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Abstract

Recent advances in the field of Markov chain Monte Carlo methods have highlighted the
potential gain of using non-reversible Markov chains to reduce the variance of Monte Carlo
estimators. However, designing non-reversible Markov chains that have a prescribed sta-
tionary distribution is not straightforward. As a result, most algorithms that have been pro-
posed to simulate such Markov chains are only applicable to limited situations (e.g. discrete
problems). This work develops an easy approach to turn any Metropolis-Hastings type al-
gorithm into a non-reversible Markov chain. Central to this construction is to break the
irreducibility of the proposal kernel by introducing a directional auxiliary variable. As a
result, the marginal Markov chain is non-reversible and the random-walk behaviour is re-
duced: this leads to a faster convergence rate compared to the equivalent reversible Markov
chain and thus to more efficient algorithms.

Keywords: Markov chain Monte Carlo methods, non-reversible Markov chains, variance
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1. Introduction

In this paper, we consider the problem of sampling from a probability distribution π defined
on a measurable space (X,X ) where X ⊂ Rd (d > 0) and X is a sigma-algebra on X
and, relatedly, the issue of estimating expectations under π. In Bayesian statistics, π is
generally the posterior distribution of the model parameters given the observed data. We
are particularly concerned with Markov chain Monte Carlo methods, see Brooks et al. (2011)
for an introduction.

Most Bayesian problems tackled by MCMC methods resort to reversible Markov chains:
the distribution of the Markov chain {Xt, t ∈ Z} is the same regardless the direction of
the time flow, i.e. at stationarity, we have Pr {∩t≥0(Xt ∈ At)} = Pr {∩t≥0(X−t ∈ At)} , for
all At ∈ X . So called reversible MCMC algorithms include the Metropolis-Hastings (MH)
algorithm (Metropolis et al., 1953) and its many variants such as the Hamiltonian Monte
Carlo method (Duane et al., 1987), the Reversible Jump MCMC (Green, 1995), random-scan
Gibbs sampler (Liu et al., 1995), the Metropolis Adjusted Langevin algorithm (Roberts and
Tweedie, 1996), etc. Using reversible chains is essentially motivated by the fact that such
Markov chains admit the distribution with respect to which they are reversible as stationary
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distribution. In other words, MCMC algorithms are easy to construct and analyse when
their underlying Markov chain is reversible.

However, a number of references in the diffusion literature have shown that non-reversible
Markov processes converge faster than the reversible ones, see for instance Hwang et al.
(2005) and Duncan et al. (2016) for the Langevin diffusion case. There is a growing re-
search interest in the statistical and machine learning communities to translate those results
into discrete time settings and, to be useful, to design non-reversible MCMC algorithms.
While there is a consensus on their efficiency, it is not straightforward to construct non-
reversible Markov chains that have a given distribution π for stationary distribution. In
fact, additional and non-trivial conditions such as a skew-detailed balance equation are of-
ten necessary for π-invariance (Turitsyn et al., 2011; Ottobre et al., 2016; Bierkens, 2016;
Poncet, 2017). Even though non-reversible and rejection free methods that use Piecewise
Deterministic Markov Processes (Bierkens et al., 2018) or Event Chains (Michel et al., 2014)
constitute a promising alternative to traditional MCMC methods, we do not consider them
in this paper. We instead propose a simple trick to dereversibilize the MH algorithm with-
out any additional condition and which comes at no computational cost. Some simulation
results showing some significant gains in variance reduction are outlined.

2. Turning MH into an non-reversible Markov chain

We consider a MH algorithm targeting π and using a proposal kernel Q defined on (X,X ).
We assume that Q is specified by a distribution Q on (X,X ) such that

Q(x,A) =

∫
Rd

Q(dξ)δx+ξ(A) , (1)

where δx is the dirac probability mass at x. All random-walk MH fall under this decompo-
sition. For completeness, we recall in Alg 1 how the MH algorithm simulates a π-invariant
Markov chain using Q. By construction, the Markov chain designed at Alg. 1 is π-reversible

Algorithm 1 MH transition Xt → Xt+1

Require: Xt ∈ X
Draw X ∼ Q(Xt, ·), U ∼ unif(0, 1) and set Xt+1 = Xt

Calculate the acceptance probability

α(Xt, X) := 1 ∧ π(X)Q(X,Xt)

π(Xt)Q(Xt, X)
(2)

if U ≤ α(Xt, X) then
Set Xt+1 = X

end if

and thus admits π as invariant distribution.

2.1. Dereversibilizing MH in dimension one

For pedagogical purposes, we first propose to dereversibilize Alg. 1 when d = 1. As in most
non-reversible MCMC methods, the objective is to construct a π-invariant Markov chain
characterized by a momentum in one or several privileged directions. A naive way to achieve
this is to truncate Q (1) so that its support is (for instance) positive. We denote by Q+ the
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resulting proposal kernel. The Markov chain moves always to higher states for an arbitrary
large number of iterations until it switches and uses the complementary truncation of Q to
generate moves with negative increments (leading to Q−) for another arbitrary large number
of iterations, etc. One can immediately see that MH is, by construction, incompatible
with this type of scheme. Taking for instance a positive increment streak, the acceptance
probability α(Xt, X) (2) is always null since Q+(X,Xt) = 0. Indeed, X → Xt is a move in
the opposite direction to X → Xt and thus impossible. Remarkably, replacing Q+(X,Xt)
by Q−(X,Xt) in the MH acceptance probability numerator leads to a valid algorithm (i.e. a
π-invariant, irreducible and aperiodic Markov chain) as long as the positive/negative streak
length follows a specific random dynamic which is specified hereafter. There is obviously a
connection with the Zig-Zag sampler from Bierkens et al. (2016).

In the spirit of lifted approaches, an auxiliary variable θ ∈ Θ1 := {−1, 1} is appended
to the variable of interest X and π is extended to π̄ defined as π̄(x, θ) := (1/2)π(x)1θ∈Θ.
Conceptually, the chain will move in the positive direction when θ = 1 and inversely when
θ = −1. Starting from some (X0, θ0) ∈ X×Θ1 and using the same distribution Q as in Alg.
1, a transition of the dereversibilized Markov chain {(Xt, θt), t ∈ N} is described in Alg. 2.

Algorithm 2 Dereversiblized MH transition (Xt, θt)→ (Xt+1, θt+1)

Require: Xt ∈ X and θt ∈ Θ1

Draw ξ ∼ Q, U ∼ unif(0, 1) and set (Xt+1, θt+1) = (Xt,−θt)
Set X = Xt + θt|ξ|
Calculate the acceptance probability

αθt(Xt, X) = 1 ∧
π(X)Q−θt(X,Xt)

π(Xt)Qθt(Xt, X)
. (3)

if U ≤ αθt(Xt, X) then
Accept the proposal: Xt+1 = X and θt+1 = θt

end if

Proposition 1 The marginal Markov chain {Xt, k ∈ N} constructed by Alg. 2 is π-
invariant and non-reversible.

Proof We construct a non-homogeneous Markov chain {(X̃t, θ̃t), t ∈ N} whose marginal
{X̃t, t ∈ N} is π-invariant and which satisfies {Xt, k ∈ N} = {X̃2t, t ∈ N} where {Xt, t ∈ N}
is the Markov chain specified at Alg. 2. We now detail this construction. If t is even, set
(X̃t+1, θ̃t+1) = (X̃t,−θ̃t) and if k is odd the chain moves according to the following MH
transition: propose

(X̃, θ̃) ∼ Q̃(X̃t, θ̃t; · ) =: Q−θ̃t(X̃t, · )⊗ δ−θ̃t( · ) , (4)

accept the proposition with probability

α̃(X̃t, θ̃t; X̃
′, θ̃′) := 1 ∧ π̄(X̃, θ̃)Q̃(X̃, θ̃; X̃t, θ̃t)

π̄(X̃t, θ̃t)Q̃(X̃t, θ̃t; X̃, θ̃)
(5)

and reject otherwise. In (4), Qθ(x, · ) is the distribution of x+θ|ξ|, ξ ∼ Q. The π̄-invariance
of the extended chain is inherited from either type of transition: trivial from the first one
and using the π̄-reversibility of the MH step for the second. The non-reversibility can be
rigorously shown by contradiction.
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2.2. Dereversibilizing MH in dimension d

Generalizing the spirit of Alg. 2 to a d-dimensional setup requires the auxiliary variable
space Θd to contain necessarily 2d elements (2 for each dimension). However, there is a
technical obstacle that prevents from applying the rationale of Alg. 2 to higher dimensional
contexts. Indeed, a meticulous analysis of the proof of Prop. 1 shows that it can be
generalized if the fictive step (θ,X) → (−θ,X) is replaced by (θ,X) → (φ(θ), X) where φ
is any involution on Θd. Hence starting from any θ0 ∈ Θd, the Markov chain proposed at
Alg. 2 would only visit (θ0, φ(θ0)) ⊂ Θd, making the Markov chain reducible.

To overcome this issue, we propose a Markov chain whose construction guarantees that
θ does visit all the elements of Θ and not only (θ0, φ(θ0)). Let us first define Θd = {−1, 1}d,
I = {1, 2, . . . , d} and the kernelKi, i ∈ I, that moves the i-th component ofXt : Xi,t → Xi,t+1

with the dereversibilized transition (detailed at Alg. 2) that uses θi and set Xj,t+1 = Xj,t for
all j ∈ I\{i}. We consider here the inhomogeneous Markov chain kernel Kt := {Ki : i ≡ t
(mod d)}, by analogy to the (deterministic scan) Metropolis-within-Gibbs (MwG) sampler.
It is straightforward to show that Kt is π-invariant and non-reversible, by combining Prop.
1 and the proof that MwG leaves π-invariant. Therefore, Kt can be seen as a dereversibilized
version of a MwG algorithm.

3. Illustration

We present two examples showing that the simple trick introduced in this paper to dev-
ersibilize a MH or a MwG sampler, yield to a significant speed-up of the Markov chain
convergence and to a variance reduction of Monte Carlo estimators. Example 1 is the dis-
tribution of a standard Gaussian r.v. with an additive exponential noise (parameter µ = 2)
and Example 2 is the two dimensional banana shape example (parameter b = 0.03) from
Haario et al. (1999). Table 1 summarizes the results in terms of variance reduction. Visit
http://maths.ucd.ie/~fmaire/conv.html for an animation showing the gain in terms of
speed of convergence in the context of Ex. 1.

Table 1: Comparison of MH and its dereversibilized version (drvMH) – Effective Sam-
ple Size (ESS, as defined in Neal (1993)), σ2

f is the asymptotic variance of

the MC esimator of
∫
fdπ, f1(x) =

∑d
i=1 xi, f2(x) = 1x>5 (for ex. 1) and

f2(x) = 1{x2>10}∪{x2<−10} (for ex. 2). All results were estimated from 1,000
iid Markov chains of length 1,000 for each algorithm, starting with X0 ∼ π.

ESS σ2
f1

σ2
f2

π1
MH 0.12 32.1 0.48

drvMH 0.18 19.6 0.30

ESS σ2
f1

σ2
f2

π2
MH 0.11 23.3 0.099

drvMH 0.15 9.76 0.056
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