Odd diagrams of permutations

Angela Carnevale

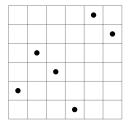
(joint with Francesco Brenti and Bridget Tenner)

Workshop on Enumerative Combinatorics 2021 University College Dublin

Permutations and odd inversions

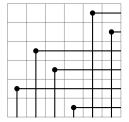
Let $\sigma \in S_n$.

The inversion number of σ is $inv(\sigma) = |\{(i,j) \in [n] : i < j, \sigma(i) > \sigma(j)\}|$.

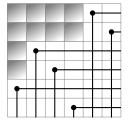

 $inv(2413) = |\{(1,3), (2,3), (2,4)\}| = 3$

The odd inversion number of σ is odd $\operatorname{inv}(\sigma) = |\{(i,j) \in [n] : i < j, i - j \equiv 1, \sigma(i) > \sigma(j)\}|$.

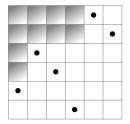
 $oddinv(2413) = |\{(2,3)\}| = 1$


Odd length...

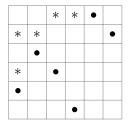
- ▶ was introduced in the context of zeta functions in algebra (Klopsch-Voll '09)
- has interesting applications to the enumeration of matrices over finite fields
- has been generalised to all Weyl groups (Brenti-C. '19)


 $\sigma=562314$

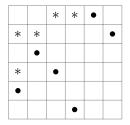
• = graph of σ


 $\sigma=562314$

• = graph of
$$\sigma$$


 $\sigma = 562314$

• = graph of σ


 $\sigma=562314$

• = graph of σ = diagram of σ

 $\sigma=562314$

- $\bullet \ = \text{graph of } \sigma$
- $* = odd diagram of \sigma$

 $\sigma=562314$

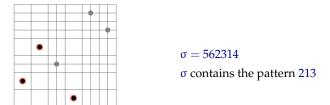
• = graph of
$$\sigma$$

 $* = odd \ diagram \ of \ \sigma$

 $oddinv(\sigma) = |odd \ diagram \ of \ \sigma|$

Note: the diagram of a permutation "knows everything" about the permutation...

...how much does an odd diagram know about a permutation? Not so much!

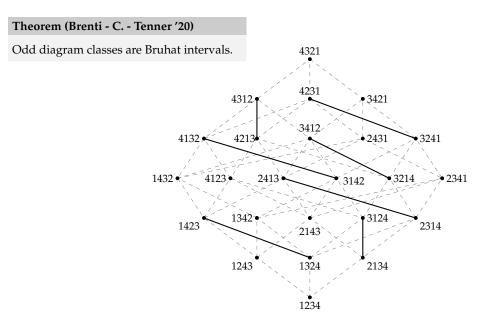


For instance, $213 \in S_3$ and $312 \in S_3$ have the same odd diagram.

Questions:

- How many odd diagrams are there?
- How do "odd diagram classes" look like?

Odd diagrams and permutation patterns


Theorem (Brenti - C. - Tenner '20)

Every odd diagram class contains at most one permutation avoiding the pattern 213 and at most one avoiding 312.

Corollary. There are at least *n*-th-Catalan-many (and in fact, at least *n*-th-Bell-many) odd diagrams arising from permutations in S_n .

The first values of the sequence $|\{\text{odd diagram of } \sigma : \sigma \in S_n\}|$ are: 1, 2, 5, 17, 70, 351, 2041, 13732, 103873, 882213.

Odd diagrams and Bruhat order

The end

		*	*	•	
*	*		٠		
	٠				
*					٠
٠					
		٠			

		*	*	•	
*	*				٠
	٠				
*		•			
٠					
			٠		

		*	*	•	
*	*				٠
	٠				
*			٠		
•					
		•			