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Integer partitions

Definition

A partition π of a positive integer n is a finite non-increasing
sequence of positive integers λ1, . . . , λm such that
λ1 + · · ·+ λm = n. The integers λ1, . . . , λm are called the parts of
the partition.

Example

There are 5 partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1.
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Generating functions

Notation : (a; q)n =
∏n−1

k=0(1− aqk), n ∈ N ∪ {∞}.

Let Q(n, k ;m,N) be the number of partitions of n into k distinct
parts congruent to m mod N. Then

1 +
∑
n≥1

∑
k≥1

Q(n, k ;m,N)zkqn = (1 + zqm)(1 + zqN+m)(1 + zq2N+m) · · ·

= (−zqm; qN)∞.

Let p(n, k;m,N) be the number of partitions of n into k parts
congruent to m mod N. Then

1 +
∑
n≥1

∑
k≥1

p(n, k;m,N)zkqn =
∏
`≥0

(
1 + zq`N+m + z2q2(`N+m) + · · ·

)
=

1

(zqm; qN)∞
.
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The first Rogers–Ramanujan identity

Theorem (Rogers 1894, Rogers–Ramanujan 1919)

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
,

Theorem (Partition version)

For every positive integer n, the number of partitions of n such
that the difference between two consecutive parts is at least 2 is
equal to the number of partitions of n into parts congruent to 1 or
4 modulo 5.
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Some quick definitions on Lie algebras

Let g be a finite dimensional simple Lie algebra with Cartan
subalgebra h.
The corresponding (derived) affine Lie algebra ĝ is constructed as

ĝ := g⊗ C[t, t−1]⊕ Cc ,

where C[t, t−1] is the complex vector space of Laurent polynomials
in the indeterminate t, and Cc is ĝ’s center (one-dimensional).

If V is an irreducible highest weight module of ĝ, the central
element c acts on V by multiplication by a scalar k , which is called
the level of V .
The character ch(V ) of V is defined as

ch(V ) =
∑
µ

dim(Vµ)eµ,

where the sum is over the weights µ of V ,
Vµ := {v ∈ V : ∀H ∈ h, H · v = µ(H)v} is a weight space,
and eµ is a formal exponential satisfying eµeµ

′
= eµ+µ′ .
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Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

1

(q; q2)∞

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q2)∞

1

(q; q5)∞(q4; q5)∞

Obtained by giving two different formulations for the principal
specialisation

e−α0 7→ q, e−α1 7→ q

of e−Λch(L(Λ)) where L(Λ) is an irreducible highest weight

A
(1)
1 -module of level 3.

RHS: principal specialisation of the Weyl-Kac character formula

LHS: comes from the construction of a basis of L(Λ) using vertex
operators



Introduction to partition identities Connection with representation theory Crystals and partition identities

Representation theoretic interpretation

Lepowsky and Wilson 1984: representation theoretic interpretation

1
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∞∑
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qn
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(q; q)n
=

1

(q; q2)∞

1

(q; q5)∞(q4; q5)∞

LHS: comes from the construction of a basis of L(Λ) using vertex
operators.
Idea:

Start with a spanning set of L(Λ): here, monomials of the
form Z f1

1 . . .Z fs
s for s, f1, . . . , fs ∈ N≥0.

Using Lie theory, reduce this spanning set: here, it allows one
to remove all monomials containing Z 2

j or ZjZj+1.

Show that the obtained set is a basis of the representation
(very difficult).
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Some other identities from representation theory

Studying other representations or other Lie algebras leads to new,
often conjectural, partition identities:

Capparelli (conj. 1992, proof 1996): level 3 standard modules

of A
(2)
2

Nandi 2014: level 4 standard modules of A
(2)
2

Meurman and Primc 1987-1999: higher levels of A
(1)
1

Siladić 2002: twisted level 1 modules of A
(2)
2

Primc and Šikić 2016: level k standard modules of C
(1)
n

Sometimes, combinatorial proofs and refinements are found
(often simpler than Lie algebraic proofs):

Andrews (1992), Alladi–Andrews–Gordon (1995):
combinatorial proofs and refinement of Capparelli’s identity

D. (2017): combinatorial proof and refinement of Siladić’s
identity, Konan (2019): bijection
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Crystals: “combinatorial representations” of Lie algebras

Crystal for the vector representation of the affine Lie algebra A
(1)
n−1:

B : 0 1 n − 2 n − 1· · ·1 2 n − 21 n − 1

0

Given a crystal B, one can be define an energy function
H : B ⊗ B → Z. The value of H(b1 ⊗ b2) determines the values
H(b′1 ⊗ b′2) of all the vertices b′1 ⊗ b′2 which are in the same
connected component as b1 ⊗ b2.
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The (KMN)2 crystal base character formula

To each dominant weight λ, one can associate a ground state
path

pλ =
(
gk)∞k=0 = · · · ⊗ gk+1 ⊗ gk ⊗ · · · ⊗ g1 ⊗ g0,

where gi ∈ B for all i .
A tensor product p = (pk)∞k=0 = · · · ⊗ pk+1 ⊗ pk ⊗ · · · ⊗ p1 ⊗ p0 of
elements pk ∈ B is said to be a λ-path if pk = gk for k large
enough. Let P(λ) denote the set of λ-paths .

Theorem ((KMN)2 1992)

Let L(λ) be an irreducible highest weight module of weight λ.

ch(L(λ)) =
∑

p∈P(λ)

ewtp,

where wtp is defined in terms of the energy function and the
simple roots.
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Let P be the energy function in (B ⊗ B∨)⊗ (B ⊗ B∨) for A
(1)
1 .

Partitions in four colours a, b, c , d , with the order

1a < 1b < 1c < 1d < 2a < 2b < 2c < 2d < · · · ,

and difference conditions

P =


a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2

.
Conjecture (Primc 1999)

After performing the specialisations

ka → 2k − 1, kb → 2k , kc → 2k , kd → 2k + 1,

the generating function for these partitions (not keeping track of the
colours) becomes 1

(q;q)∞
.

Proof (combinatorial) and refinement: D.–Lovejoy 2017.
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A combinatorial non-specialised character formula

Definition

A multi-grounded partition with ground cg0 , . . . , cgt−1 and relation

� is a coloured partition π = (π0, · · · , πs−1, u
(0)
cg0
, . . . , u

(t−1)
cgt−1

) such

that for all i , πi � πi+1, and (πs−t , · · · , πs−1) 6= (u
(0)
cg0
, . . . , u

(t−1)
cgt−1

).

Let P�cg0 ,...,cgt−1
be the set of grounded partitions with ground cg

and relation � defined by
kcb � k ′cb′ if and only if k − k ′ ≥ H(b′ ⊗ b).

Theorem (D.–Konan 2021)

Let L(λ) be an irreducible highest weight module of weight λ.
Setting q = e−δ/d0 and cb = ewtb for all b ∈ B,

∑
π∈P�cg0 ,...,cgt−1

C (π)q|π| =
e−λch(L(λ))

(q; q)∞
.
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Thank you for your attention!
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