Riordan arrays and Lattice paths

Aoife Hennessy, WIT

March 15, 2021
The Riordan group

Let F_n for $n = 0, 1, 2 \ldots$ be the set of formal power series defined by

$$F_n = \{ f(x) = f_n x^n + f_{n+1} x^{n+1} + f_{n+2} x^{n+2} + \ldots | f_n \neq 0, f_i \in \mathbb{C} \}$$

A Riordan array denoted $(g(x), f(x))$ is an infinite lower triangular matrix where the generating function of the k^{th} column for $k = 0, 1, 2, \ldots$ is $g(x) f^k(x)$, $g(x) \in F_0$ and $f(x) \in F_1$. The set of all Riordan arrays forms a group under the following operation of matrix multiplication

$$(g(x), f(x))(h(x), l(x)) = (g(x). h(f(x)), l(f(x))).$$

Example

The Riordan matrix $(\frac{1}{1-x}, \frac{x}{1-x})$ is known as the Binomial matrix B.

$$\begin{pmatrix} 1 \\ 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ 1 & 4 & 6 & 4 & 1 \\ \vdots \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \ldots \\ 1 & 1 & 0 & 0 & 0 & \ldots \\ 1 & 2 & 1 & 0 & 0 & \ldots \\ 1 & 3 & 3 & 1 & 0 & \ldots \\ 1 & 4 & 6 & 4 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
A Riordan array \(R = (g(x), f(x)) = [r_{n,k}]_{n,k \geq 0} \) can be characterized by two sequences \(A = (a_0, a_1 \ldots) \) and \(Z = (z_0, z_1 \ldots) \) such that

\[
\begin{align*}
r_{n+1,0} &= \sum_{j \geq 0} z_j r_{n,j} & r_{n+1,k+1} &= \sum_{j \geq 0} a_j r_{n,k+j}
\end{align*}
\]

for \(n, k \geq 0 \).

If \(A(x) \) and \(Z(x) \) are the generating functions for the \(A \) and \(Z \) sequences respectively, then it follows that

\[
Z(x) = \frac{1}{\bar{f}(x)} \left(1 - \frac{1}{g(\bar{f}(x))}\right) \quad A(x) = \frac{x}{\bar{f}(x)}
\]

Example

Let \(C(x) = \frac{1 - \sqrt{1 - 4x}}{2x} \), the generating function of the Catalan numbers.

The Riordan array \((C(x), xC(x))\) has first few rows that expand as

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & \ldots \\
2 & 2 & 1 & 0 & \ldots \\
5 & 5 & 3 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

The corresponding \(A \) and \(Z \) sequences are \((1, 1, 1 \ldots)\).
A Riordan matrix R, has production matrix P_R that satisfies the equation $RP_R = \hat{R}$, where \hat{R} is the matrix R with its first row removed.

The first column of P_R is generated by $Z(x)$, while the k^{th} column is generated by $x^{k-1}A(x)$.

Example

\[
(C(x), xC(x)) = \begin{pmatrix}
1 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & \ldots \\
2 & 2 & 1 & 0 & \ldots \\
5 & 5 & 3 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

\[
P_R = \begin{pmatrix}
1 & 1 & 0 & 0 & \ldots \\
1 & 1 & 1 & 0 & \ldots \\
1 & 1 & 1 & 1 & \ldots \\
1 & 1 & 1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

Motzkin paths have well established links to orthogonal polynomials. The entries of the tridiagonal production (also known as Stieltjes) matrix represent the weights of the possible steps in Motzkin paths.

Example

\[(M(x), M(x)), M(x)\] the generating function of paths with two coloured motzkin steps has production matrix

\[
P_R = \begin{pmatrix}
2 & 1 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & \ldots \\
0 & 1 & 2 & 1 & \ldots \\
0 & 0 & 1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]
Lattice paths

Definition

A Motzkin path $\pi = (\pi(0), \pi(1), \ldots, \pi(n))$, of length n, is a lattice path in the first quadrant starting at $(0, 0)$ and ending at $(n, 0)$, with possible steps $(1, 1)$, $(1, 0)$ and $(1, -1)$.

Definition

A Łukasiewicz path $\pi = (\pi(0), \pi(1), \ldots, \pi(n))$, of length n, is a lattice path in the first quadrant starting at $(0, 0)$ and ending at $(n, 0)$ with elementary steps $(1, 1)$, $(1, 0)$, $(1, -1)$ and $L = (1, -k)$ for $k \geq 2$.

Example The four Motzkin paths for $n = 3$ are

![Motzkin paths for n = 3](image)

The five Łukasiewicz paths for $n = 3$ are

![Łukasiewicz paths for n = 3](image)
Shifted Binomial decomposition

The Riordan array R_M with associated tridiagonal production matrix P_{RM} can be decomposed as

$$R_M = R_L \cdot B,$$

where B is the ‘shifted’ Binomial Riordan array with the first column 0^n, the first few entries of which expand as

$$B = \left(1, \frac{x}{1-x} \right) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 1 & 0 & 0 & 0 & \ldots \\ 0 & 1 & 1 & 0 & 0 & \ldots \\ 0 & 1 & 2 & 1 & 0 & \ldots \\ 0 & 1 & 3 & 3 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad (1)$$

$$P_{RL} = \begin{pmatrix} \beta_0 & 1 & 0 & 0 & \ldots \\ \alpha_0 & \beta_1 & 1 & 0 & \ldots \\ \alpha_0 & \beta_1 & \beta_1 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad P_{RM} = \begin{pmatrix} \beta_0 & 1 & 0 & 0 & \ldots \\ \alpha_0 & \beta_1 + 1 & 1 & 0 & \ldots \\ 0 & \beta_1 & \beta_1 + 1 & 1 & \ldots \\ 0 & 0 & \beta_1 & \beta_1 + 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$
Let $R_L = (C(x), xC(x)), (\alpha_0 = \beta_0 = \beta_1 = 1)$

$$P_{RM} = \begin{pmatrix}
1 & 1 & 0 & \ldots \\
1 & 2 & 1 & \ldots \\
0 & 1 & 2 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix} \quad P_{RL} = \begin{pmatrix}
1 & 1 & 0 & \ldots \\
1 & 1 & 1 & \ldots \\
1 & 1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

A bijection exists between Łukasiewicz paths with weight 1 for all east steps and south-east steps and Motzkin paths with weight of 2 for all east steps, except east steps on the x-axis and all south-east steps which have weight 1.

Resulting paths are Łukasiewicz paths where east steps and Łukasiewicz step have 1 possible colour.
Let $R_L = (C(x), xC(x)), (\alpha_0 = \beta_0 = \beta_1 = 1)$

$$
P_{RM} = \begin{pmatrix}
1 & 1 & 0 & \ldots \\
1 & 2 & 1 & \ldots \\
0 & 1 & 2 & \ldots \\
\vdots & \vdots & \ddots & \ddots
\end{pmatrix} \quad P_{RL} = \begin{pmatrix}
1 & 1 & 0 & \ldots \\
1 & 1 & 1 & \ldots \\
1 & 1 & 1 & \ldots \\
\vdots & \vdots & \ddots & \ddots
\end{pmatrix}
$$

A bijection exists between Łukasiewicz paths with weight 1 for all east steps and south-east steps and Motzkin paths with weight of 2 for all east steps, except east steps on the x-axis and all south-east steps which have weight 1.

Resulting paths are Łukasiewicz paths where east steps and Łukasiewicz step have 1 possible colour.
Let $R_L = (C(x), xC(x)), (\alpha_0 = \beta_0 = \beta_1 = 1)$

$$P_{RM} = \begin{pmatrix} 1 & 1 & 0 \ldots \\
1 & 2 & 1 \ldots \\
0 & 1 & 2 \ldots \\
\vdots & \vdots & \vdots
\end{pmatrix} \quad P_{RL} = \begin{pmatrix} 1 & 1 & 0 \ldots \\
1 & 1 & 1 \ldots \\
1 & 1 & 1 \ldots \\
\vdots & \vdots & \vdots
\end{pmatrix}$$

A bijection exists between Łukasiewicz paths with weight 1 for all east steps and south-east steps and Motzkin paths with weight of 2 for all east steps, except east steps on the x-axis and all south-east steps which have weight 1.

Resulting paths are Łukasiewicz paths where east steps and Łukasiewicz step have 1 possible colour.
Let $R_L = (C(x), xC(x)), (\alpha_0 = \beta_0 = \beta_1 = 1)$

$$P_{RM} = \begin{pmatrix} 1 & 1 & 0 & \ldots \\ 1 & 2 & 1 & \ldots \\ 0 & 1 & 2 & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad P_{RL} = \begin{pmatrix} 1 & 1 & 0 & \ldots \\ 1 & 1 & 1 & \ldots \\ 1 & 1 & 1 & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

A bijection exists between Łukasiewicz paths with weight 1 for all east steps and south-east steps and Motzkin paths with weight of 2 for all east steps, except east steps on the x-axis and all south-east steps which have weight 1.

Resulting paths are Łukasiewicz paths where east steps and Łukasiewicz step have 1 possible colour.
Let $R_L = (C(x), xC(x)), (\alpha_0 = \beta_0 = \beta_1 = 1)$

$\begin{pmatrix}
1 & 1 & 0 & \ldots \\
1 & 2 & 1 & \ldots \\
0 & 1 & 2 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}$

$\begin{pmatrix}
1 & 1 & 0 & \ldots \\
1 & 1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}$

A bijection exists between Łukasiewicz paths with weight 1 for all east steps and south-east steps and Motzkin paths with weight of 2 for all east steps, except east steps on the x-axis and all south-east steps which have weight 1.

Resulting paths are Łukasiewicz paths where east steps and Łukasiewicz step have 1 possible colour.
Let $R_L = (C(x), \alpha x C(x))$, $(\alpha_0 = \beta_0 = \beta_1 = 1)$

$$P_{RM} = \begin{pmatrix} 1 & 1 & 0 \ldots \\ 1 & 2 & 1 \ldots \\ 0 & 1 & 2 \ldots \\ \vdots \; \vdots \; \vdots \end{pmatrix}, \quad P_{RL} = \begin{pmatrix} 1 & 1 & 0 \ldots \\ 1 & 1 & 1 \ldots \\ 1 & 1 & 1 \ldots \\ \vdots \; \vdots \; \vdots \end{pmatrix}$$

A bijection exists between Łukasiewicz paths with weight 1 for all east steps and south-east steps and Motzkin paths with weight of 2 for all east steps, except east steps on the x-axis and all south-east steps which have weight 1.

Resulting paths are Łukasiewicz paths where east steps and Łukasiewicz step have 1 possible colour.
Fibonacci weighted Łukasiewicz paths

The Riordan array R_M with associated tridiagonal production matrix P_{RM} can be decomposed as $R_M = R_L \cdot S$, where S be the inverse of the shifted negated Catalan numbers, $S = \left(1, \frac{-1 + \sqrt{4x+1}}{2}\right)^{-1} = \left(1, x + x^2\right)$ with the first column 0^n.

$$P_{RL} = \begin{pmatrix}
\beta_0 & 1 & 0 & 0 & 0 & \ldots \\
\beta_0 & \beta_1 - 1 & 1 & 0 & 0 & \ldots \\
2\beta_0 & \beta_1 + 1 & \beta_1 - 1 & 1 & 0 & \ldots \\
3\beta_0 & 2\beta_1 - 1 & \beta_1 + 1 & \beta_1 - 1 & 1 & \ldots \\
5\beta_0 & 3\beta_1 + 1 & 2\beta_1 - 1 & \beta_1 + 1 & \beta_1 - 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

$$P_{RM} = \begin{pmatrix}
\alpha_0 & \beta_0 & 1 & 0 & 0 & 0 & \ldots \\
0 & \beta_1 + 1 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & \beta_1 + 1 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & \beta_1 + 1 & 1 & 0 & \ldots \\
0 & 0 & 0 & 0 & \beta_1 + 1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

Example

When S is the inverse of the shifted negated Catalan Riordan matrix, associated Łukasiewicz paths have Fibonacci weighted steps ($\beta_0 = 1, \beta_1 = 1, \alpha_0 = 1$).

$$P_{RM} = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & \ldots \\
0 & 1 & 2 & 1 & 0 & \ldots \\
0 & 0 & 1 & 2 & 1 & \ldots \\
0 & 0 & 0 & 1 & 2 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, P_{RL} = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 0 & 1 & 0 & 0 & \ldots \\
2 & 2 & 0 & 1 & 0 & \ldots \\
3 & 1 & 2 & 0 & 1 & \ldots \\
5 & 4 & 1 & 2 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$
Natural number weighted Łukasiewicz paths

The Riordan array R_M with associated tridiagonal production matrix P_{R_M} can be decomposed as $R_M = R_L \cdot S$, where S is the inverse of the shifted negated Motzkin Riordan array

$$S = \left(1, \frac{1+x-\sqrt{-3x^2+2x+1}}{2x^2}\right)^{-1} = \left(1, \frac{x+x^2}{1+x^3}\right)$$

with the first column 0^n.

$$P_{R_L} = \begin{pmatrix}
\beta_0 & 1 & 0 & 0 & \cdots \\
\beta_0 & \beta_1 - 1 & 1 & 0 & \cdots \\
2\beta_0 & \beta_1 + 1 & \beta_1 - 1 & 1 & \cdots \\
3\beta_0 & 2\beta_1 & \beta_1 + 1 & \beta_1 - 1 & \cdots \\
4\beta_0 & 3\beta_1 & 2\beta_1 & \beta_1 + 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

$$P_{R_M} = \begin{pmatrix}
\beta_0 & 1 & 0 & 0 & \cdots \\
\alpha_0 & \beta_1 + 1 & 1 & 0 & \cdots \\
0 & \beta_1 & \beta_1 + 1 & 1 & \cdots \\
0 & 0 & \beta_1 & \beta_1 + 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

Example

When S is the inverse of the shifted negated Motzkin Riordan matrix, associated Łukasiewicz paths have steps weighted with the natural numbers ($\beta_0 = 1$, $\beta_1 = 1$, $\alpha_0 = 1$).

$$P_{R_M} = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & \cdots \\
1 & 2 & 1 & 0 & 0 & \cdots \\
0 & 1 & 2 & 1 & 0 & \cdots \\
0 & 0 & 1 & 2 & 1 & \cdots \\
0 & 0 & 0 & 1 & 2 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

$$P_{R_L} = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & \cdots \\
1 & 0 & 1 & 0 & 0 & \cdots \\
2 & 2 & 0 & 1 & 0 & \cdots \\
3 & 2 & 2 & 0 & 1 & \cdots \\
4 & 3 & 2 & 2 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

Aoife Hennessy, WIT

Riordan arrays and Lattice paths