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Sorting networks

In the permutohedron of order =:

the vertices are the elements of the
symmetric group (=
edges connect permutations that
di�er by an adjacent swap

edges can be directed in the
direction of increasing inversions

1 2 3 4

1 3 2 4 1 2 4 32 1 3 4

2 3 1 4 3 1 2 4 2 1 4 3 1 3 4 2 1 4 2 3

3 2 1 4 2 3 4 1 3 1 4 2 2 4 1 3 1 4 2 3 4 1 2 3

3 2 4 1 2 4 3 1 3 4 1 2 4 2 1 3 4 1 3 2

4 2 3 1 4 3 1 23 4 2 1

4 3 2 1

A sorting network of order = is equivalently:

a minimal sequence of adjacent swaps that
brings id= = (1, . . . ,=) to rev= = (=, . . . ,1)
a directed walk on the permutohedron of
order = from id= to rev=
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Staircase (standard) Young tableaux
In the Young graph of order =:

the vertices are the subdiagrams of
the staircase Young diagram
X= = (=−1,=−2, . . . ,1)
edges connect diagram that di�er
by one box

edges can be directed in the
direction of increasing number of
boxes ∅

1 4 5
2 6
3

A staircase Young tableau of order = is
equivalently:

a staircase Young diagram of shape X=
filled with the numbers 1,2, . . . ,

(
=
2
)
so that

columns and rows are increasing

a directed walk on the Young la�ice of
order = from ∅ to X=
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Edelman-Green bijection

SN= = sorting networks of order =
SYT= = staircase Young tableaux of order =

Theorem [Stanley, 1984]

|SN= | = |SYT= |

Theorem [Edelman-Greene, 1987]

Explicit combinatorial bijection

SN=←→ SYT=

C ∈ SYT6 B ∈ SN6

1 3 4 7 11

2 6 8 14

5 12 15

9 13

10

↦→

1

2

3

4

5

6

6

5

4

3

2

1

5 1 2 4 1 3 5 4 2 1 5 3 2 4 3

4 / 8



Combinatorial identity

Conjecture [B.-Cunden-Gibbons-Romik, 2020]∑
C ∈SYT=

5C (G1, . . . ,G=−1)fC =
∑

B∈SN=

6B (G1, . . . ,G=−1)cB

5C and 6B are rational functions

fC and cB are permutations associated with tableau C and
sorting network B

to be interpreted as an equality in C(G1, . . . ,G=−1)(=−1

Theorem [B.-Cunden-Gibbons-Romik, 2020]

The conjecture is true for = ≤ 6.

Proof: by Mathematica symbolic calculus.
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Example

C ∈ SYT6 B ∈ SN6

1 3 4 7 11

2 6 8 14

5 12 15

9 13

10

↦→

1

2

3

4

5

6

6

5

4

3

2

1

5 1 2 4 1 3 5 4 2 1 5 3 2 4 3

fC = (1,3,5,4,2) = cB → encodes “finishing boxes/swaps”

5C =
1

(G1 +1) (G1 +2)2 (G1 +3)3 (G1 +4)4
· 1
G2 +3

· 1
(G3 +2) (G3 +3)

· 1
G4 +2

· 1
G5 +1

6B =
1

(G1 +5) (G1 +4) (G1 +3)5 (G1 +2)3
· 1
G2 +2

· 1
(G3 +1) (G3 +2)

· 1
G4 +1

· 1
G5 +1

In general: fC ≡ cB BUT 5C . 6B .

6 / 8



Probabilistic motivation

Recall we can view

a sorting network as a directed walk on the permutohedron;

a Young tableau as a directed walk on the Young graph

Considering now continuous-time random walks on these directed
graphs, we obtain, respectively:

a random sorting network: the oriented swap process

a random Young tableau: the corner growth process

Theorem [B.-Cunden-Gibbons-Romik, 2020]

The combinatorial identity is equivalent to an equality in
distribution between vectors of “finishing times” of the oriented
swap process and the corner growth process.
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