SIGNED INVOLUTIONS AVOIDING 2-LETTER SIGNED PATTERNS

W. M. B. DUKES AND TOUFIK MANSOUR

ABSTRACT. Let Z,, be the class of all signed involutions in the hyperoctahedral group B,
and let Z,,(T") be the set of involutions in Z, which avoid a set T of signed patterns. In this
paper, we complete a further case of the program initiated by Simion and Schmidt [6] by
enumerating Z,,(7T") for all signed permutations 7' C B..

1. INTRODUCTION

Let G,, and *B,, be the symmetric and hyperoctahedral groups, respectively, on n letters.
We regard elements of the hyperoctahedral group B, as signed permutations written as
T = W7y ... Ty in which each of the symbols 1,2,...,n appears, possibly signed. Clearly,
the cardinality of B,, is 2"n!. We define the signing operation as the one which changes the
symbol 7; to —m; and —m; to m;, so it is an involution, and define the absolute value notation
by |mi| if m; is m; positive and —m; otherwise.

Definition 1.1. A signed permutation m € B, is said to contain a pattern o € By, if there
exists a sequence 1 < i(1) < --- < i(k) <n such that

o {{miyl,- -, |miwl} s an occurrence of the pattern {|au, ..., |ax|}, and,
o mjy > 0 if and only if aj > 0 for all 1 < j < k.

A signed permutation m which does not contain such a pattern a is said to avoid «.

Let 7 be any signed permutations. Writing the permutation || in disjoint cycle represen-
tation, and then replacing each entry m; with —m; if —m; is in the range of m, we obtain
a cycle representation for m. For example, the cycle representation of 7 = -3-41-25 is
('37 1)('47 '2)(5)

Let I, ;== {m € &, : w2 = id} be the set of involutions in &,, and we denote the cardinality
of this set by inv,. These numbers satisfy the well-known recursion

inv, =inv,_1 + (n — 1)inv,,_o, invy = inv; = 1. (1.1)

Let Z,, := {m € B, : 7 = id} be the set of signed involutions on n letters (see [2]).
In other words, an involution on n letters in B,, is a signed permutation such that its cycle
representation contains cycles of either two non-signed symbols or two signed symbols. Denote
by Z,,(T") the collection of signed involutions which avoid a set T of signed permutations. For
example, avoiding the pattern 21 or (resp. -2-1) in a signed involution means that all the
positive (resp. negative) symbols are semi-fixed points (we say that 7 has a semi-fixed point
at ¢ if and only if |m;| = i), and having a pattern -21 in a signed involution implies you must
have a pattern 2-1.

We define three simple operations on signed permutations: the reversal (i.e., reading the per-
mutation right-to-left: mmy...m, — m,...mom1), the signing (i.e., mimy... 7, — (-m1)(-72)
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-+ (-mp)), and the complement (i.e., mymy ... 7Ty — 0102 ...0, where 0, =n+1—m; if m; >0
and —(n + 1) — m; otherwise).

Let us denote by Gy the group which is generated by the signing operation and the compo-
sition of the reversal and the complement operations.

Proposition 1.2. Every element g € Gy provides a bijection which shows that if T and T’ are
both sets of signed patterns such that T' = g(T) = {g(a) | « € T}, then |Z,(T)| = |Z.(T")|.

In the symmetric group 6&,,, for every 2-letter pattern 7 the number of 7-avoiding permuta-
tions is 1, and for every pattern 7 € S3 the number of 7-avoiding permutations is given by the
Catalan numbers. Simion [5, Section 3] proved there are similar results for the hyperoctahe-
dral group 9B, (generalized by Mansour [3]), for every 2-letter signed pattern 7 the number of

T-avoiding signed permutations is given by Z?:o (?) 2 j!. Mansour and West [4] enumerated
the collections of signed permutations that avoid a signed pattern T, B, (T, for all possible
T C By. In the present paper, we find the cardinalities of Z, (7" for all possible T' C Bs.
(The exhaustive treatment of cases was suggested by the influential paper of Simion and
Schmidt [6], which followed a similar program for the cardinalities |&,,(T")| where T' C Ss).

2. THE |T| =1 CASES FOR T C By

Taking advantage of Proposition 1.2, the question of determining the values |Z,(7)| for the
8 choices of a single 2-letter signed pattern, namely 12, 1-2, -12, -1-2, 21, 2-1, -21 and
-2-1, can be reduced to 4 cases, which are |Z,,(12)|, |Z,(1-2)|, |Z,,(21)| and |Z,,(2-1)|. These
numbers, for n < 9 are given in Figure 1.

T (1) 0 | r |
1,2, 5, 14, 43, 142, 499, 1850, 7193, 29186 | 12, 1-2, 21, -2-1, -1,-2, -12
1,2, 6, 18, 58, 190, 642, 2206, 7746, 27662 | 2-1, -2 1

F1GURE 1. The values of |Z,,(7)| for n =0,1,...,9 and 7 € Bo.

Theorem 2.1. For alln > 0,
1Z,,(12)| = |Z,(21)] = |Z,,(1 -2)].

Proof. We begin by proving |Z,,(12)| = |Z,,(21)| for all n > 0. To do this we define a function
p:Z,(12) — Z,(21) as follows: given m = myma...m, € Z,(12) we define p(7) by

() = T, if m,, < 0,
PATm =19 41— Tm, Otherwise.

In other words, the map p acts on 7 by reversing the order of the unsigned symbols in 7. For
example, if 1 =6-543-21 then p(7) = 1-534-26. From this definition it can be seen easily
that p is an involution, that is, p? is the identity function on Z,(12).

Now let us prove that |Z,,(12)| = |Z,(1-2)| for all n > 0. To do so we recursively define

a function f : Z,,(12) — Z,(1-2) as follows: given a signed permutation 7 = mme...m, €
Z,(12) we consider the four cases:

(1) if m; = -1, then let f(7) =-1(f(n’'—1)+1), where 7’ = 7 ... m, and for any sequence
0 of signed numbers and positive number a we define two operations

Bi, 16Bi] <a
(B—a)i=q Bi—1, Bi>a and(ﬁJra)i:{
Gi+1, 0;<—a

Bi+1, Bi>a
Bi—1, B <—a
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(2) if mp = -t with ¢ > 1, then f(7) = a, where ay = -t, oy = -1, and

(02, oy 1, 0s1s - 0) = (T2 oy M1, 41, ooy — ) — 1)+ 1) 4 (E— 1),

(3) if m = 1, then my, is a signed number for all m > 1. So, f(m) can be defined as the
signed permutation (1, —mg, ..., —mp,).

T, T < 0,
—Tms  Tm > 0,
all m such that |mp,| >t or m > t, and oy = ¢, ¢ = 1. To define the remaining
values of «, let iy,42,...,is be the positions such that |m;,| < ¢ and 1 <i; < t. Let
7' be the signed permutation of length s which is order-isomorphic to m;,,...,m,.
Then (aj,,...,q;,) = [, where [ is the signed permutation that is order-isomorphic
to f(n') and |f(7')|; € {|mi,|, ..., |m |} forall j =1,2,...,s.

(4) if m; =t (so my = 1), then define o = f(m) as follows: «a;, = for

For example, if 7 =-1-3-2654-7 then using (1), (2) and (4) we obtain that
F(m) = -1(f(-2-1543-6) + 1) = -1-3-2(f(321-4) + 3) = -1-3-2-6-5-47.
It is easy to see that f2 = id. Hence f is bijection between Z,(12) and Z,(1-2), as required.
]
We now turn our attention to the sets Z,,(21) and Z,(-21).
Proposition 2.2. The ezponential generating function for the numbers |Z,(21)],5 is

" x?
> |Za(21)) = exp <2x + 2) :

n>0

Proof. Let m € Z,, be an involution which avoids 21 with exactly j unsigned symbols. Since 7
avoids 21, the unsigned symbols form an increasing subsequence, and since 7 is an involution
we have that if 7, is positive, then m,, = m. Hence the number of involutions in Z,(21) is
exactly Z?:o (?) inv;. Thus the exponential generating function for the number involutions

in B, that avoid 21 is exp(2x + 22/2). O

To enumerate the second class of signed involutions, the set Z,,(-2 1), we require some further
definitions. Indeed, these definitions may be used for the more general problem of enumerating
Zn(T), for general subsets T' of signed patterns in By. Given ay,ag,...,aq € Z, we define

Tniar.a0,.00 (L) = {mma...mp € I,(T) | mima ... Mg = a1a2 ... aq}.

As a direct consequence of the above definitions, we have
I Za(T) = D |Tuig (D] + D 1T~ (T)]- (2.1)
j=1 J=1
Also, we need the following lemma which holds immediately by induction and (1.1).
Lemma 2.3. Let dp(t) = dp—1(t — 1) + (t — 4)dp—2(t — 2), for all4 <t <n —3. Then
dn(t) = inv_sdp+3-4(3),
where inv_3 is the number of involutions in I;_3.

Using this decomposition and the above lemma, we may now enumerate the signed permu-
tations in Z,,(2-1).
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Proposition 2.4. Let ¢, := |Z,(2-1)|. The numbers satisfy co := 1, ¢; = 2, coa = 6 and for

n>2,
n—3

Cpn = 2¢ph_1+NnCp_o— E J - iMUp—2-jCj.
Jj=1

Proof. Define ¢y, (t1,...,tq) = |Znst,...+,(2-1)| for any n,d and an(t) := cp(t) + cn(-t). It is
not difficult to see that a,(1) = 2¢,—1, an(2) = 2¢,—2, and for ¢ > 3,

cn(t) =cn(t,2) + Z] 3cn(t 7)+ 2 en(t, J)
= cno1(t = 1) + (t = 3)en—a(t —2) + 777 ena(j),
and
en(-t) = enl(-t,-2) + g enl-t,-7) + X _pi eal-t, J)
= coo1(-(t = 1)) + (t = 3)en—2(-(t = 2)) + 27570 cn2(-j).
Thus
an(t) = an-1(t = 1) + (t = B)an_o(t — 2) + X027 | an—2(j).
If d,,(t) = an(t) — an(t — 1), then from the above recurrence relation we obtain that
dn(3) =an(3) —an(2)
= an-1(2) + 3275 an-2(j) — an(2)
=2¢p-3+Cp_2 — an—2(1) —2¢p-2
=2ch-3+Cp2—2¢h3—2ch2=—Cp_2,
and d,(t) = dp—1(t = 1) + (t — 4)dp—2(t — 2), for t > 4. Thus Lemma 2.3 gives d,(t) =
inv;_3dp43-¢(3). Since ¢, = > an(t), see (2.1), we have

n t—3
Cp —2Cp_1 — 2Cp_o = (’I’L — 2)Cn,2 + Z Z invl-dn,i(?)),
t=4 =1
which is equivalent to ¢, = 2¢,_1 + nc,_o — Z?:_f’j -inv,,_2_jc;, as required. O

3. THE |T| = 2 CASES FOR T C By

By appealing to Proposition 1.2 again, the second question of determining the values Z, (7!, 72)
for the 28 choices of two 2-letter signed patterns reduces to the following 12 cases:

By = {12,1-2}; BY = {12,21}; B, = {12 -1-2}
B = {12, 2.1}, B = {21,-2-1}; By = {12, 2-1};
By = {1-2,-12}; Bs = {1-2,21}; Bs = {1-2, 2-1};
B = {12 ,2-1}; B = {21,2-1}; Bs = {2-1-21}.

Labels with equal subscripts in the collections above denote equicardinality of the numbers,
ie. |Z,(B1)| = |In(B§1))\ etc., which we now prove.

Proposition 3.1. We have

(1) there exists a bijection between the set I,,(12,1-2) and the set I,+1 of involutions in Sy41;
(2) there exists a bijection between the set I,(12,21) and the set Ip41.

Proof. To see (1) we define a function p : 7,(12,1-2) — I,41 as follows: Given © =
T ... Ty € I, (12,1-2), either m; < 0 or m; = n. Therefore, we define p(7) as follows:

e if m = —1 then p(m) = 1(p(m2...m, — 1) + 1),
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e if 11 =n (som, =1), then p(7) = (n+ 1)(p(ma...7T—1 — 1) + 1)1,
o if 1 = —t with ¢ > 1 (so m = —1), then p(7) = a where oy = ¢, oy = 1, and
ag ..o 10441 - can = (p((mo .o 1Ty o — ) — 1)+ 1) + ¢

From the definition of p and induction on n with the initial conditions p(1) = 21 and p(—1) =
12, the fact that p is a bijection is easily verified. For example, if 7 =-1-45-23 € Z5(12,1-2)
then p(m) = 1(p(-34-12) + 1) = 1422y with zy = (p(21) + 1) + 1 = 53, thus p(7) = 14523.

To prove (2) let m = myma...m, € Z,(12,21), so w contains at most one unsigned element.
More precisely, either there exists an unique m such that w,, = m > 0 or for all m we have
mm < 0. Now to prove our result we define a function p : Z,,(12,21) — I,,41 as follows: for 7 =
T2 ... T € Ip(12,21) with no unsigned elements we define p(7) = (—m1)(—m2) ... (—m,) (n+
1), and for 7w with exactly one unsigned element, say m, > 0, we define p(w) = «, where
am =n+1, a1 =m,and ay ... p—1Qm41 .. 0y =D(T1 « o T—1Tm41 ... T —m)+m. O

Proposition 3.2. For alln > 0,
|Z,(21,-2-1)| =|Z,(12,-1 -2)| = |Z,(21,-1-2)| = 2".

Proof. Using the same argument as Proposition 2.2, let w € 7,, be an involution which avoids
the patterns 21 and -2-1. Suppose further that m has j unsigned symbols and n — j signed
symbols. If 7, is positive, then 7, = m, and similarly if 7, is negative then m,, = —m (i.e.
there can be no transpositions in the permutation since transpositions in signed involutions
always lead to a 21 or -2-1 pattern.) Thus |Z,(21,-2-1)] = 3>°7_ (?) = 2". Similarly, the
other cases hold. O

Proposition 3.3. We have 3, -, |Z,(21,1-2)]2" = (1 + e‘t2/2dt> e /2,

Proof. Let m € T,, be an involution of length n which avoids the patterns 21 and 1-2. It is
easy to see the first letter of m, 71 must be either 1, —1, or —t < —1. This implies that for all
n > 2,1Z,(21,1-2)| = |Z,-1(21,1-2)| + (n — 1) |Z,—2(21,1-2)| + 1 with the initial condition
|Zp(21,1-2)| = 1. The rest is easy to check. O

Proposition 3.4. For alln > 1, |1,(12,2-1)| = inv, + S 0= invg S invn 1.

Proof. A simple argument shows that any permutation 7 € Z,(12,2-1) has all elements
signed (thereby contributing inv,, permutations), or there are elements which are unsigned.
In this case, the permutation 7 essentially consists of three blocks m = a7y of sizes k,m
and n — (k + m), respectively, where elements in o and v are signed and those in 3 are
unsigned. Since there is no occurrence of 2-1 (by the cycle representation of 7, also there no
occurrence of -21) we find the modulus of all elements in « are less than those in 3, and in
turn the modulus of those in § are less than those in . Now since 12 is forbidden, the letters
of B must be strictly decreasing and since they are consecutive also, there is only one such
configuration. There are, however, invginv,,_;_,, choices for a and . Summing over k and
m yields the result. O

Proposition 3.5. Let a,, := |Z,,(1-2,-12)|. Then foralln > 1, a, = 2invn+Z]L(:nl_1)/2J Jlan—o;
with the initial condition ag = 1.

Proof. The involutions in Z,(1-2,-12) may have all signs the same, in which case there are
2inv,, involutions of this type. Otherwise there are sign changes within the involution.

Let m € 7,,(1-2,-12) be such an involution and suppose the first sign-change occurs at position
J, 1e. sgn(m) = ... = sgn(m;) # sgn(mjt1), for some 1 < j < |(n —1)/2]. Then

m= (17 4 (n=j),0+4,7)
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where 0 € Z, 9;(1-2,-12) and 7 is a permutation of {1,...,j} whose entries have sign
# sgn(o).
It is easy to see why this latter condition must hold, for if ¢ < j is the smallest entry which

does not appear in |71],...,|7;|, then there exists ¢’ > j which appears in {|m,—;|,..., |mnl},
thereby forming the ‘2’ in an occurrence of -1-2 (if sgn(m; = +1) or 1-2 (if sgn(m) = —1).

There are a,,—2; choices for o, and j! choices for 7 (the sign of all entries in 7 being different
to 01). Summing over all j we have

[(n—1)/2]
a, = 2inv, + Z Jlan—a;
j=1

with the initial condition ag = 1. O

Proposition 3.6. For alln >0, |Z,(1-2,2-1)| = |Z,,(-12,2-1)| = >"}_ invginv,_.

Proof. First, let us prove that there exists a bijection p : Z,,(1-2,2-1) — Z,,(-12,2-1). Let
T =mme... Ty € L,(1-2,2-1). If 1y > 0 then 7 € &,, and let p(7); = -m; forall 1 < i < n, so
that p(7) avoids both -12 and 2-1. If 71 = —t < 0 then let 7’ be the signed involution on the
elements 7; of m with |m;| > —m and i > ¢. It is easy to see that each element in 7, but not in
7', is signed. Now define p(7) by signing each element of m which is not in 7’ and then map
the elements of 7’ by p(7’). Hence, by induction on n and the definition of p we have that p is
a signing operation, thus p is a bijection. For instance, if 7 = (-3,-4,-1,-2,6,5) € Zg(1-2,2-1)
then p(m) = (3,4,1,2,-6,-5) € Zs(-12,2-1) (7' = 65).

To count the number of elements of the set Z,(-12,2-1) we require some new definitions.

Let ¢n(t1, ... tq) == |Zny,..t,(-12,2-1)|. It is not hard to see that ¢,(—1) = inv,_; and
cn(—t) = inv,_9 with t = 2,3,...,n. Also, ¢,(1) = ¢—1, cn(2) = cp—2, and for t > 3,

cn(t) =cn(t,2) + Zz;é cn(t, J) + Z;‘I:Hl cn(t, J)
= a1 (t = 1) + (¢ = 3)en—a(t — 2) + 25271 caa(l)-

If dp,(t) = cn(t) — cn(t — 1), then from the above recurrence relation we obtain that

dn(3) =cn(3) —cn(2)
= cn1(2) + 53 enald) — n(2)
=cCp-3+Cp—2— Cn—2(1) - 27;12 Cn—2(_j) —Cp—2
=cChp3+ch2—Cp3—invy_3—(n—3)inv, 4 —cp 2
= —inv,_3 — (n — 3)inv,,_4 = —inv,_9,

and for ¢t > 4,

dn(t) =dp_1(t = 1) + (t — 4)dp—2(t — 2).
Thus Lemma 2.3 gives dp(t) = invi_sdp43-+(3). Since ¢, = > 1 (cn(t) + cn(—t)) (see
Equation (2.1)), using Equation (1.1) we have

n t

n=Cn-1+(n—1cp_o+inv,_1 +inv,_o — E E inv;_4invp41-j,
t=3 j=4

L1 . . . n—3 . . .
which is equivalent to ¢, = ¢,—1 + (n — 1)cp—2 + invy,—1 + inv,_o — ijl J - invy_o_jinv;.
Substituting ¢, = an+ > j_, invginv,_j and using (1.1) we arrive at ap, = an—1+ (N —2)a,—2
with a9 = a1 = 0. Hence ¢, = ZZ:o invginv,,_, as required. O
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Proposition 3.7. Let ¢, := |Z,,(21,2-1)|. The numbers satisfy co :== 1 and
n—2

en = 2¢h—1+ (n—1)cp_o — Zj MUy Cj—1.
j=1

Proof. Let cp(t1,...,ta) = |Tniy,..1,(21,2-1)|. It is not hard to see that ¢, (1) = cp(-1) =
Cn—1, cn(2) =0, cy(-2) = cp—2, cp(t) =0 and

cn(—t) = cnl(—t, 2)+Zg 3cn( ) )+Z] 141 Cn(— t,—j)
= o1 (=(t = 1)) + (t = B)en—a(—(t = 2)) + X527 cna(—4)-

for all t > 3. If d,,(t) = cp(—t) — cp(—(t — 1)), then from the above recurrence relation we
obtain that
dn(3) =cn(-3) —cn(-2)
— ae1(-2) + X2 Cu () — enl-2)
= cp—3 + (cn—2 — cn—2(-1) — cn—2(1)) — cp—2
=Cp—3 +Cn—2 — Cp—3 — Cn—3 — Cp—2
= —Cp-3,

and dp(t) = dp—1(t — 1) + (t — 4)d,—2(t — 2) for ¢ > 4. Thus Lemma 2.3 gives d,(t) =
invy_3dy43-+¢(3). Since ¢, = > 1 1 (cn(t) + cn(—t)) we have

n ot
en=2cp—1+(n—1)cp_2 — Z Z inv;_scp—j,
t=3 j=3
which is equivalent to ¢, = 2¢,-1 4+ (n — 1)cp—2 — Z;:fj Sinvp_9_jcj_1. O
Proposition 3.8. For alln >0,
1Z,(2-1,-21)| = ¢y,

where cg = 1 and ¢, = 2¢,—1 + Ncp—9 — Z?;fj - iNVp—3—;Cj.

Proof. To count the number of elements of the set Z,,(2-1,-21) let us define ¢y (t1,...,tq)

to be the number of involutions 7 = m;...m, € Z,(2-1,-21) such that |r;| = t; for all
j=1,2,...,d. It is not hard to see that ¢,(1) = 2¢,,—1, ¢n(2) = 2¢,,—2, and for ¢t > 3,
en(t) = en(t,2) + g enlt,5) + 2511 enlt, J)

= 1) B a4 TR L cnali)
If d,,(t) = cu(t) — cp(t — 1), then from the above recurrence relation we obtain that

da(3) = en(3) — en(2)
= o124 SR enal) — en(2)
=cp—3+ (Cn 2 — Cp— 2(1)) — 2cp—2
=Cp3t+Chp2—Ch-3— 2Cp 2

= —Cp-2,
and d,(t) = dp—1(t — 1) + (t — 4)dp—2(t — 2), for t > 4. Thus Lemma 2.3 gives d,(t) =
. . n n t :
inv;_3dn43-¢(3). Since ¢, = Y cn(t) we have ¢, = 2¢,—1+ncp_2—) ;4 Zj:4 inv;_acnii—j,
which is equivalent to ¢, = 2¢,_1 + nc,_o — Z?:_fj “invy,_3-5¢5. O
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4. THE |T| = 3 CASE FOR T C By

Proposition 1.2 reduces determining the values |Z, (7!, 72, 73)| for the 56 choices of two 2-
letter signed patterns to the 20 cases listed below. The following proposition helps reduce
repetitive arguments in what follows.

Proposition 4.1. If X C By contains 2-1 (resp. -21) but not -21 (resp. 2-1) and Y :=
X U{2-1,-21}, then |Z,(X)| = |Z,(Y)|. Denote this relation by Y ~ X.

Proof. 1t is easy to see that an involution 7 contains the pattern 2-1 if and only if it contains

the pattern -21. O
Let C; = {12,1-2,-12}); C» = {12,1-2,-1.2}; C3 = {12,1-2,21};

c, = {12,1-2,21} ¢V = (12,1221 ¢ = {1-2,21,2-1};

c¥ = {1221,-21}; C5 = {12,1-2,-21}; Cs = {12,-1-2,21};

c) = {12,21,-2-1}; ¥ = {1-2,21,-21}; C; = {12,-1-2,21};

Cs = {12,21,211}; Cy = {12,21,-21}; Cjo = {12,2-1,-2-1};

Cni = {1-2,-12,21}; Cpp = {1-2,-12,2-1}; Ci3 = {1-2,2-1,-21};

Ciy = {21,21,-21}; Cy5 = {21,21,-2-1}.

We remind the reader that those classes listed above with the same subscripts will be shown
to be equi-numerous.

Proposition 4.2. The numbers a, = |Z,(12, 1-2, -12)| are given by

(n—2)/2
an = v, + ((n—1)/2)! + Z klan_o_o,
k=0
where a! := 0 when a is not a nonnegative integer.
Proof. For case C1: Let m € Z,,(12,1-2,-12). Either 7 is an involution of -1,-2,...,-n, or 7 =
B((n+1)/2)3~! with 371 a permutation of -1,-2,...,-((n—1)/2), or 7 = B(n—m)y(m+1)3~"
with § a permutation of -1,-2,...,-m and v a signed involution of -(m+2),-(m+2),...,-(n—

m — 1) that avoid 12, 1-2, and -12. Hence the number of such signed involution a,, satisfies
the recurrence relation a,, = inv,, + ((n — 1)/2)! + Z,(;L:_OQ)/Q klan_o_ok, where a! = 0 when a

is not an integer with initial values ag = 1, a; = 2 and a9 = 3. O
iy _ (n+l

Proposition 4.3. For alln >0, |Z,(12,1-2,-1-2)| = (ﬁl/ﬂ)'
Proof. For case Cy: Let an(t1,...,tq) == |Zny,...1,(12,1-2,-1-2)[. It is not hard to see that
an(t)=0forallt=1,2,... , n— 1 and an(n) = an(-n) = an—2 the number of such involutions
of length n — 2. Also, a,(-1) =1, and for all t =2,3,...,n — 1,

t—1
an(-t) = an(-t,n) + an(-,-2) + Y an(-t,j) = an_2(-(t = 1)) + an_o(-1) + Z an—2(-(j — 1)),

j=3
which is equivalent to

t—1
an(-t) =Y an_2(-j). (4.1)

J=1
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Now, define A4, (v) to the the polynomial "}, (as(t) + an(-t))vt~!. Multiplying (4.1) by v*~!
and summing over all £ =2,...,n — 1 we arrive at

_ v . e
Ap(v) =1+ 20" 1A, o(1) + E(An_g(v) — "2 A, 9(1)) — "2 A, _4(1),

for all n > 4 with the initial conditions; Ag(v) = 1, A1(v) = 2, Az(v) = 1 + 2v, and
Asz(v) = 14 v + 4v%. Multiplying the above recurrence relation by 2" /v™ and summing over
n > 4 we obtain the functional equation

(1_ (m2 )A(m/v,v):vz(v+$)_x v(l+z)+x 4+$2(v—2v2—x2(1+v))A(x71).

v(l — o) v2 (v — x) v2(1 —v)
This type of equation can be solved systematically using the kernel method [1]. Substitute
p = kv 127“ in this equation to get A(z,1) = 4“2;21(J{V21x da” = n>0 (2721]) O
Proposition 4.4. For alln > 0,
IZ,(12,1-2,21)] = inv, + S0 2R Y inw, g
Z,(12,1-2,2-1)| = Y77 inv;
|Z,(12,1-2,-2-1)| = Fp4o.

where Fy, is the ntt Fibonacci number given by; Fo =0, F1 =1 and F,, = F,_1 + F,,_o.

Proof. For case Cs: Let m € Z,,(12,1-2,21), so either 7 is an involution of -1,-2,...,-n, or 7
contains exactly one positive element 7, _ and m,_; = n — k is a fixed point. From this, it
is easy to see that the number of such signed involutions is given by

(n—1)/2 n—k—1
inv,, + Z k:'( L )mvn 1-2k-

k=0

For case Cy: If m € 7,,(12,1-2,2-1) (resp. m € Z,,(12,1-2,-21)), then 7 = fn(n—1)... (m+1),
where 3 is an involution of the numbers -1,-2, ... ,-m. Hence the number of signed involutions
in 7, (12,1-2,2-1) (resp. 7 € T,,(12,1-2,-21)) is given by 3" _ invy,. If 7 € Z,(1-2,21,2-1)
(or m € 7,(1-2,21,-21)), then # = B(m + 1)(m + 2)...n, where § is an involution of the
numbers -1,-2,...,-m. Thus the number of the signed involutions in Z,(1-2,21,2-1) (resp.
7,(1-2,21,-21)) is given by > " _invy,.

For case C'5: Let m be any signed involution of length n that avoids 12, 1-2 and -2-1. The
first letter of m must be either -1 or n, giving us |Z,,(Cs)| = |Z,-1(C5)| + |Zn—2(C5)| with
initial conditions Zo(C5) = 1, Z;(Cs) = 2. Hence I,,(C5) is Fpia, the (n + 1)™ Fibonacci
number. O

Proposition 4.5. For alln > 2,

1Z,(12,-1-2,21)] = n+1, [L,(12,21,2-1)] = inv, + 3028 invginv, 1,
17,(12,-1-2,2-1)] = 2n, 1Z,(12,2-1,21)| = inv, + S5y invg 30=g " invj,
Z,(1-2,-12,2-1)] = 2inv,,  |Zo(1-2,-12,21)] = inv, + 320, ((n — k)/2)!,
17.(21,2-1,2-1)] = 27, |Z,(1-2,2-1,-21)] = |Z.(1-2,2-1)|,
17,(21,2-1,-2-1)] = 2, 17,(21,2-1,-21)| = |Z.(21,2-1)],

where a! := 0 when a is not a nonnegative integer.
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Proof. For case Cg: It is not hard to see that

7,(12,-1-2,21) = {n-(n—1)...-(n-m-2)m-(n-m+1)...-1) [m=0,...,n} (4.2)
7,(12,21,-2-1) = {-1-2...-(m—1)m-(m+1)...-n) |m=0,...,n} (4.3)
T,(1-2,21,-2-1) = {-1-2...-m(m+1)...n) | m=0,...,n}, (4.4)

giving |Z,(12,-1-2,21)| = |Z,(12,21,-2-1)| = |Z,,(1-2,21,-2-1)| = n+ 1.

For case C7: One can easily notice that Z,,(12,-1-2,2-1) is {m(m—1)...1-n-(n—1)...-(m+
1)|m=0,....,n}U{n-(n—1)...-(m+1)m... 1| m=1,...,n—1}, hence |Z,,(12,-1-2,2-1)| =
2n.

For case Cs: If 7 € 7,,(12,21,2-1), then either 7 is an involution of -1,-2,...,-n or 7 = B(m—+
1), where (3 is an involution of -1,-2, ..., -m and = is an involution of -(m+2),-(m+3),...,-n.
The number of such signed involutions is inv,, + ZZ;(I) inviinv, _1_g.

For case Cy: Let m € Z,(12,2-1,-21). Either « is an involution of -1,-2,...,-n or 7 =
B(n —k)in—k—1)...(m+ 1)y, where § is an involution of -1,-2,...,-m and v is an
involution of -(n —k +1),-(n — k +2),...,-n. The number of such signed involutions is thus
: n—1 . n—1—k .

invy, + > g invg 5Ty inv;.

For case Cio: Let m € Z,,(21,-2-1,2-1) and a,, = |Z,(21,-2-1,2-1)|. Since 7 avoids 21 and
-2-1, m cannot contain any transpositions. Thus 7 contains only fixed points, each of which
may be signed or unsigned. Hence a,, = 2.

For case C11: Let m € Z,,(1-2,-12,21), so all the positive elements of 7 are increasing giving
us that all the positive elements of 7 are fixed points. Thus 7 has one of the following forms:
either 7 is an involution of -1,-2,...-n or 7 = B(m + 1)(m +2)...(n —m)B~! where 3 any
permutation of -(n —m +1),...,-n and n > 2m + 1. Hence the number of such involutions
is invy, + > 5 ((n—k)/2)\.

For case Cio: Every signed involution avoiding 1-2, -12 and 2-1 must be an involution of
either 1,2,...,n or -1,-2,...,-n. Hence |Z,(1-2,-12,2-1)| = 2inv,,.

For cases C13 and C14: By Proposition 4.1, we have C13 ~ Bg and Cy4 ~ By. For case Cis:
This follows directly from Proposition 3.2 and we have |Z,,(21,2-1,-2-1)| = 2". O

5. THE |T| > 4 CASE FOR T C By

The 70 choices of four 2-letter signed patterns reduce to 26 in light of Proposition 1.2. Let

D, = {12,12,-12,-1.2}; D, = {12,1.2,-12,21}; D; = {12,1-2,-1-2,21};
D" = {1-2,-12,-1-2,21}; D, = {12,1-2,-12,2-1}; DV = {1-2,-12,21,2-1};
Ds = {12,1-2,-1-2,21}; DY = {12,-12,-1-2,2-1}; D = {1-2,-1-2,21,2-1};
DY = {12,-1-2,21,2-1}; DY = {12,21,2-1,-21}; DY = {1-2,21,21,-2-1};
DY = {12,21,21,-2-1}; Dg = {12,1-2,-1-2,21,2-1}; DY) = {12,-12,-1-2,21,2-1};
D; = {12,-12,21,2-1}; Ds = {12,1-2,2-1,-21}; p{" = {1-2,21,21,-21};
Dy = {1-2,-12,2-1,-21}; Dyy = {12,-1-2,2-1,-21}; Dy = {12,21,21,-21}
Dy = {12,21,211,-21}; D3 = {12,1-2,21,-2-1}; DY = {1-2,-12,21,-2-1};
Dy = {12,-1-2,21,-21}; D5 = {21,21,-21,-2-1}.

Due to the large number of restrictions, quite a few of the sequences which enumerate these
classes are the same as |T| = 3 cases via a simple application of Proposition 4.1. We list
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these here without proof and then concentrate on the new sequences which occur:
1
Dg ~ Cy, DY) ~ Cy, Dy ~ Cig, Dig~ Cy, D1y ~ Cs, Dia ~ Cig, D15~ Cis.
Proposition 5.1. Forn > 2,

1Z.(D1)| = 22, 1Z.(Ds)| = inv, + ((n—1)/2),
|Z.(D3)| = [(n+3)/2], |Zn.(Dy)| = inv, +1,
’In(D5)| = n++ 1, ’IR(DG)‘ = z'nvn + im)n_l,
Zn(D7)| = 3, 1Zn(D13)| = 2,
[ Zn(D14)| = 0,

where a! := 0 when a is not a nonnegative integer.

Proof. For case Dy: If m € 7,,(12,1-2,-12,-1-2) then |m| > |me| > -+ > |m,|. Since each
pair of elements 7; and 41—, fori = 1,2,..., [n/2], can be signed or unsigned we find that
|Z,(12,1-2,-12,-1-2)| = 2["/21,

For case Dy: If we consider the number positive elements in a signed permutation 7w €
7,(12,-12,1-2,21), then either all the elements of 7 are negative or all the elements of 7
are negative except m(,41)/2 = (n +1)/2. In the first case 7 is an involution of -1,-2,...,-n
and in the second case 7 = B((n + 1)/2)3~! where 8 is a permutation of the elements
n,m—1,...,(n—1)/2. Thus the number of signed involutions in Z,,(12,-12,1-2,21) is given
by the formula inv, 4+ ((n — 1)/2)!.

For case Ds: This class is easily enumerated by ensuring involutions given in Equation (4.2)
avoid the pattern 1-2. This corresponds to the cases m = 0 and n > m > (n+ 1)/2. The
number of such m is 1+ |[(n +1)/2].

For case Dél): An involution 7 in this class must have either 711 = 1 or m; = -n. If 1 = 1 then

all remaining entries of m must be positive and therefore fixed points. However if m = -n,
then 7, = -1 and the remaining entries of 7= must avoid the four patterns in this class.
Thus we have \Zn(Dél))] =1+ |In_2(D§1))\. Using the initial conditions |IQ(D:())1))‘ = 2 and
‘Ig(Dél)” = 3, we have the size of this class to be | (n + 3)/2], the same as Ds.

For case D4: This follows by adding the restriction that involutions in C'i2 cannot contain
the pattern 12. Thus either involutions have all negative signs, or all positive signs. If the
involution has all positive signs, it must avoid the pattern 12 and so there is only one such
involutions, namely (n,n —1,...,1). Thus |Z,(D4)| = inv,, + 1.

For case Ds: This is straightforward by considering the exact form of the involutions in
T,,(Cg) given in (4.2-4.4): |Z,(Ds)| = |Z,(D)| = ... = |T,(DY)| = n + 1.

For case Dg: By considering the involutions m € Z,,(Dg) avoiding 12, 1-2, 21 and 2-1, we
must have that either m, = n (in which case the signs of all other elements are - and so there
are inv,,_j of them) or m, = —i for some i < n (in which case all elements of the involution
are -, accounting for inv,, involutions). Thus |Z,(Dg)| = inv,, + inv,_;.

For case D7: Only 3 involutions in Z,(C7) avoid 21, hence |Z,(D7)| = 3. These involutions
are;
(I-n-(n—1)----2), (<(n—=1) ----1n) and (-n-(n—1)--- -1).

For case D13: This is similar to case C5 except the first letter of any such involution m # n (for
otherwise it would contain a 21 pattern). Thus 7 = -1 and we have |Z,,(D13)| = |Z,—1(D13)|
with initial condition |Z;(D13)| = 2.

For case D14: Since D14 D Cg, from (4.2) for n > 2 it is impossible to avoid the pattern -2-1,
hence |Z,,(D14)| = 0. O
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The 56 choices for five 2-letter signed patterns reduce to 20 in light of Proposition 1.2. Many
of these cases are simply degenerate cases of |T'| < 4. Let

B, = {12,1-2,-12,-1-2,21}; B, = {12,1-2,-12,-1-2,2-1};
EY = {12,1-2,-1-2,21,2-1}; B = {12,-12,-1-2,21,2-1};
B = {1-2,-12,-12,21,211}; ESY = {12,1-2,21,2-1,-2-1};
EY = {12,-12,21,2-1,-2-1}; EYY = {1-2,-12,21,21,-2-1};
By = {12,1-2,-12,21,2-1}; B, = {12,1-2,-12,2-1,-21};
EY = {1-2,-12,21,2-1,-21}; By = {12,1-2,-1-2,2-1,-21};
EY = {1-2,-1-2,21,2-1,-21}; EP = {12,21,2-1,-21,-2-1};
E® = {1-2,21,2-1,-21,-21}; By = {12,1-2,21,21,-21};
By = {12,-1.2,21,2.1,-21}; Es = {12,1-2,-12,21,-2-1};
By = {12,1-2,-1.2,21,-2.1}; B = {12,-1-2,21,2-1,-2-1}.

The patterns equinumerous with the D patterns are: Ej ~ Dy, Eil) ~ Dil), Es ~ Ds,
EY ~D® E® ~ DWW E® ~ DY) Eg ~ Dy, Er ~ Dr. Also trivial to see are |Z,,(Es)| = 1
(since Eg D Di3) and |Z,,(Eg)| = |Zn(E10)| = 0 (since Ey, E19 D Di4). The non-trivial cases
are

Proposition 5.2. |7,(12,1-2,-12,-1-2,21)| = 1+(n mod 2), |Z,(12,1-2,-12,-1-2,2-1)| = 2
and |T,(12,1-2,-12,21,2-1)| = inw,.

Proof. For case Ey: If 7 € I,(E1), we must have |m| = (n+1—1) for all 1 < i < n.
If n is even, then m; < 0 for all ¢ whereas if n is odd we are allowed one unsigned letter
T(nt1)/2 = (n+1)/2. Hence |Z,(E1)| = 1+ (n mod 2).

For cases EQ*EéG): We consider only 7, (E2) since the other 6 cases follow by the same
reasoning. If m € Z,,(E2), then 7 may only contain the patterns 21, -21, -2-1. From this it
is clear that |m;| =n+1—i for all 1 < ¢ < n, and since 7 avoids 2-1 iff it also avoids -21, we
must have either all letters of 7 signed or all letters unsigned. Thus

1T (Ba)| = |Za (BN | = ... = [T (B = 2.

For case E3: Permutations in Z,(E3) may only contain the patterns -1-2 and -2-1 and -21.
In this case the pattern -21 is irrelevant since 2-1 is forbidden. This class thus contains all
signed involutions containing only -1-2,-2-1, of which there are inv,,. O

Proposition 1.2 reduces the 28 choices for six 2-letter signed patterns to 12.

Let Fi = B\{-21,-2-1}, FY = 8,\{-1-2,-21} F = B,\{21,-2-1},
Y = @8,\{-12,-21}, F¥ = 8,\{12,-21}, FY = 8,\{-12,21},
RY = ®,\{12,-1-2), B = Bo\{-1-2,21}, £ = %B,\{-21,2-1},
B = B\[-12,21}, FY = B\{1-2,-21}, Fy = %B,\{-12,1-2}.

Proposition 5.3. Forn > 2, |Z,(F1)| = 1, |Z,(F)| = 2, |Zn(F3)| = inv, and |Z,(F;)| = 0 if
1> 3.

Proof. For case Fy: Permutations in Z,(F}) may only contain the patterns {-21,-2-1}, but
since an involution contains the pattern -21 iff it contains the pattern 2-1, the involutions in
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this class can only contain the pattern -2-1, of which there is only one. Fl(l) holds in this way

also and we have |Z,,(F1)| = ]In(Fl(l))] = 1. For case Fy: Permutations in Z,(F>) may only
contain the patterns {21,-2-1} giving m; =n+1—idiforall 1 <i<mn,orm =—(n+1—1)

(4)
2

for all 1 < i < n, thereby giving 2 involutions. Cases F2(2)7 are similar to this and so

|Z,(F»)| = 2. For case F3: Since F3 ~ E3, |Z,(F3)| = inv,,.

For cases Fy—Fg: Notice that Fy, F5 D FEg and F5(1) contains the sign change of Fg, so

all three classes Z,,(F}y),Z,(F5) and In(Fél)) are empty. |Z,(Fs)| = 0 since Fg D Ejp and
|Z,(E10)| = 0. O

These extreme avoidances for |T| = 7 are easy, with the Z,(B2\{12}), Z,(B2\{-1-2}),
Z,(B2\{21}) and Z,,(B2\{-2-1}) as the only non-empty sets containing exactly one invo-
lution each.

We mention that the techniques used in this paper may also be used to calculate the corre-
sponding numbers for the number of signed involutions in B,, with no fixed points, m; = 1,
and no semi-fixed points, m; = £i. We omit the details.
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