NEW EQUIVALENCES FOR PATTERN AVOIDING INVOLUTIONS
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ABSTRACT. We complete the Wilf classification of signed patterns of length 5 for both signed
permutations and signed involutions. New general equivalences of patterns are given which
prove Jaggard’s conjectures concerning involutions in the symmetric group avoiding certain
patterns of length 5 and 6. In this way, we also complete the Wilf classification of Ss, Sg, and

S for involutions.

1. INTRODUCTION

Pattern avoidance has proved to be a useful concept in a variety of seemingly unrelated problems,
including Kazhdan-Lusztig polynomials [2], singularities of Schubert varieties [3, 4, 5, 6, 7, 15],
Chebyshev polynomials [18], rook polynomials for a rectangular board [17] and various sorting

algorithms, sorting stacks and sortable permutations [8, 9, 10, 19, 20, 21].

In this paper, we deal with pattern avoidance in the symmetric group S, and the hyper-
octahedral group B,. The group B,, which is isomorphic to the automorphism group of
the n-dimensional hypercube, can be represented as the group of all bijections w of the set
X ={-n,...,—1,1,...,n} onto itself such that w(—i) = —w(i) for all i € X, with composition
as the group operation. However, for our purposes it is more convenient to represent the ele-
ments of S,, as permutation matrices, and the elements of B,, as signed permutation matrices,
where a signed permutation matrix is a 0, 1, —1-matrix with exactly one nonzero entry in every
row and every column. We may also write the elements of B, as words m = w7y ... T, in
which each of the letters 1,2, ..., n appears, possibly barred to signify negative letters; a matrix
p corresponds to the word 7 such that p;; = 1if 7, = j, p;j = -1 if m; = —j, and p;; = 0
otherwise. In our paper, we will make no explicit distinction between these two representations
of a signed permutation. Let I, and SI,, be the set of involutions in S,, and B,,, respectively.

Note that involutions correspond precisely to symmetric matrices.
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A signed permutation m € B, is said to contain the pattern T € By, if there exists a sequence
1 <i1 <ig <...<i<nsuch that |m,| < |m,| if and only if |7,| < || and m;, > 0 if and
only if 7, > 0 for all 1 < a,b < k. Otherwise, 7 is called a 7-avoiding permutation. Note that
7w contains 7 if and only if the matrix representing m contains the matrix representing 7 as a

submatrix. By M (7) we denote the set of all elements of M which avoid the pattern 7.

Two signed patterns o and 7 are called Wilf equivalent, in symbols o ~ 7, if they are avoided by
the same number of signed n-permutations, i.e., if |By,(¢)| = |By(7)| for each n > 1. Similarly,
o and 7 are called I-Wilf equivalent, denoted by o Lo if |SI,(0)| = |SI,(7)| for each n. Note
that two unsigned permutations o,7 € S are Wilf-equivalent if and only if they satisfy the
identity |Sy,(0)| = |Sn(7)| for each n, and they are I-Wilf equivalent if and only if they satisfy
|In(0)| = |In(7)] for each n. The classification given by the Wilf equivalence is slightly coarser
than that which is based on the symmetries of permutations, that is, the mappings generated
by the reversal, transpose, and barring operation. The same is true for the I-Wilf equivalence,
where the available symmetries are generated by the two diagonal reflections and the barring

operation.

The question of whether two patterns are Wilf equivalent or not is difficult to answer in many
cases. By the few generic equivalences known so far, it has been possible to completely determine
the Wilf classes of S, up to level n = 7. The decomposition of S, into I-Wilf classes has been
completely determined for n = 4 and almost solved for n = 5 as well. Jaggard [13] conjectured
the last case of a possible equivalence for patterns of length 5: 12345 (or equivalently, 54321)
and 45312 are equally restrictive for I, up to n = 11.

Continuing the I-Wilf classification of signed patterns that began in [12], we will first prove
a general equivalence result which confirms Jaggard’s conjecture mentioned above, as well as
another conjecture he made about the equivalence of certain patterns of length 6. The corre-
spondence behind this result is based on a bijection between pattern avoiding transversals of
Young diagrams given by Backelin, West and Xin [1]. In this way, we complete the classification
of S5 with respect to ,{,7 which is fundamental for the analogous classification of Bs. The result

even covers all missing I-Wilf equivalences in Sg and S7.

Furthermore, we will show that barring some blocks of a signed block diagonal pattern preserves
the Wilf class of the pattern, and it also (under some additional assumptions) preserves the
I-Wilf class. These results not only allow us to determine the Wilf as well as the I-Wilf classes

in Bs but they also have consequences for longer signed patterns.



2. JAGGARD’S CONJECTURES

In 2003, Jaggard [13] proved the equivalences 127 L 217 and 1237 £ 3217, and completed the
classification of Sy according to pattern avoidance by involutions in this way. Furthermore, he

conjectured that

(1) 12...k7£k(/€—1)...17’ for any k > 1,
(2) 12345 L 45312 (or equivalently, 54321 £ 45312),
(3) 123456 L 456123 L 564312 (or equivalently, 654321 & 456123).

In [1], Backelin, West and Xin defined a transformation to prove 12... k7t ~ k(k—1)...17. (As
already mentioned in [12], their proof also works for a signed pattern 7.) This map acts not only
on permutation matrices, but more generally, on transversals of Young diagrams. Bousquet-
Mélou and Steingrimsson [11] showed that this map commutes with the diagonal reflection of

the diagram, which proves the first of the three conjectures above. From this result, it follows

that
ap 0 0 I Br 00
0 x O ~ 0 x O
0 0o 0 00

for every signed permutation matrix xy and any k,! > 0, where a,, and 3, denote the n x n
diagonal and antidiagonal permutation matrices corresponding to 12...n and n(n — 1)...1,

respectively. In this section, we will show that

where ! denotes the transpose of y. Note that, different to the general case, the reverse

operation is not a symmetry for involutions, so these equivalences are really new.

Our proof will also use the Backelin, West and Xin bijection [1]. Therefore, let us first recall
the extended notion of pattern avoidance they have used. A Young diagram (or Young shape)
is a top-justified and left-justified array of cells, i.e., an array whose rows have non-increasing
lengths from top to bottom, and its columns have non-increasing lengths from left to right. A
cell of a Young shape is called a corner if the array obtained by removing the cell is still a
Young shape. Occasionally, it will be convenient to use top-right justified diagrams instead of
the top-left justified diagrams defined above. We will refer to the top-right justified shapes as

NE-shapes to avoid confusion with the ordinary Young shapes.

A (signed) transversal of a Young diagram A is an assignment of 0’s and 1’s (of 0’s, 1’s and -1’s)
to the cells of A, such that each row and column contains exactly one nonzero entry. A sparse
filling of A is an arrangement of 0’s, 1’s and -1’s which has at most one nonzero entry in every

row and column.



For a k x k permutation matrix 7, we say that a filling L of a shape A contains 7 if there exists a
k x k subshape within A\ whose induced filling is equal to 7. The set of all transversals (or signed
transversals) of a shape A which do not contain 7 is denoted by S\(7) (or By(7), respectively).
Two signed permutation matrices o and 7 are called shape Wilf equivalent if |By(o)| = |Bx(7)|
for all Young shapes A. Shape Wilf equivalence clearly implies Wilf equivalence. We will also say
that o and 7 are NE-shape Wilf equivalent if |By(o)| = |Bx(7)| for each NE-shape A. Observe
that if o and 7 are permutation matrices, then they are shape Wilf equivalent if and only if

|Sx(0)| = |Sx(7)| for each Young diagram A.

By [1, Proposition 2.2], ay and () are shape Wilf equivalent for all k. The following proposition,
which is also largely based on [1], will allow us to extend this equivalence to more general

patterns.

Proposition 2.1. Let X be a Young shape, and let x, x1, x2 be signed permutations, such that
x1 and x2 are shape Wilf equivalent. We set

0= (%I;D and w = <>622>.
There is a bijection between 0-avoiding and w-avoiding sparse fillings of \. This bijection pre-
serves the number of nonzero entries in each row and column; in particular, 8 and w are shape

Wilf equivalent. Furthermore, if x is nonempty, the bijection preserves the values of the filling

in the corners of .

Proof. The proof is essentially the same as the proof given in [1, Proposition 2.3]. We briefly
sketch the argument here. By assumption, there is a bijection ¢ between the yi-avoiding and
x2-avoiding signed transversals of an arbitrary Young shape. Let L be an arbitrary #-avoiding
sparse filling of A. Let us colour a cell of A if there is no occurrence of x to the south-east of
this cell. Also, if A has a row or column where all the uncoloured cells contain zeros, then we
colour each cell of this row or column. Note that if y is nonempty, then all the corners of \ are
coloured. The uncoloured cells induce a xi-avoiding signed transversal of a Young subdiagram
of \. We apply the bijection ¢ to the subdiagram of uncoloured cells, and preserve the filling
of all the coloured cells. This transforms the original filling of A into a w-avoiding sparse filling,.

This transformation is a bijection which has all the claimed properties. O

Note that Proposition 2.1 yields some information even when x is the empty matrix. In such
situation, the proposition shows that a bijection between pattern avoiding signed transversals
can be extended to a bijection between pattern-avoiding sparse fillings, by simply ignoring the

rows and columns with no nonzero entries.

We will now show how the results on shape Wilf equivalence may be applied to obtain new

classes of I-Wilf equivalent patterns. Let us first give the necessary definitions. For an n x n
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matrix 7 let 77 denote the subfilling of 7 formed by the cells of = which are strictly above the
main diagonal, and let ﬂar denote the subfilling formed by the cells on the main diagonal and

above it. For example, for m = 2431 we have

Tt = —1 and T

The coordinates of the entries in 7 are used for the cells of 7+ as well. Thus, for instance, the cell
(1,2) is the top-left corner of 7+. Analogously, we define 7~ to be the filled shape corresponding
to the entries strictly below the main diagonal of . Clearly, a symmetric matrix 7 is completely
determined by 7T8_ . Observe that a symmetric 0, 1, —1-matrix 7 is a signed involution if and only
if, for every i = 1, ..., n, the filling 7r6r has exactly one nonzero entry in the union of all cells of

the i-th row and ¢-th column.

Note that i is a fixed point of a signed involution 7, that is |m;| = ¢, if and only if the i-th row and
the i-th column of 7+ have all entries equal to zero. In general, a signed involution 7 need not
be completely determined by the filling 71; however, if we have two signed involutions 7, p with
7T = p*, then m and p only differ by the signs of their fixed points. If 7 is a signed involution,
then, for each i = 1,...,n, the filling 7+ has at most one nonzero entry in the union of the i-th
row and i-th column; conversely, any filling 7+ of appropriate shape with these properties can
be extended into a signed involution 7, which is determined uniquely up to the sign of its fixed

points.

0 o
ot 0

We are now ready to state our first result on I-Wilf equivalence.

For a signed permutation o, let o’ denote the involution ( ), where ¢! is the transpose of o.

Theorem 2.2. If o and 7 are two NE-shape Wilf equivalent signed permutation matrices, then

o' L 7', Moreover, the bijection between ST, (o') and SI,(7") preserves fized points.

Proof. Let m € SI,, be an involution. We claim that 7 avoids ¢’ if and only if 7 avoids . To
see this, notice that any occurrence of ¢’ in 7 can be restricted either to an occurrence of ¢ in

+

w1 or an occurrence of ¢! in 77; however, since 71 is the transpose of 7, we know that 7~

contains ¢! if and only if 77 contains ¢. The converse is even easier to see.

Let us choose m € ST,,(¢’). Since n is a sparse o-avoiding filling, we may apply the bijection
from Proposition 2.1 (adapted for NE-shapes) to 71, to obtain a 7-avoiding sparse filling of the
same shape, which has a nonzero entry in a row ¢ (or column i) whenever 7+ has a nonzero entry
in the same row (or column, respectively). Hence this filling also corresponds to an involution,
more exactly, to p* for an involution p € SI,,, and furthermore, the fixed points of p are in the

same position as the fixed points of 7, because the position of the fixed points is determined
5



by the zero rows and columns, which are preserved by the bijection from Proposition 2.1. By
defining the signs of the fixed points of p to be the same as the signs of the fixed points of ,
the involution p is determined uniquely. Clearly, since p™ avoids 7, we know that p avoids 7’.
Each step of this construction can be inverted which proves the bijectivity. Furthermore, the

bijection preserves fixed points by construction. O

By a similar reasoning, we obtain an analogous result for patterns of odd size. For a signed

permutation o, let ¢” denote the involution matrix

00ac
(0 10),
gt 00

and let o* denote the signed permutation (9 ¢).

o~

Theorem 2.3. If 0 and 7 are NE-shape Wilf equivalent, then o Lo, Moreover, the bijection

between SI,(c") and SI,(7") preserves fized points.

Proof. By an argument analogous to the proof of Theorem 2.2, we may observe that an involution
7 avoids ¢’ if and only if 7T0+ avoids the pattern o*. By Proposition 2.1 (adapted for NE-shapes),
the two patterns o* and 7% are NE-shape Wilf equivalent and furthermore, the bijection realizing
this equivalence preserves the corners of the shape. Note that in our situation, the corners

correspond exactly to the diagonal cells of the original signed permutation matrix.

Now we consider 7T(J)r for an involution m € ST, (¢”). By Proposition 2.1, 7TO+ is in bijection with
a 7*-avoiding filling par . Since the bijection preserves the number of nonzero entries in each row
and each column of war , and it also preserves the entries on the intersection of i-th row and i-th
column (these are precisely the corners), we know that the bijection preserves, for each i, the
number of nonzero entries in the union of the i-th row and i-th column. In particular, pg has
exactly one nonzero entry in the union of i-th row and é-th column, which guarantees that par

can be (uniquely) extended into an involution p.

Because the bijection preserves the entries in the diagonal cells (i,7), i = 1,...,n, the permuta-

tions 7 and p have the same fixed points. This provides the required bijection. O

Let us apply these two theorems to some special cases of shape Wilf equivalent patterns. For

an integer k > 0 and a signed permutation Y, let us define

0= (206") and w = <2%’“)
As we know, the two patterns 6 and w are NE-shape Wilf equivalent. From our results, we then

obtain the following classes of I-Wilf equivalent patterns.
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Corollary 2.4. We have

0 000 o 0 000 B

88008“ 7 880%’“ 000x0 )\ ,;[000x0
y X ~ A and 0 0100 ~ 0 0100

0 X" 00 0 X" 00 0 x'00 0 0x'00 0
ok 000 Pr 000 a 000 0 B 000 0

The special cases x = () and x = (1) show both of Jaggard’s conjectures to be correct.

Corollary 2.5. We have 54321 £ 45312 and 654321 < 456123 L 564312.

3. BARRING OF BLOCKS

In [12] it was shown that the barring of 7in 12... k7 and k(k —1) ... 17 preserves both the Wilf

class and the I-Wilf class. Furthermore it was proved that

ag 0 0 T ar 0 O
0 x O ~ 0 —x O
0 0 ag 0 0 ag

for every signed permutation matrix y and k£ > 0. Basically, the assertion follows from 123 L 123.
By a similar reasoning, we can show the I-Wilf equivalence of the reversed patterns because

321 L 321 as well. Now we turn our attention to the general block pattern

x1 0 0
0 x2 O
0 0 xs3
where the x; are signed permutation matrices. First we prove the following crucial statement.

Theorem 3.1. Let x1 and x2 be signed permutation matrices and set

0= (’61 £2> and w = (’%1 _2@).

For any Young shape X, there is a bijection between 6-avoiding and w-avoiding sparse fillings
of . The bijection preserves the position of all nonzero entries, i.e., it transforms the filling
only by changing the signs of some of the entries. In particular, the patterns 6 and w are shape
Wilf equivalent. Moreover, if \ is self-conjugate and at least one of the matrices x1 and X2 is

symmetric, then the bijection maps symmetric fillings to symmetric fillings.

Proof. Given a #-avoiding sparse filling of A, we construct the corresponding w-avoiding filling
as follows: Colour each cell of A for which there is an occurrence of x; to the north-west of the
cell. Note that the cells left uncoloured then form a Young subdiagram of A\. By assumption, the
coloured part does not contain ys. Switching the signs of all entries of this part consequently
yields a signed transversal of A which avoids w. Note that even after the transformation has
been performed, it is still true that the coloured cells are precisely those cells that have an
occurrence of yj to their north-west. The transformation may have created new copies of x1 in
the diagram, but it may be easily seen that these copies do not alter the colouring of the cells.

This shows that the transformation is indeed a bijection.
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Let A now be self-conjugate with a symmetric #-avoiding filling. Obviously, if x; is symmetric,
then a cell is coloured if and only if its reflection (along the main diagonal) is coloured. Hence
the signs of both entries must have been changed, so the resulting filling is symmetric again. If
X2 is symmetric but x; is not, then we slightly modify the definition of the bijection. Colour a
cell if there is an occurrence of yo to the south-east. The restriction to these cells is a symmetric
filling of a self-conjugate subshape which avoids x;. Now change the signs of all nonzeros in
uncoloured cells. The resulting filling avoids w and is still symmetric. It is again easy to see

that this provides the required symmetry-preserving bijection. O

An immediate consequence of the previous theorem is the following:

Corollary 3.2. For any signed permutation matrices x1, X2, X3, we have
<X1 0 0 > <X1 0 0 )
0 x2 O ~ 0 —x2 0 .
0 0 x3 0 0 x3

Because of the symmetry property of the bijection we can prove an analogous result for pattern

avoiding involutions.

Corollary 3.3. Let x1,x2,x3 be signed permutation matrices, at least two of which are sym-

x1 0 0 I x1 0 O
0 x2 O ~ 0 —x2 O .
0 0 x3 0 0 xs

Proof. By Theorem 3.1, the signed pattern diag(x1, x2, x3) is I-Wilf equivalent with the signed

metric. Then we have

pattern diag(xi1, x2, —X3) (note that at least one of the two matrices diag(xi1,x2) and xs is
symmetric). By the same argument, the pattern diag(xi,x2,x3) is I-Wilf equivalent with
diag(x1, —x2, —x3)- Combining these facts with the observation that changing the signs of
all the three blocks clearly preserves the I-Wilf class, we may even conclude that any matrix
obtained by changing the signs of any of the three blocks is I-Wilf equivalent with the original

matrix. |

Combining Theorem 3.1 with Theorems 2.2 and 2.3, we obtain more classes of I-Wilf equivalent

patterns. The following corollary gives an example.

Corollary 3.4. Let x1 and x2 be signed permutation matrices. Then we have

0 000 y1 0 0 0 0 x1
0 00x2 0\ , [0 0 0-x20
ooe0o0 | L[ o 0e 0 0
0x500 0 0 —x4L0 0 0
xt 000 0 xt 00 0 0

where € is empty or € = (1).



4. CLASSIFICATION

The proof of Jaggard’s conjecture provides the complete classification of the I-Wilf equivalences
among the patterns from Ss. It turns out that there are 36 different classes (in comparison with
45 symmetry classes). By the results of [12], it has been known that Bj has at most 405 I-Wilf
equivalence classes. Applying the new equivalences, we obtain 402 classes which are definitively
different. (By the symmetries of an involutive permutation, the patterns are divided into 566
classes.) Table 1 shows representatives of all classes, each with the number of involutions in
Sy, ..., S avoiding the patterns of this class. The enumeration is done for n = 9 in any case;
higher levels are only computed up to the final distinction. Classes containing patterns of Sj
are in bold; hence the classification of S5 according to the I-Wilf equivalence can be read from
the table as well.

The classification of the patterns of Bs by Wilf equivalence becomes complete by Corollary 3.2.
The relations given in [12] did not cover seven pairs of patterns whose Wilf equivalence was
indicated by numerical results. All these cases are proved now by the corollary. Consequently,
By falls into 130 Wilf classes (in comparison with 284 symmetry classes). See [12, Table 7] for
the complete list.

The bijections of Theorem 2.2 and Theorem 2.3 also provide the complete classification of
Se¢ and S7 with respect to the I-Wilf equivalence. Table 2 lists all classes of Sg obtained by
all equivalences, already known (see [12] and the references therein) or proven here. As the
enumeration of involutions in I15 avoiding the patterns shows, they are different. In a similar

way, we obtain 1291 Wilf classes for S7 whose table is available from [16].

It is very possible that the results given here and in [12] suffice to solve the I-Wilf classification
of signed patterns up to length 7. However, the numerical proof that two classes are really
different for a rapidly increasing number of classes is the challenge we (and computers) have to

master.

Remark 4.1. After publishing this paper in arXiv, Aaron Jaggard mentioned that he and
Joseph Marincel had shown that the patterns (kK — 1)k(k — 2)...312 and k(k — 1)...21 are
I-Wilf equivalent for any k > 5 by using generating tree techniques [14].
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160482 35142 160519 14523 160623 35142 160627

160647 35142 160662 14325 160668 12435 160670

160682 12345 leggg?gossmoo 52431 iggﬁé;&%zxoo 52341 160684 856396

160686 52341 160702 15342 160817 14523 160819

160831 15342 160834 12543 160843 15432 160845

160861 14325 160944 12435 164848 13425 165194

165198 13542 165227 12354 165230 13542 165269

165304 13425 165310 12453 165365 14352 165389

165416 15432 165484 12453 165525 25431 165557

165560 13524 165585 25143 165588 45231 165596

165598 15432 165600 21543 165604 25143 165627

165734 53421 165777 13524 165788 53421 165990

166106 13425 166279 12543 166337 13542 166363

166398 13452 166404 896272 13542 166404 896308 13452 166418

166429 14532 166451 25143 166467 14532 166479

166488 12453 166498 25143 166505 14352 166527 897293

166527 897923 14352 166538 14352 166544 15432 166550

166567 25341 166569 13542 166572 32541 166575

166581 25341 166583 24513 166586 25341 166587

166591 898088 25341 166591 898195 14532 166607 13452 166615

166619 14532 166627 24513 166628 898700 54321 166628 898668

166655 35241 166658 35241 166662 13524 166701

166720 25431 166723 13542 166725 899209 14352 166725 899210

166727 25341 166737 25341 166739 24513 166741

166742 25143 166754 14532 166755 25143 166756

166757 24351 166758 23541 166759 899733 24351 166759 899753

166760 24513 166761 23514 166762 23514 166769

166773 899813 25431 166773 899906 25431 166775 899951 53421 166775 900042

166776 23541 166777 23514 166780 45321 166788

166790 23514 166791 45321 166800 35412 166805

166809 25413 166816 35241 166818 25413 166822

166834 25413 166861 13524 166863 13524 166875

166876 23541 166933 23541 166934 901415 25431 166934 901421

166938 23451 166939 23451 166941 35412 166942

166943 45231 166945 25431 166950 32541 166951

166955 23451 166956 901718 23451 166956 901724 23451 166957

166959 23541 166969 25413 166974 23514 166978

166980 24351 166982 24351 166983 23541 166985 921184

166985 902215 23451 166991 23451 166992 902202 35241 166992 902120

166992 902206 35241 166997 24351 166998 902230 25143 166998 902155

167001 25413 167004 54321 167006 23451 167008

167009 45321 167010 25431 167011 45231 167014

167031 25413 167034 24153 167068 24153 167091

167106 25143 167110 25143 167111 53421 167122

167131 24153 167133 45231 167139 34512 167141

167143 903551 34512 167143 903656 23514 167144 45231 167158

167161 34512 167163 53421 167188 34512 167202

167277 53421 167300 35412 167321 35421 167330

167332 13254 167408 15342 167560 21453 167561 905557
5067054

167561 905557 14523 167601 27453 167602 906143 21453 167602 906143

5067055 5073953 29335370 5073953 29335426

167646 35142 167670 54321 167744 21453 167748 907383
5083238 29397202

167748 907383 15342 167749 907398 32541 167749 907418 52431 167815

5083238 29397203

167818 907708 27354 167818 907708 24531 167826 24531 167828

5083642 29380782 5083642 29380784

167832 52431 167833 45321 167835 13524 167844

167848 24531 167850 13542 167855 908182 14352 167855 908181

continued
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14352 167863 35142 167869 13542 167877 167886

32541 167923 32541 167940 23541 167942 909327 167942 909336
23541 167943 25431 167944 24153 167951 167959

14532 167960 909582 23541 167960 909568 23514 167961 167962

24531 167963 24531 167965 23514 167967 167968 909719
25314 167968 909740 24513 167974 24513 167977 167981 909851
52341 167981 909855 25314 167988 35142 167990 167991

25143 167993 14523 167998 910090 25314 167998 910112 167998 910078
45312 168007 25314 168008 910322 35421 168008 910269 168008 910276
25143 168011 910256 45321 168011 910347 13524 168012 168024

24531 168027 24531 168029 910494 35241 168029 910481 168039 909957

5104177 29555753
21543 168039 909957 24351 168054 24351 168055 168056
5104177 29555755

fosal osos 21453 (10667 20017694 | 219%% 3110667 29017699 1m0

25341 168109 25431 168116 25431 168118 168123

32541 168133 23541 168134 23541 168135 168136

35412 168137 25341 168140 25341 168141 168146

24513 168147 911472 25341 168147 911476 35412 168152 168155

23514 168159 23514 168160 911630 25413 168160 911639 168163 911669
45321 168163 911687 24531 168166 24513 168167 168168 911687
25314 168168 911692 23541 168169 23541 168170 911718 168170 911823
24531 168174 24531 168176 25314 168177 168184

24153 168200 15432 168202 35421 168203 168207

24513 168211 24531 168212 35421 168215 168216

35421 168217 35241 168219 24531 168228 168255

24513 168265 14532 168266 32541 168268 168279

24351 168280 24351 168281 25143 168292 168296

25341 168297 34521 168300 25314 168304 912844 168304 913052
25143 168308 912905 52431 168308 912922 35412 168312 168317 913171
34521 168317 913172 23514 168328 913181 35412 168328 913277 168330 913130
34521 168330 913304 25413 168333 35412 168343 168344

34521 168353 25314 168354 24153 168355 168361

25314 168363 913662 25413 168363 913651 24513 168366 168367

34521 168369 25413 168386 34521 168389 168394

45312 168396 25413 168397 34521 168402 168423

35412 168431 24513 168435 914602 34521 168435 914677 168438

32541 168460 53421 168475 53421 168486 168493

34512 168509 35412 168515 35241 168521 168522

34521 168525 25143 168526 24153 168527 915136 168527 915161
34512 168527 915307 35412 168537 25413 168542 168546

25431 168547 35421 168554 34512 168563 3524 168567

35421 168583 24531 168584 24531 168585 168587

54321 168588 45321 168597 35142 168621 168625

35142 168636 45231 168648 35421 168661 168670

35412 168670 34521 168673 34512 168682 168691

35412 168745 53421 168757 35241 168760 168766

45321 168820 45312 168829

TABLE 1. I-Wilf classes of Bs and the numbers |SI,,(7)| for n = 9,10, 11,12. To
determine the class to which the pattern 14523 belongs, calculate |STo(14523)| =

168330.

above.

This number corresponds to both the patterns 14523 and 34521

To decide which of these is the correct one, it is necessary to calcu-

late |ST19(14523)| = 913130. Thus 14523 belongs to the class represented by
14523.
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361542 97405 465132 97511 361452 98805 351624 99133 426153 99287 146253 99321
132546 99432 125436 99521 154326 99585 153624 99650 124356 99653 123546 99729
624351 99857 625431 99885 123456 99991 623541 100021 | 645231 100088 | 632541 100156
563412 100293 | 623451 100615 | 163542 100879 | 463152 100992 | 164352 101197 | 125634 101405
156423 101451 | 145236 101662 | 126453 101754 | 163452 101918 | 153426 102109 | 135426 104236
136542 105312 | 124653 105971 | 124536 106788 | 154362 106857 | 156342 107185 | 125463 107578
326154 107772 | 134526 108083 | 136254 108336 | 265431 108967 | 143625 108969 | 145326 109293
261543 109404 | 143652 109443 | 462513 109514 | 132564 109674 | 135246 109943 | 136452 110137
123564 110264 | 134652 110707 | 124563 110872 | 135462 110964 | 146352 111024 | 143562 111229
635421 111594 | 264351 111647 | 135624 111648 | 263541 111733 | 153462 111836 | 124635 111871
362541 111963 | 125643 112058 | 624531 112186 | 462531 112231 | 156432 112493 | 261453 112598
153642 112738 | 253614 112805 | 145263 112830 | 246153 112962 | 134625 113031 | 326541 113101
134562 113121 | 463251 113154 | 236154 113168 | 263451 113331 | 362451 113424 | 164532 113439
154623 113690 | 136524 113837 | 426513 113909 | 136245 114046 | 351642 114060 | 236541 114071
254361 114129 | 462351 114245 | 146325 114470 | 256341 114598 | 326514 114730 | 146523 114833
146532 115050 | 364152 115051 | 562431 115131 | 251634 115165 | 463512 115289 | 564321 115297
261354 115305 | 243615 115357 | 264513 115506 | 365142 115532 | 324651 115600 | 635241 115605
256413 115714 | 243651 115741 | 264153 115762 | 634521 116018 | 564231 116084 | 154632 116098
264531 116206 | 365421 116214 | 265413 116546 | 241653 116580 | 234651 116603 | 135642 116656
145362 116665 | 562341 116676 | 236514 116688 | 235461 116747 | 251364 117002 | 645321 117190
465312 117342 | 234615 117530 | 135264 117649 | 234561 117661 | 325614 117792 | 256314 118369
265143 118372 | 231564 118450 | 231645 118517 | 346152 118533 | 563421 118646 | 326451 118724
145623 118881 | 465321 119049 | 264315 119084 | 246513 119204 | 136425 119269 | 251643 119284
236145 119306 | 261534 119411 | 256431 119481 | 426531 119592 | 256134 119745 | 236451 119864
456312 120024 | 356412 120049 | 356142 120195 | 364251 120269 | 235614 120277 | 254613 120434
265341 120451 | 362514 120655 | 253461 120790 | 246351 120922 | 254631 121026 | 365412 121073
246315 121125 | 465231 121289 | 263154 121348 | 145632 121395 | 263514 121571 | 251463 121692
254163 121697 | 235164 121719 | 253641 121786 | 263415 121892 | 325641 121936 | 246135 121959
246531 122125 | 356241 122422 | 245163 122425 | 426351 122452 | 256143 122484 | 436512 122608
241635 122668 | 364521 122725 | 352641 122840 | 235641 122894 | 245613 122957 | 245361 123195
346251 123251 | 463521 123375 | 465213 123413 | 456132 123474 | 364512 123518 | 456231 123756
236415 123833 | 356214 123835 | 354621 123935 | 365241 124192 | 346512 124405 | 356124 124936
265134 125054 | 265314 125541 | 245631 125665 | 365214 125736 | 356421 126250 | 345612 126268
436521 126552 | 346521 126743 | 354612 127013 | 456321 127598 | 345621 128803

TABLE 2. I-Wilf classes of Sg and the numbers |I12(7)]
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