X,(,_a)

Table: Marginal sequence {(I,,,X,SI")), n € N} when o2 = 0.005
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Influence of the pseudo-priors

m We would like to have ¢; = m(-| )

m Marginal probabilities of the class after 5000 MCMC iterations

m Evolution of the empirical variance of P[/ = 1] throughout MCMC

F. Maire (UCD)

classes “ 1 [ 2 I 3 | 4
Gibbs 0 0 1 0
CC ¢ = gj 0.26 | 0.24 | 0.25 | 0.25

cC ¢G=N(©0,1) | 024|027]023]0.26
cC ¢ =N(0,02) | 044 | 0.17 | 0.25 | 0.14
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Theoretic considerations

Is there any theoretic argument behind the (obvious) link between

(i) the ability of the Markov chain to switch models
(ii) the MCMC asymptotic variance?

Formalizing the ability to switch between models leads to the off-diagonal
ordering:

m Let Py and P; two Markov kernels on some general state space (Z, Z)

m P; dominates Py in the off-diagonal sense if VA € Z
Pi(z,A\{z}) > Po(z, A\{z}), m-ae.

(we note P; = Pp)
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Motivations & main Problematic

Tierney's Theorem
Tierney (1994) Theorem (extending Peskun’s (1973)) state that :

Under (A1) and (A2)

e (A1) Py and P; are m-reversible kernels i.e for i € {0,1}:
V(A B) € (2 x Z), / 7(dz)Pi(z, B) = / 7(d2)Pi(z, A) |
A B

o (A2) P1 = Po,

Then, for all f € £3()

v(f, P1) < v(f,Po),
where for i € {0,1},

V(F.P) i= lim Var [Z f(xé"U] X~ P, ).
k=1
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Limitations

m Some popular kernels may not have feature the off-diagonal ordering
m (A1) (m-reversibility) is a strong assumption ...
m ...and is not verified by either Gibbs or Carlin & Chib sampler

m To obtain a m-reversible Markov chain, Gibbs sampler (and Carlin &
Chib) should be rewritten as :

I =i Int1 ~ (- [ x) Int2 ~ dgin ()
— — . — e
(X,,zx) (Xn+1"’5{x}(') Xn2 ~ (- ]1")
m that is Inhomogeneous Markov chain
P P
Zn — Zn+1 i} Zn+2 — Zn+3 & <o
which is not in Tierney's Theorem scope.
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Question

Is there any way to extend Tierney's Theorem to cover

the inhomogeneous Markov chain study?

Tierney's proof essentially relies on

(i) the following expression of the variance:

%Var lz f(Zk)] —IF2 + 2 Z n— k) (f,PF)

(ii) a spectral decomposition Theorem for self-adjoint operators:

Vn>0, (f P"f)= /z"p,ﬁp(dz) .
A similar Proof cannot be derived for inhomogeneous chains.
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Our Main result

Under (Al') and (A2')

e (Al') for all i € {0,1}, P; and Q; are m-reversible kernels
® (A2') P1 i Po and Ql i Qo

Then, for all f € £?(r) such that

S (1conr (20, FZO)) + [Cov(F(Z0). FZO)) < 50, (1)
k=1

we have

V(f:7 Pl, Ql) S V(f7 Po, Qo) .
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Sketch of the proof

= Revisiting Tierney's proof without spectral decomposition Theorem
(1) Under assumptions (A1) and (A2) and for f such that (1)

WFP) = [FI2 23 Cov(F(X0). (X))
n=0

(F,P7F)

(2) Define Vae (0,1) Pa=(1-a)Po+aPr,
VA€ (0,1) wa(f,Py) =021 N\ (f,PIf) ,

(3) We show that VX € (0,1), @ — wy(f, Py) is decreasing over (0, 1).
(4) Proof completed by a Dominated Convergence Theorem A\ — 1 :

(f,PIf) <(f,Pgf) .
= This proof is compatible with inhomogeneous Markov chain.
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A significant Corollary

m Imagine Z = (X, U) where X is the variable of interest and U some
auxiliary data

m In many situation the transition kernel Kj isn't m-reversible

20 5 20, % 20,

and thus K1 = Ky # v(f, K1) < v(f, Ko) (with Tierney Theorem)
m Possibility to "force" m-reversibility by artificially introducing a
freezing step

5 - ( X ) ., ( X ) a, ( X = X ) P
n Un+l = Un Un+2

m Note that {22(,') neN} = {Z,(,i), n € N} and our Theorem leads to

n?

v(f, K1) < v(f, Ko)
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Applications to some MCMC algorithms

The mixture Model problem

Rewriting the Gibbs and the Carlin and Chib samplers:

5 ff(;)fv w(-|z) 0c I% ~ 8 (+)
Xn Néz() Xn+1N7T(‘|

i)

) fi-l)l =i\~
AX"(’ — 2n+2 — (i) _
" v \ Jeo) _ / Xphh =)\
Z(cc) - n ¢
2n+1 Xffc) = uy
Vi 7& j U; ~ CL( ) (cc)
S I ~ 0 (-
P d U, () o { T,
17(7,0(:)’\‘7("111,...~I1() /1+1N”("1’)

(i) Pec is m-reversible, (i) Qec = Qe (iii) Pcc é Pe = v(f,CC) < v(f,G) .
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Applications to some MCMC algorithms

Pseudo-Marginal Algorithms

Pseudo-Marginal (Andrieu & Robert, 2009): no exact expression of the
target distribution 7 e.g

m(x) = /W(X,du)

for all (x,x") € X2, 7(x)/m(x") intractable

= ldea: simulate a Markov chain targeting
7(dx,du) = w(dx)wy(x) R(x,du)
—— ——
#u(dx),calculable samplable

(note that [ 7(x,du) = 7(x))
For example, use Importance Sampling estimate:
1 & 7(x, ulk))

A _ = (k) i}i\.Jd .
ﬂ-U(X) n ,;_ R(X, u(k)) , U R(Xa ) :
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Monte Carlo within Metropolis (MCWM)

A Markov chain {X,, n € N} on (X, X): given X, = x, Xp41 is obtained
as follows

(i) propose X' ~ K(x, -)

(ii) simulate aux. var. for both states X, and X'

U~R(x, ), U ~R(X\,")

(iii) accept Xp11 = x" w.p
A (X )K(X', x)

u(x)K(x,x")

alx,x' u,u)y =1A

MCWM is not m-reversible but targets an approximate of m(x)...
= noisy algorithm!
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Applications to some MCMC algorithms

Grouped-Independence Metropolis Hastings (GIMH)

A Markov chain {(Xy, Uy), n € N} targeting 7 such that given
(Xn, Un) = (x, u), (Xn+1, Unt1) is obtained as follows
(i) propose X' ~ K(x, -)
(ii) simulate aux. var. for the state X’: U’ ~ R(x/, -)
(iii) accept (Xn+1, Unt1) = (X', ') w.p
. 7o (XK (X', x
a((x, u), (X, u)) =1A W

GIMH is Metropolis-Hastings algorithm = 7-reversible.
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Remark

m MCWM & GIMH cannot be properly compared with Tierney's
Theorem

m They may be rewritten artificially as:

U n+1

(G) (G) (G)
GIMH: <XQG)>E><X?G)>£><X%1>E>.._
us us ule)

mwm: (X)) M( R ) ENE
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A Random-Refreshment Pseudo Marginal algorithm

A Markov chain {(X,, U,), n € N} targeting 7 such that given
(Xn, Un) = (x, u), (Xn+1, Unt1) is obtained as follows:

(i) (a) propose a new aux. var. for state X; U ~ R(x, -)
(b) refresh the aux. var. U, by U with a certain probability w,

(i) propose X' ~ K(x, -)
(iii) simulate aux. var. for the state X": U ~ R(x/, -)

(iV) accept (Xn—i-lv Un+1) = (Xla U,) w.p

a((x,u), (<, ') =1 A =
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Applications to some MCMC algorithms

Comparing GIMH & Random Refreshment

(G) (G) (G6)
n P n Q X P,
o (e )= (o ) = () ==
(R) (R) (R)
Random Refreshment: Xn Fr, n 9, Xni1 Pe, ...
UtR) U k)
n n+1

Our Theorem holds and show that for any f € £2(7) verifying (1)

v(f,R) < v(f,G).
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Perspectives

Our Theorem extends Tierney's and Peskun’s works and allows
m to compare inhomogeneous Markov chains (by nature)...

m and even (non necessarily m-reversible) homogeneous Markov chains

Open questions remain!
m what about inhomogeneous Markov chain with n > 2 kernels

m possibility to find other applications such that ABC computation, and
"MCMC for doubly intractable distributions", (Single Auxiliary
Variable Method, Exchange Algorithm...)
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