Sorting networks and staircase Young tableaux

Elia Bisi (Technische Universität Wien)

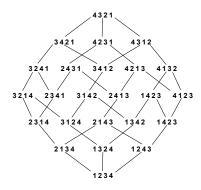
Joint work with Fabio D. Cunden (University of Bari) Shane Gibbons (University of Cambridge) Dan Romik (University of California, Davis)

Workshop on Enumerative Combinatorics 2021 University College Dublin 10 March 2021

Sorting networks

In the *permutohedron* of order *n*:

- the vertices are the elements of the symmetric group *S_n*
- edges connect permutations that differ by an adjacent swap
- edges can be *directed* in the direction of increasing inversions



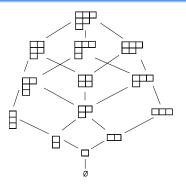
A *sorting network* of order *n* is equivalently:

- a minimal sequence of adjacent swaps that brings id_n = (1,...,n) to rev_n = (n,...,1)
- a directed walk on the permutohedron of order *n* from id_n to rev_n

Staircase (standard) Young tableaux

In the *Young graph* of order *n*:

- the vertices are the subdiagrams of the staircase Young diagram $\delta_n = (n-1, n-2, ..., 1)$
- edges connect diagram that differ by one box
- edges can be *directed* in the direction of increasing number of boxes



A *staircase Young tableau* of order *n* is equivalently:

1	4	5
2	6	
3		

- a staircase Young diagram of shape δ_n filled with the numbers $1, 2, \dots, \binom{n}{2}$ so that columns and rows are increasing
- a directed walk on the Young lattice of order *n* from \varnothing to δ_n

Edelman-Green bijection

- SN_n = sorting networks of order n
- SYT_n = staircase Young tableaux of order n

Theorem [Stanley, 1984]

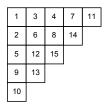
$$|SN_n| = |SYT_n|$$

Theorem [Edelman-Greene, 1987]

Explicit combinatorial bijection

$$SN_n \longleftrightarrow SYT_n$$

 $t \in SYT_6$





Conjecture [B.-Cunden-Gibbons-Romik, 2020]

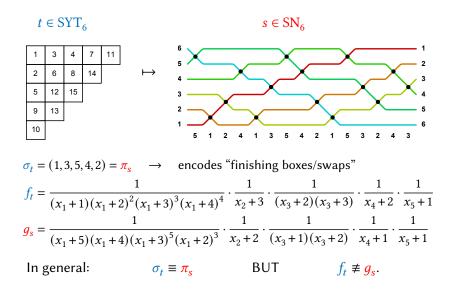
$$\sum_{s \in SYT_n} f_t(x_1, \dots, x_{n-1}) \sigma_t = \sum_{s \in SN_n} g_s(x_1, \dots, x_{n-1}) \pi_s$$

- f_t and g_s are rational functions
- σ_t and π_s are permutations associated with tableau t and sorting network s
- to be interpreted as an equality in $\mathbb{C}(x_1, \dots, x_{n-1}) S_{n-1}$

Theorem [B.-Cunden-Gibbons-Romik, 2020]

The conjecture is true for $n \leq 6$.

Proof: by Mathematica symbolic calculus.



Recall we can view

- a sorting network as a directed walk on the permutohedron;
- a Young tableau as a directed walk on the Young graph

Considering now *continuous-time random walks* on these directed graphs, we obtain, respectively:

- a random sorting network: the oriented swap process
- a random Young tableau: the corner growth process

Theorem [B.-Cunden-Gibbons-Romik, 2020]

The combinatorial identity is equivalent to an equality in distribution between vectors of "finishing times" of the oriented swap process and the corner growth process.

References

E. Bisi, F. D. Cunden, S. Gibbons, and D. Romik. Sorting networks, staircase Young tableaux and last passage percolation. Séminaire Lotharingien de Combinatoire 84B, #3 (2020). Proceedings of "Formal Power Series and Algebraic Combinatorics 2020". E. Bisi, F. D. Cunden, S. Gibbons, and D. Romik. The oriented swap process and last passage percolation (2020). arXiv:2005.02043 E. Bisi, F. D. Cunden, S. Gibbons, and D. Romik. **OrientedSwaps: a Mathematica package** (2019). math.ucdavis.edu/romik/ P. Edelman and C. Greene.

P. Edelman and C. Greene. Balanced tableaux. Adv. Math. 63(1):42–99 (1987).