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Abstract. In this paper we examine a procedure (due to Colm Fagan) that, on starting with
an integer n, results in a pair of equal integers that are no greater than n. We call the resulting
value the strange root of n and we show how this strange root finding procedure is intimately
linked to the game of Tchoukaillon solitaire. We analyse the strange root finding procedure in
reverse to be able to give a method for determining when a prescribed value is the strange root
of at most two integers.

1. Introduction

In this paper we will present some results relating an algorithmic procedure on integer pairs
due to Colm Fagan [5], an actuary with a keen interest in mathematics, to the game of Tchoukail-
lon solitaire. For every integer n, the procedure results in a pair of equal integers that are no
greater than n, and we will call this value the strange root of n. We analyse the strange root
finding procedure in reverse to be able to give a method for determining when a prescribed
value is the strange root of at most two integers.

Fagan’s Construction: Choose a positive multiple of four, 4m say. It may be written as the
product 2 × 2m where m is a positive integer. Record this as the pair (2, 2m). If the current
pair is (i, y) and y > i, then construct the pair (i + 1, z) where z is the smallest integer such
that (i+ 1)z > iy and i+ 1 + z is even. The outcome of this procedure seems to yield a pair of
equal positive integers that we denote (cf(m), cf(m)).

To illustrate this choose 16 as the multiple of four. We begin with the pair (2, 8) which
produces the next pair (3, 7). Applying the rule once again, we construct the pair (4, 6) followed
by (5, 5). As both entries in this pair are equal we are done and cf(4) = 5. Let us use CF(m)
to refer to the resulting sequence of pairs in this case, i.e.,

CF(4) : (2, 8)→ (3, 7)→ (4, 6)→ (5, 5).

Fagan’s Question: Are there an infinite number of positive integers n for which {m ∈
N : cf(m) = n} is a singleton set? The values of n for which this is known to be true
are 1, 2, 3, 6, 30, 493080, and 242650650.

m cf(m)
1 2
2 3
3 4
6 6
30 14

493080 1760
242650650 39046

To analyse this construction and approach the question, in Section 2 we will consider the
above procedure on a larger set of integers. This will then allow us, in Section 3, to show
a relationship between this procedure on integers and winning configurations of Tchoukaillon
solitaire. In Section 4 we will characterise the inverse step of the main construction in order to

1



provide a characterisation of those integers that map to an (almost) unique value, and discuss
Fagan’s question in light of this characterisation.

2. Strange roots

In this section we will consider two constructions on the natural numbers. First we will define
and explain the sequence of integer pairs that arise in the original construction [5] in a slightly
more general setting. Following this we will give some examples and prove that the terminating
pairs that have been observed are as they claim to be. After this we recast the sequence of
pairs of integers by performing a linear transform so that the parity condition of the original
problem is absorbed into the recursion. Let N = {1, 2, . . .} be the set of natural numbers.

Definition 2.1. Let n ∈ N. Let Blistn be the sequence of pairs produced by the following
algorithm: Begin with the pair (1, 2n − 1). Given a pair (i, yi) with yi > i, construct the
subsequent pair (i+ 1, yi+1) where yi+1 is the smallest integer such that

(i+ 1)yi+1 > iyi and i+ 1 + yi+1 if even.

Let (sr(n), ysr(n)) be the final pair in this sequence. We will find it convenient to call the value
sr(n) the strange root of n.

Example 2.2.
(i) Suppose n = 2. We begin with (1, 2n−1 = 3). As 3 > 1 we let y2 be the smallest integer

greater than 1(3)/2 = 1.5 such that 2 + y2 is even, and this gives y2 = 2 and the pair
(2, 2). Since 2 ≤ 2 We are done and (2, 2) = (sr(2), ysr(2)). Thus Blist2 is (1, 3)→ (2, 2).

(ii) Suppose n = 8. We start with (1, 2n − 1 = 15). As 15 > 1 we let y2 be the smallest
integer greater than 1(15)/2 = 7.5 such that 2 + y2 is even, and this gives y2 = 8. We
now have the pair (2, 8) and since 8 > 2 we let y3 be the smallest integer greater than
2(8)/3 = 5.33 such that 3 + y3 is even. This is y3 = 7 and we have the pair (3, 7). As
7 > 3 we let y4 be the smallest integer greater than 3(7)/4 = 5.25 such that 4 + y4 is
even, which is y4 = 6, and we have the pair (4, 6). As 6 > 4 we let y5 be the smallest
integer greater than 4(6)/5 = 4.8 such that 5 + y5 is even. This is y5 = 5 and the pair
(5, 5). Since 5 ≤ 5 this is the final pair and so (sr(8), ysr(8)) = (5, 5). Thus Blist8 is
(1, 15)→ (2, 8)→ (3, 7)→ (4, 6)→ (5, 5).

(iii) The Blist sequences for the first few integers are illustrated in Figure 1.

Proposition 2.3. For every n ∈ N, we have sr(n) = ysr(n).

Proof. Consider the sequence of pairs produced by Definition 2.1. If (sr(n), ysr(n)) is the final
entry of Blistn, then it must be the case that ysr(n) ≤ sr(n). We will now show the following:

(i) If we have pairs (i, yi) and (i+ 1, yi+1) as part of this process, then yi+1 ≤ yi − 1.
(ii) If we have pairs (i, yi) and (i+ 1, yi+1) as part of this process, then yi+1 ≥ i+ 1.

(i) Note that since they are pairs defined by Definition 2.1, both i + yi and i + 1 + yi+1 must
be even. Since (i, yi) → (i + 1, yi+1), by assumption it must be the case that yi > i. Because
of this, the curve H1 := {(x, y) : xy = i(yi)} that passes through the point (i, yi) (which is
above the diagonal line x = y) is such that the slope of the H1 is always less than the slope
of the line L := {(x, y) : x + y = i + yi} (which also passes through the point (i, yi)), for all
x ∈ [i, i+1] ⊂ R (since i+1+yi+1 is even). Thus the point (i+1, yi−1) that is on L and whose
sum of coordinates is even is above the point (i+ 1, iyi/(i+ 1)) that is on H. This necessarily
means that yi+1 ≤ yi − 1.

(ii) Notice that since (i, yi) is such that yi > i and i+yi is even, it is not possible to have yi = i+1
since then i+ yi would be odd. This means yi ≥ i+ 2. Furthermore, the curve H1 that passes
through the point (i, yi) also passes through the point (i + 1, zi+1) where zi+1 := iyi/(i + 1).
Since yi ≥ i + 2 and zi+1 := iyi/(i + 1) we have zi+1 ≥ i(i + 2)/(i + 1) = i + (i/(i + 1)). The
value yi+1 ≥ di+ (i/(i+ 1))e = i+ 1.
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n Blistn
1 (1, 1)
2 (1, 3)→ (2, 2)
3 (1, 5)→ (2, 4)→ (3, 3)
4 (1, 7)→ (2, 4)→ (3, 3)
5 (1, 9)→ (2, 6)→ (3, 5)→ (4, 4)
6 (1, 11)→ (2, 6)→ (3, 5)→ (4, 4)
7 (1, 13)→ (2, 8)→ (3, 7)→ (4, 6)→ (5, 5)
8 (1, 15)→ (2, 8)→ (3, 7)→ (4, 6)→ (5, 5)
9 (1, 17)→ (2, 10)→ (3, 7)→ (4, 6)→ (5, 5)
10 (1, 19)→ (2, 10)→ (3, 7)→ (4, 6)→ (5, 5)
11 (1, 21)→ (2, 12)→ (3, 9)→ (4, 8)→ (5, 7)→ (6, 6)
12 (1, 23)→ (2, 12)→ (3, 9)→ (4, 8)→ (5, 7)→ (6, 6)
13 (1, 25)→ (2, 14)→ (3, 11)→ (4, 10)→ (5, 9)→ (6, 8)→ (7, 7)
14 (1, 27)→ (2, 14)→ (3, 11)→ (4, 10)→ (5, 9)→ (6, 8)→ (7, 7)
15 (1, 29)→ (2, 16)→ (3, 11)→ (4, 10)→ (5, 9)→ (6, 8)→ (7, 7)
16 (1, 31)→ (2, 16)→ (3, 11)→ (4, 10)→ (5, 9)→ (6, 8)→ (7, 7)
17 (1, 33)→ (2, 18)→ (3, 13)→ (4, 10)→ (5, 9)→ (6, 8)→ (7, 7)
18 (1, 35)→ (2, 18)→ (3, 13)→ (4, 10)→ (5, 9)→ (6, 8)→ (7, 7)
19 (1, 37)→ (2, 20)→ (3, 15)→ (4, 12)→ (5, 11)→ (6, 10)→ (7, 9)→ (8, 8)
20 (1, 39)→ (2, 20)→ (3, 15)→ (4, 12)→ (5, 11)→ (6, 10)→ (7, 9)→ (8, 8)

Figure 1. The first few Blist sequences as defined in Definition 2.1

The implication of (i) is that the sequence of pairs must terminate since the second value is
strictly decreasing. Part (ii), with i = sr(n) − 1 gives us the inequality ysr(n) ≥ sr(n). Since
ysr(n) ≤ sr(n) we must have that there is a final pair, and this final pair is (sr(n), ysr(n) = sr(n)),
as claimed. �

The strange roots for the first few integers are given in Figure 2. A first observation is that
the sequence seems to be weakly increasing.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
sr(n) 1 2 3 3 4 4 5 5 5 5 6 6 7 7 7 7 7 7 8 8

Figure 2.

We will now offer the following alternative definition for strange roots that consists of the
simple linear transformation (x, y) 7→ (x, (x+y)/2). The purpose of the alternative definition is
that it does not require the additional ‘is even’ proposition that is stated in Definition 2.1. We
will change the notation for the new pairs so that it is clear that the operation at the heart of
it differs to that of the original. In what follows 〈x, y〉 will correspond to the pair (x, 2y− x) of
Definition 2.1, and equivalently 〈x, (x+y)/2〉 will correspond to the pair (x, y) of Definition 2.1.

Definition 2.4. Let n ∈ N. Let Alistn be the sequence of pairs produced by the following
algorithm: Begin with the pair 〈1, n〉. Given a pair 〈i, u〉 with u > i, construct the subsequent
pair 〈i + 1, v〉 where v is the smallest integer such that (i + 1)v > i(u + 1). Equivalently, v is
the unique integer such that

v >
i(u+ 1)

i+ 1
≥ v − 1.

Proposition 2.5. Let n ∈ N. The final pair of the sequence Alistn is 〈sr(n), sr(n)〉
3



n Alistn
1 〈1, 1〉
2 〈1, 2〉 → 〈2, 2〉
3 〈1, 3〉 → 〈2, 3〉 → 〈3, 3〉
4 〈1, 4〉 → 〈2, 3〉 → 〈3, 3〉
5 〈1, 5〉 → 〈2, 4〉 → 〈3, 4〉 → 〈4, 4〉
6 〈1, 6〉 → 〈2, 4〉 → 〈3, 4〉 → 〈4, 4〉
7 〈1, 7〉 → 〈2, 5〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
8 〈1, 8〉 → 〈2, 5〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
9 〈1, 9〉 → 〈2, 6〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
10 〈1, 10〉 → 〈2, 6〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
11 〈1, 11〉 → 〈2, 7〉 → 〈3, 6〉 → 〈4, 6〉 → 〈5, 6〉 → 〈6, 6〉
12 〈1, 12〉 → 〈2, 7〉 → 〈3, 6〉 → 〈4, 6〉 → 〈5, 6〉 → 〈6, 6〉
13 〈1, 13〉 → 〈2, 8〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
14 〈1, 14〉 → 〈2, 8〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
15 〈1, 15〉 → 〈2, 9〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
16 〈1, 16〉 → 〈2, 9〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
17 〈1, 17〉 → 〈2, 10〉 → 〈3, 8〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
18 〈1, 18〉 → 〈2, 10〉 → 〈3, 8〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
19 〈1, 19〉 → 〈2, 11〉 → 〈3, 9〉 → 〈4, 8〉 → 〈5, 8〉 → 〈6, 8〉 → 〈7, 8〉 → 〈8, 8〉
20 〈1, 20〉 → 〈2, 11〉 → 〈3, 9〉 → 〈4, 8〉 → 〈5, 8〉 → 〈6, 8〉 → 〈7, 8〉 → 〈8, 8〉

Figure 3. The first few Alist sequences as defined in Definition 2.4

Proof. Let n ∈ N. Consider the sequence of pairs Alistn and Blistn (produced by Definitions 2.1
and 2.4, respectively). Initially we have 〈1, n〉 = (1, 2n− 1). Given 〈i, u〉 = (i, yi), if u > i then
define the next pair 〈i+ 1, v〉 = (i+ 1, yi+1) where v is the unique integer such that:

2(i+ 1)v > 2i(u+ 1) + 1 ≥ 2(i+ 1)(v − 1).

By Definition 2.1 this is equivalent to finding the smallest yi+1 such that (i+ 1)yi+1 > iyi and
i+ 1 + yi+1 is even. This procedure will, by Proposition 2.3, result in the pair of equal integers
(sr(n), sr(n)) = 〈sr(n), sr(n)〉.

Let us make the following further simple observations on the inequalities: 2(i+ 1)v > 2i(u+
1)+1 ⇐⇒ 2(i+1)v ≥ 2i(u+1)+2 ⇐⇒ (i+1)v ≥ i(u+1)+1 ⇐⇒ (i+1)v > i(u+1). Also,
2i(u+1)+1 ≥ 2(i+1)(v−1) ⇐⇒ 2i(u+1)+2 > 2(i+1)(v−1) ⇐⇒ i(u+1)+1 > (i+1)(v−1)
⇐⇒ i(u+ 1) ≥ (i+ 1)(v− 1). Thus the above inequality holds true iff v is the smallest integer
such that (i+ 1)v > i(u+ 1). �

Proposition 2.6. Let n ∈ N and define y1 = n. Then the sequence of numbers (y1, . . . , yr) are
such that Alistn is 〈1, y1〉 → 〈2, y2〉 → · · · → 〈r, r = yr〉 iff the sequence of numbers wi defined
by wi = yi − yi+1 + 1 satisfies

wi =

⌈
n− 1− (w1 + · · ·+ wi−1)

i+ 1

⌉
,

for all i = 1, 2, . . . , r − 1. (Note that the sum of wj ’s is zero when i = 1.)

Proof. Let n ∈ N and set y1 := n. By Definition 2.4, a sequence of numbers (y1, . . . , yr) is such
that 〈1, y1〉 → 〈2, y2〉 → · · · → 〈r, yr〉 with r = sr(y1) = yr iff yi+1 > i(yi + 1)/(i+ 1) ≥ yi+1 − 1
for all i ∈ {1, . . . , r − 1} and yr = r = sr(y1).

Let us translate this last statement into one that concerns only the differences between the
yi’s. For a general sequence of numbers (y1, . . . , yr), we will consider the sequence (z1, . . . , zr−1)
of differences where zi := yi − yi+1 for all 1 ≤ i < r.
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The value zi comes from the transition 〈i, yi〉 → 〈i + 1, yi+1〉. Since there is a transition we
must have yi > i and, by Definition 2.4, yi+1 is the unique integer such that

yi+1 >
i(yi + 1)

i+ 1
≥ yi+1 − 1.

Subtracting every term in this inequality from yi gives

yi − yi+1 < yi −
i(yi + 1)

i+ 1
=
yi + 1

i+ 1
− 1 ≤ yi − yi+1 + 1,

which is equivalent to

zi <
yi + 1

i+ 1
− 1 ≤ zi + 1.

This, in turn, is equivalent to

⌈
yi + 1

i+ 1
− 1

⌉
= zi+1, i.e.,

⌈
yi + 1

i+ 1

⌉
= zi+2. We can now provide

an expression for the zi values without the yi values by noticing that the sum of the first i− 1
z values is z1 + · · ·+ zi−1 = y1 − yi = n− yi. This gives

zi =

⌈
1 + n− (z1 + z2 + · · ·+ zi−1)

i+ 1

⌉
− 2

for all i = 1, . . . , r− 1. Note that when i = 1 the sum of the z terms in the expression is empty,
and is consequently 0.

Substituting zi = wi − 1 into the above expression, and simplifying, gives:

w1 =

⌈
n− 1

2

⌉
and for all i = 2, . . . , r − 1,

wi =

⌈
n− 1− (w1 + · · ·+ wi−1)

i+ 1

⌉
.

�

3. Tchoukaillon solitaire

Let us now introduce the board game Tchoukaillon solitaire and detail some of its properties.
The board for this game is a sequence of holes numbered 0,1,2,. . .. We will assume that hole 1
is to the right of hole 0, and hole 2 is to the right of hole 1, and so on. The game is played as
follows: n stones are placed in these holes, but hole 0 is special and does not initially contain
any stones.

The aim of the game is to move all the stones in holes 1 and above to hole 0 through some
sequence of valid moves. A valid move consists of selecting a hole, i say, that currently contains
si stones, and then re-distributing these si stones by placing one stone into each of the si holes
i− 1, i− 2, . . ., i− si. If i− si < 0 then we have no holes left in which to place the remaining
si − i stones, and we immediately lose the game. One should therefore never select a hole that
currently has more stones than there are holes to its left. The game is won if one can select the
holes in such an order that we end up with all stones in hole 0.

Let us write c = (c1, c2, . . .) for a Tchoukaillon configuration whereby ci is the number of
stones in hole i and n := c1 + c2 + · · · . It turns out that for every n there is a unique winning
Tchoukaillon configuration, Tchoukn, consisting of n stones. We list these configurations in
Figure 4.

We find it important to mention that it is not the case that any order of selecting holes in
Tchoukn results in a win.

Example 3.1. Consider Tchouk3 = (1, 2). If we select hole 1 first, then on performing our
move the single stone is placed into hole 0. Next we select hole 2 that contains two stones, and
on performing our move we drop one stone into hole 1 and the other into hole 0. Next we select
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hole 1 again, and drop the stone from there into hole 0. After this all three stones are in hole
0 and we have won the game.

However, had we selected hole 2 first, then one stone would have been placed into hole 1, and
one into hole 0. There are then two stones in hole 1, and there is no way of winning so we will
have lost the game.

n Tchoukn Move vector
0 () none
1 (1) (1)
2 (0, 2) (1, 1)
3 (1, 2) (2, 1)
4 (0, 1, 3) (2, 1, 1)
5 (1, 1, 3) (3, 1, 1)
6 (0, 0, 2, 4) (3, 1, 1, 1)
7 (1, 0, 2, 4) (4, 1, 1, 1)
8 (0, 2, 2, 4) (4, 2, 1, 1)
9 (1, 2, 2, 4) (5, 2, 1, 1)

10 (0, 1, 1, 3, 5) (5, 2, 1, 1, 1)
11 (1, 1, 1, 3, 5) (6, 2, 1, 1, 1)
12 (0, 0, 0, 2, 4, 6) (6, 2, 2, 1, 1)
13 (1, 0, 0, 2, 4, 6) (7, 2, 1, 1, 1, 1)

Figure 4. The first few unique winning configurations Tchoukn of Tchoukaillon
solitaire

One way to construct Tchoukn is by recursion. Given Tchoukn−1, suppose that position i is
the leftmost position containing 0 stones. Then Tchoukn is the configuration that results from
Tchoukn−1 by adding i stones to hole i, and subsequently removing one stone from each of the
holes 1, 2, . . . , i− 1.

Recently, Jones, Taalman and Tongen [6] gave an explicit method to construct the winning
configurations Tchoukn. The configuration Tchoukn = (c1, c2, . . .) whereby

c1 = n mod 2

c2 = n− c1 mod 3

c3 = n− (c1 + c2) mod 4

...

ck = n− (c1 + c2 + · · ·+ ck−1) mod (k + 1).

Once the sum c1 + c2 + · · ·+ ck−1 = n one stops computing further entries.
For any winning configuration, there is some sequence of moves that will result in a win. As

we saw in Example 3.1, it is not the case that any sequence of allowable moves on Tchoukn will
result in a win. The sequence of moves that is required to ‘win’ can be discovered by playing the
game in reverse, and is essentially the same as the recursive rule for constructing Tchoukaillon
configurations highlighted above (except, of course, executed in reverse since it starts from the
empty board).

There is another interesting aspect to the winning configurations that instead looks at the
number of times each hole was selected for a valid move during a ‘win’. Given c = (c1, . . . , ck) =
Tchoukn, let m = m(c) = (m1, . . . ,mk) be the sequence whereby mi is the number of times that
hole i was selected in playing the game. This sequence m is known in the literature as the move
vector. For example, in Example 3.1 we considered c = (1, 2) = Tchouk3. For that game hole 1
was selected twice (so m1 = 2) and hole 1 was selected once (so m2 = 1). The move vector for
this c is m(c) = (2, 1).
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In their paper [9], Taalman et al. gave an explicit expression for the entries of the move
vector of Tchoukn in terms of n:

Theorem 3.2. ([9, Thm.4]) The move vector for solving Tchoukn is m = (m1, . . . ,m`) where

m1 =
⌈n

2

⌉
m2 =

⌈
n−m1

3

⌉
m3 =

⌈
n− (m1 +m2)

4

⌉
...

m` =

⌈
n− (m1 +m2 + · · ·+m`−1)

`+ 1

⌉
.

The link between Tchoukaillon solitaire and strange roots is now seen by comparing the
theorem above to the expression in Proposition 2.6. The precise correspondence is given in the
following proposition.

Proposition 3.3. Let n ≥ 2. The sequence Tchoukn−1 = (b1, . . . , b`) corresponds uniquely to
Alistn : 〈1, y1 = n〉 → 〈2, y2〉 → . . .→ 〈sr(n), sr(n)〉 as follows:

(a) ` = sr(n)− 1.
(b) For i = 1, 2, . . . , sr(n)− 1,

bi = 2i+ 1 + iyi − (i+ 1)yi+1.

(c) For i = 1, 2, . . . , sr(n),

yi = i+
1

i
(bi + bi−1 + · · ·+ bsr(n)−1).

Proof. With the objects as stated in the proposition, the correspondences are established
through the intermediate object of the move sequence m = (m1,m2, . . . ,m`) where mi :=
1 + yi − yi+1. The largest value of ` for which this is well defined is ` = sr(n) − 1, hence
(a). That m is a valid move vector is verified by showing 0 ≤ mi < i for all i, and this is a
consequence of Lemma 2.3.

The sum of the entries in a move sequence is the same as the number of stones in the
Tchoukaillon game, and so

∑
imi = (1+y1−y2)+(1+y2−y3)+ · · · = (sr(n)−1)+y1−ysr(n) =

sr(n) − 1 + n − sr(n) = n − 1. In other words the sequence Alistn can be seen to correspond
to a move sequence for a Tchoukaillon game with n − 1 stones. In order to be able to write
the entries of the sequences (b1, . . . , bsr(n)−1) and (y1, . . . , ysr(n)) in terms of one another, we will
make use of some identities.

(b) To describe the bj ’s in terms of mj ’s, we use the following identify from Taalman et
al. [9, Theorem 2]:

bi = imi −
sr(n)−1∑
j=i+1

mj .

Substitute mj = 1 + yj − yj+1 into this. We have

bi =

{
i(1 + yi − yi+1)−

∑sr(n)−1
j=i+1 (1 + yj − yj+1) if i ≤ sr(n)− 2

(sr(n)− 1)(1 + ysr(n)−1 − ysr(n)) if i = sr(n)− 1.

The expression in the top case simplifies to 2i + 1− sr(n) + iyi − (i+ 1)yi+1 + ysr(n) =
2i+ 1 + iyi− (i+ 1)yi+1. The expression in the bottom case simplifies, by using the fact
that ysr(n)−1 = ysr(n) for n ≥ 2, to sr(n)−1. In fact if we use i = sr(n)−1 in the top case
then it reduces to this same expression sr(n)− 1, and so bi = 2i+ 1 + iyi − (i+ 1)yi+1

for all i = 1, 2, . . . , sr(n)− 1.
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(c) To describe the yj ’s in terms of the bj ’s. If Tchoukn−1 = (b1, b2, . . . , bsr(n)−1) = b then
the move vector corresponding to b is m = (m1, . . . ,msr(n)−1) where

mi =
1

i
bi +

1

i(i+ 1)

sr(n)−1∑
k=i+1

bk, (3.1)

for all 1 ≤ i ≤ sr(n) − 1 by using [9, Eqn. (2)]. As the mi and yi values are related
via mi = 1 + yi − yi+1 for all 1 ≤ i ≤ sr(n) − 1 and y1 = n, we find that yi =

n+(i−1)−
∑i−1

t=1mt and this holds for all 1 ≤ i ≤ sr(n). (The ends of this sequence are
well defined since y1 = n+0−0 = n and ysr(n) = n+(sr(n)−1)−(m1+ · · ·+msr(n)−1) =
n+ (sr(n)− 1)− (n− 1) = sr(n).)

Again by using equation 3.1,

mi =
(i+ 1)bi +

∑sr(n)−1
k=i+1 bi

i(i+ 1)
,

we can express the partial sum

i−1∑
t=1

mt = (n− 1)− 1

i

sr(n)−1∑
k=i

bi.

Using this in the equation for yi, and simplifying, we have that

yi = i+
1

i

sr(n)−1∑
k=i

bi,

for all 1 ≤ i ≤ sr(n). Therefore the configuration b = Tchoukn−1 corresponds to
Alistn : 〈1, y1〉 → 〈2, y2〉 → . . .→ 〈sr(n), sr(n)〉, where the yi’s are as stated.

�

Notice that the end of a Tchoukaillon configuration is a fixed point in the following sense:

Lemma 3.4. Suppose b = (b1, . . . , b`) = Tchoukn. Then b` = `.

Proof. This is straightforward to see by using the recursive construction presented after Exam-
ple 3.1 Since Tchouk1 = (1), we have b` = 1 = ` and it is true. Suppose it is true for n = k
so that Tchoukk = (b1, . . . , b`) with ` = b`. To construct Tchoukk+1 from Tchoukk we must
condition on the appearance of the first (i.e., lowest indexed) 0 in Tchoukk.

(a) If bi = 0 is the first zero of Tchoukk and i < ` then only the entries in holes {1, . . . , i} are
changed and the final entry of Tchoukk+1 will be the same as the final entry of Tchoukk,
hence b` = `.

(b) If b`+1 is the first zero of Tchoukk, then Tchoukk+1 must have b`+1 = `+1 and all entries
to the left of this are decreased by one.

In both cases, the claim holds true and the result follows by induction. �

A natural corollary of Proposition 3.3 and Lemma 3.4 is the following, which allows us to
interpret questions about the strange root of n in terms of winning Tchoukaillon configurations.

Corollary 3.5. For all n ≥ 2, sr(n) = length(Tchoukn−1) = final(Tchoukn−1), where length(c)
is the highest index i such that ci 6= 0, and final(c) is the value of that ci.

The correspondence established in this section allows us to gain some insight into the sr
statistic through enumerative results on Tchoukaillon solitaire. The quantity that is most well-
known in relation to Tchoukaillon solitaire is a statistic t(k) that is defined as the smallest
integer n for which k occurs for the first time in Tchoukn. For example, if we look at Figure 4,
we see that 4 first occurs in Tchouk6, and so t(4) = 6.

Since the end of every winning Tchoukaillon sequence is a value equal to its index (by Lemma
3.4), t(k) may be equivalently defined as the number of n(≥ 0) for which there are no entries in
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holes k, k+ 1, k+ 2, . . .. For example, for k = 4, if we look at Figure 4 then there are no stones
in holes 4 or higher of the configurations Tchouk0, Tchouk1, . . ., Tchouk5 and so t(4) = 6.

The sequence t(1), t(2), . . . is listed in the On-Line Encyclopedia of Integer Sequences [7,
A002491] and begins 1, 2, 4, 6, 10, 12, 18, 22, 30, 34, 42, 48, . . .. It is known to have several curious
properties. An extremely good exposition of these properties and further references can be
found in the Jones et al. paper [6].

• t(k) can be calculated by starting with k and successively rounding up to next multiple
of k−1, k−2, . . ., 1. For example, t(4) is calculated by starting with 4, round up to the
next multiple of k− 1 = 3 which is 6. Round up again to the next multiple of k− 2 = 2
which is still 6, and rounding up to the next multiple of k − 3 = 1 will not change the
value at all. Thus t(4) = 6. (Brown [2]).
• It can be generated by a sieving process on the integers. This was described in Erdős

& Jabotinsky [4] and David [3], and is very clearly explained in Sloane [8].

• t(k) =
k2

π
+ O(n) (this result is due to Broline & Loeb [1] and improves on Erdős &

Jabotinsky [4] result t(k) =
k2

π
+O(n4/3)).

Brown’s construction (in the first point above) bears a similarity to the construction that we
are considering. It produces pairs of integers according to a rule similar to ours. However, it
does not stop in the same manner that Fagan’s construction or Definition 2.4 do, and so the
notion of a ‘root’ seems to have been skipped over. In light of the correspondences we have
established, we have the following:

Proposition 3.6.
(a) The number of integers n for which sr(n) = k is t(k + 1) − t(k). Equivalently, t(k) =

1 + |{n ≥ 1 : sr(n) < k}|.
(b) The number of integers whose strange root is less than k is approximately k2/π for k

large.

Part (b) helps justify the strange root terminology we have used as the number of non-negative
integers whose square root is less than a natural number k is k2. Although these connections
give us some interesting information about the sr function, the known properties of t(k) are
not sufficient to aid us any further in considering Fagan’s question. In the next section we will
present a brief analysis of the Alist sequences with Fagan’s question in mind.

4. Determining integers having a prescribed strange root

When we consider the sequence of pairs that arise from these constructions, is it possible
to express those pairs that must precede some pair in a given sequence? Moreover, given an
integer r, is it possible to determine the set {n ∈ N : sr(n) = r}?
Proposition 4.1. Let n ∈ N and consider

Alistn : 〈1, n〉 → · · · → 〈i, u〉 → 〈i+ 1, v〉 → · · · → 〈r, r〉
where r ≥ 2. Then u must be an integer that satisfies (i+ 1)v > i(u+ 1) ≥ (i+ 1)(v − 1).

Proof. We may express u in terms of v as follows. As 〈i+ 1, v〉 comes from 〈i, u〉 we must have
u > i. Since v(≥ i+ 1) is the unique integer such that (i+ 1)v > i(u+ 1) ≥ (i+ 1)(v − 1), we
may rephrase this as: given 〈i+ 1, v〉 with v ≥ i+ 1, 〈i, u〉 → 〈i+ 1, v〉 for all u(> i) that satisfy
(i+ 1)v > i(u+ 1) ≥ (i+ 1)(v − 1). �

Example 4.2. For example, consider 〈i+ 1, v〉 = 〈3, 5〉. Then the set of pairs 〈2, u〉 for which
〈2, u〉 → 〈3, 5〉 are those u(> 2) such that 15 > 2(u + 1) ≥ 12, i.e., for all u > 2 such that
6.5 > u ≥ 5. In other words, for u = 5 and u = 6.

In analysing the values that u can take, at a second glance it is more restricted than first
appears. It transpires that there can be either one or two values of u that map to a given
〈i+ 1, v〉.
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Proposition 4.3. Let n ∈ N and consider Alistn : 〈1, n〉 → · · · → 〈i, u〉 → 〈i + 1, v〉 → · · · →
〈r, r〉 where r ≥ 2. Then

u ∈

{{
v − 2 +

⌊
v−1
i

⌋
, v − 1 +

⌊
v−1
i

⌋}
if i | v − 1,{

v − 1 +
⌊
v−1
i

⌋}
if i 6 | v − 1.

Proof. Suppose that 〈i, u〉 → 〈i+ 1, v〉 as stated in the proposition. Then by Proposition 4.1 u
must satisfy (i+ 1)v > i(u+ 1) ≥ (i+ 1)(v− 1). This inequality is equivalent to v+ (v/i)− 1 =
v − 1 + (v/i) > u ≥ (v − 1) + (v − 1)/i− 1 = v − 2 + (v − 1)/i, i.e.,

v − 1 +

⌊
v − 1

i

⌋
≥ u ≥ v − 2 +

⌈
v − 1

i

⌉
.

Notice that if v−1
i is an integer x, then this inequality is v − 1 + x ≥ u ≥ v − 2 + x, i.e.,

u ∈ {v− 2 + x, v− 1 + x}. However, if v−1
i is not an integer but is x+ ε for some integer x ∈ N

and ε ∈ (0, 1), then this inequality is v−1+x ≥ u ≥ v−2+x+1 = v−1+x, i.e., u = v−1+x.
For example, consider 〈i + 1, v〉 = 〈4, 5〉, we have that v − 1 = 4 and i = 3. As 4/3 is not an
integer, the only u for which 〈i, u〉 → 〈i+ 1, v〉 is u = v− 1 + b(v− 1)/xc = 4 + 1 = 5. The only
pair 〈3, u〉 that will produce 〈4, 5〉 is 〈3, 5〉. �

Proposition 4.3 allows us to give a description of those integers n whose strange root is
some prescribed value by working backwards from the value of the root. Let us observe that
in Proposition 4.3, when i = 1, the value i will always divide v − 1, and there will be two
possible values for u such that 〈1, u〉 → 〈2, v〉 for all v ≥ 2. Thus given a pair 〈2, v〉, both
〈1, 2v − 3〉 → 〈2, v〉 and 〈1, 2v − 2〉 → 〈2, v〉.

The following proposition provides a characterisation of the r that are the roots of at most
two integers.

Proposition 4.4. Suppose that n ≥ 5. Let xr = r and for every i = r − 1, . . . , 1 define

xi := xi+1 − 1 +

⌊
xi+1 − 1

i

⌋
=

⌊
(i+ 1)(xi+1 − 1)

i

⌋
.

Then there are only two integers (x1 and x1 − 1) that have r as its strange root if and only if
xi+1 − 1 6≡ 0 mod i for all i ∈ {2, . . . , r − 2}.

Example 4.5. Consider r = 14. Then we have x14 = 14, and we apply the rule to derive the
second row of the following table:

i 14 13 12 11 10 9 8 7 6 5 4 3 2 1
xi 14 14 14 14 14 14 14 14 15 16 18 22 31 60

xi+1−1
i

13
12

13
11

13
10

13
9

13
8

13
7

13
6

14
5

15
4

17
3

21
2

Using the top two rows we can compute the values in the bottom row. None of the quotients
in the bottom row are integers hence, by the above proposition, there are only two integers
(x1 = 60 and x1 − 1 = 59) that have 14 its strange root.

Proposition 4.4 classifies those r that are the strange root of only two integers. There are
precisely r − 3 (non-)divisibility conditions to be satisfied in order for r to be a unique strange
root. Thus as r grows it would appear less and less likely to find an r such that the sequence
(xr, . . . , x1) satisfies the stated condition. There is nothing suggesting that there is a maximal
such value of r after which no more unique strange roots may exist. Based on the form of the
condition in Prop 4.4 we present the following conjecture.

Conjecture 4.6. There is in infinite number of integers r ∈ N for which |{n ∈ N : sr(n) =
r}| = 2.
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m cf(m) sr(n) n
1 2 2 2
2 3 3 3, 4
3 4 4 5, 6
6 6 6 11, 12
30 14 14 59, 60

493080 1760 1760 986159, 986160
242650650 39046 39046 485301299, 485301300

Figure 5. Note that cf(m) = x is equivalent to sr(2m) = x. This is easily seen
as the first entry of the sequence CF(m) is the second entry of the sequence
Blist2m.

Fagan’s Question translates into the question that we have considered, since an integer r is
the strange root of only two integers iff {m ∈ N : cf(m) = r} is a singleton set. In Figure 5 we
record the first few values of both cf and sr to summarise how they are related.

Since the numbers in Figure 5 seem to be growing so fast, it is not easy to get a clearer picture
on the next value (if it exists). It would be interesting to see if some of the theory regarding
the game of Tchoukaillon solitaire could be utilized to give insights into strange roots that are
the strange roots of at most two integers.
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