Partition identities and representation theory

Jehanne Dousse

CNRS and Université Lyon 1

Workshop on Enumerative Combinatorics 2021 University College Dublin March 10, 2021

Integer partitions

Definition

A partition π of a positive integer n is a finite non-increasing sequence of positive integers $\lambda_1, \ldots, \lambda_m$ such that $\lambda_1 + \cdots + \lambda_m = n$. The integers $\lambda_1, \ldots, \lambda_m$ are called the *parts* of the partition.

Example

There are 5 partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1.

Crystals and partition identities

Generating functions

Notation :
$$(a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k), n \in \mathbb{N} \cup \{\infty\}.$$

Let Q(n, k; m, N) be the number of partitions of n into k distinct parts congruent to $m \mod N$. Then

$$1 + \sum_{n \ge 1} \sum_{k \ge 1} Q(n, k; m, N) z^k q^n = (1 + zq^m)(1 + zq^{N+m})(1 + zq^{2N+m}) \cdots$$
$$= (-zq^m; q^N)_{\infty}.$$

Crystals and partition identities 00000

Generating functions

Notation :
$$(a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k), n \in \mathbb{N} \cup \{\infty\}.$$

Let Q(n, k; m, N) be the number of partitions of n into k distinct parts congruent to $m \mod N$. Then

$$1 + \sum_{n \ge 1} \sum_{k \ge 1} Q(n, k; m, N) z^k q^n = (1 + zq^m)(1 + zq^{N+m})(1 + zq^{2N+m}) \cdots$$
$$= (-zq^m; q^N)_{\infty}.$$

Let p(n, k; m, N) be the number of partitions of n into k parts congruent to $m \mod N$. Then

$$1 + \sum_{n \ge 1} \sum_{k \ge 1} p(n, k; m, N) z^k q^n = \prod_{\ell \ge 0} \left(1 + z q^{\ell N + m} + z^2 q^{2(\ell N + m)} + \cdots \right)$$
$$= \frac{1}{(zq^m; q^N)_{\infty}}.$$

Crystals and partition identities

The first Rogers–Ramanujan identity

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

$$\sum_{n=0}^{\infty}rac{q^{n^2}}{(q;q)_n}=rac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}},$$

Crystals and partition identities

The first Rogers-Ramanujan identity

Theorem (Rogers 1894, Rogers-Ramanujan 1919)

$$\sum_{n=0}^{\infty}rac{q^{n^2}}{(q;q)_n}=rac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}},$$

Theorem (Partition version)

For every positive integer n, the number of partitions of n such that the difference between two consecutive parts is at least 2 is equal to the number of partitions of n into parts congruent to 1 or 4 modulo 5. Introduction to partition identities 000

Connection with representation theory $_{\odot OO}$

Crystals and partition identities 00000

Some quick definitions on Lie algebras

Let $\mathfrak g$ be a finite dimensional simple Lie algebra with Cartan subalgebra $\mathfrak h.$

The corresponding (derived) affine Lie algebra $\hat{\mathfrak{g}}$ is constructed as

$$\hat{\mathfrak{g}} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c,$$

where $\mathbb{C}[t, t^{-1}]$ is the complex vector space of Laurent polynomials in the indeterminate t, and $\mathbb{C}c$ is $\hat{\mathfrak{g}}$'s center (one-dimensional).

Introduction to partition identities 000

Connection with representation theory $_{\odot OO}$

Crystals and partition identities 00000

Some quick definitions on Lie algebras

Let $\mathfrak g$ be a finite dimensional simple Lie algebra with Cartan subalgebra $\mathfrak h.$

The corresponding (derived) affine Lie algebra $\hat{\mathfrak{g}}$ is constructed as

$$\hat{\mathfrak{g}} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c,$$

where $\mathbb{C}[t, t^{-1}]$ is the complex vector space of Laurent polynomials in the indeterminate t, and $\mathbb{C}c$ is $\hat{\mathfrak{g}}$'s center (one-dimensional).

If V is an irreducible highest weight module of \hat{g} , the central element c acts on V by multiplication by a scalar k, which is called the **level** of V.

Some quick definitions on Lie algebras

Let $\mathfrak g$ be a finite dimensional simple Lie algebra with Cartan subalgebra $\mathfrak h.$

The corresponding (derived) affine Lie algebra $\hat{\mathfrak{g}}$ is constructed as

$$\hat{\mathfrak{g}} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c,$$

where $\mathbb{C}[t, t^{-1}]$ is the complex vector space of Laurent polynomials in the indeterminate t, and $\mathbb{C}c$ is $\hat{\mathfrak{g}}$'s center (one-dimensional).

If V is an irreducible highest weight module of \hat{g} , the central element c acts on V by multiplication by a scalar k, which is called the **level** of V.

The character ch(V) of V is defined as

$$\operatorname{ch}(V) = \sum_{\mu} \dim(V_{\mu}) e^{\mu},$$

where the sum is over the weights μ of V, $V_{\mu} := \{ v \in V : \forall H \in \mathfrak{h}, \quad H \cdot v = \mu(H)v \}$ is a weight space, and e^{μ} is a formal exponential satisfying $e^{\mu}e^{\mu'} = e^{\mu+\mu'}$.

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

$$\frac{1}{(q;q^2)_{\infty}}\sum_{n=0}^{\infty}\frac{q^{n^2}}{(q;q)_n}=\frac{1}{(q;q^2)_{\infty}}\frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}$$

Obtained by giving two different formulations for the principal specialisation

$$e^{-lpha_0}\mapsto q, \quad e^{-lpha_1}\mapsto q$$

of $e^{-\Lambda}ch(L(\Lambda))$ where $L(\Lambda)$ is an irreducible highest weight $A_1^{(1)}$ -module of level 3.

RHS: principal specialisation of the Weyl-Kac character formula

LHS: comes from the construction of a basis of $L(\Lambda)$ using vertex operators

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

$$\frac{1}{(q;q^2)_{\infty}}\sum_{n=0}^{\infty}\frac{q^{n^2}}{(q;q)_n}=\frac{1}{(q;q^2)_{\infty}}\frac{1}{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}$$

LHS: comes from the construction of a basis of $L(\Lambda)$ using vertex operators.

Idea:

- Start with a spanning set of $L(\Lambda)$: here, monomials of the form $Z_1^{f_1} \dots Z_s^{f_s}$ for $s, f_1, \dots, f_s \in \mathbb{N}_{\geq 0}$.
- Using Lie theory, reduce this spanning set: here, it allows one to remove all monomials containing Z_j² or Z_jZ_{j+1}.
- Show that the obtained set is a basis of the representation (very difficult).

Some other identities from representation theory

Studying other representations or other Lie algebras leads to new, **often conjectural**, partition identities:

- Capparelli (conj. 1992, proof 1996): level 3 standard modules of $A_2^{(2)}$
- Nandi 2014: level 4 standard modules of $A_2^{(2)}$
- Meurman and Primc 1987-1999: higher levels of $A_1^{(1)}$
- Siladić 2002: twisted level 1 modules of $A_2^{(2)}$
- Primc and Šikić 2016: level k standard modules of $C_n^{(1)}$

Some other identities from representation theory

Studying other representations or other Lie algebras leads to new, **often conjectural**, partition identities:

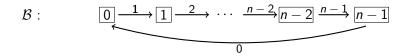
- Capparelli (conj. 1992, proof 1996): level 3 standard modules of $A_2^{(2)}$
- Nandi 2014: level 4 standard modules of $A_2^{(2)}$
- Meurman and Primc 1987-1999: higher levels of $A_1^{(1)}$
- Siladić 2002: twisted level 1 modules of $A_2^{(2)}$

• Primc and Šikić 2016: level k standard modules of $C_n^{(1)}$ Sometimes, **combinatorial proofs** and refinements are found (often simpler than Lie algebraic proofs):

- Andrews (1992), Alladi–Andrews–Gordon (1995): combinatorial proofs and refinement of Capparelli's identity
- D. (2017): combinatorial proof and refinement of Siladić's identity, Konan (2019): bijection

Crystals: "combinatorial representations" of Lie algebras

Crystal for the vector representation of the affine Lie algebra $A_{n-1}^{(1)}$:



Given a crystal \mathcal{B} , one can be define an **energy function** $H: \mathcal{B} \otimes \mathcal{B} \to \mathbb{Z}$. The value of $H(b_1 \otimes b_2)$ determines the values $H(b'_1 \otimes b'_2)$ of all the vertices $b'_1 \otimes b'_2$ which are in the same connected component as $b_1 \otimes b_2$.

The $(KMN)^2$ crystal base character formula

To each dominant weight λ , one can associate a **ground state path**

$$\mathfrak{p}_{\lambda}=\ (g_k)_{k=0}^{\infty}=\ \cdots\otimes g_{k+1}\otimes g_k\otimes \cdots\otimes g_1\otimes g_0,$$

where $g_i \in \mathcal{B}$ for all *i*.

A tensor product $\mathfrak{p} = (p_k)_{k=0}^{\infty} = \cdots \otimes p_{k+1} \otimes p_k \otimes \cdots \otimes p_1 \otimes p_0$ of elements $p_k \in \mathcal{B}$ is said to be a λ -path if $p_k = g_k$ for k large enough. Let $\mathcal{P}(\lambda)$ denote the set of λ -paths.

Theorem ((KMN)² 1992)

Let $L(\lambda)$ be an irreducible highest weight module of weight λ .

$$\operatorname{ch}(\mathcal{L}(\lambda)) = \sum_{\mathfrak{p}\in\mathcal{P}(\lambda)} e^{\operatorname{wt}\mathfrak{p}},$$

where wtp is defined in terms of the energy function and the simple roots.

Crystals and partition identities $_{\rm OOOOO}$

Let *P* be the energy function in $(\mathcal{B} \otimes \mathcal{B}^{\vee}) \otimes (\mathcal{B} \otimes \mathcal{B}^{\vee})$ for $A_1^{(1)}$. Partitions in four colours a, b, c, d, with the order

 $1_a < 1_b < 1_c < 1_d < 2_a < 2_b < 2_c < 2_d < \cdots$

and difference conditions

$$P = \frac{a}{b} \begin{pmatrix} 2 & 1 & 2 & 2 \\ 1 & 0 & 1 & 1 \\ c & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{pmatrix}.$$

Conjecture (Primc 1999)

After performing the specialisations

$$k_a \rightarrow 2k - 1, k_b \rightarrow 2k, k_c \rightarrow 2k, k_d \rightarrow 2k + 1,$$

the generating function for these partitions (not keeping track of the colours) becomes $\frac{1}{(q;q)_{\infty}}$.

Proof (combinatorial) and refinement: D.-Lovejoy 2017.

Crystals and partition identities $_{\text{OOO} \bullet \text{O}}$

A combinatorial non-specialised character formula

Definition

A multi-grounded partition with ground $c_{g_0}, \ldots, c_{g_{t-1}}$ and relation \gg is a coloured partition $\pi = (\pi_0, \cdots, \pi_{s-1}, u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$ such that for all $i, \pi_i \gg \pi_{i+1}$, and $(\pi_{s-t}, \cdots, \pi_{s-1}) \neq (u_{c_{g_0}}^{(0)}, \ldots, u_{c_{g_{t-1}}}^{(t-1)})$.

Let $\mathcal{P}^{\gg}_{c_{g_0},...,c_{g_{t-1}}}$ be the set of grounded partitions with ground c_g and relation \gg defined by $k_{c_b} \gg k'_{c_{L'}}$ if and only if $k - k' \ge H(b' \otimes b)$.

Theorem (D.–Konan 2021)

Let $L(\lambda)$ be an irreducible highest weight module of weight λ . Setting $q = e^{-\delta/d_0}$ and $c_b = e^{wtb}$ for all $b \in \mathcal{B}$,

$$\sum_{\pi\in\mathcal{P}^\gg_{c_{g_0},\ldots,c_{g_{t-1}}}} C(\pi)q^{|\pi|} = rac{e^{-\lambda}\mathrm{ch}(L(\lambda))}{(q;q)_\infty}.$$

Thank you for your attention!