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Abstract. Let In be the class of all signed involutions in the hyperoctahedral group Bn

and let In(T ) be the set of involutions in In which avoid a set T of signed patterns. In this
paper, we complete a further case of the program initiated by Simion and Schmidt [6] by
enumerating In(T ) for all signed permutations T ⊆ B2.

1. introduction

Let Sn and Bn be the symmetric and hyperoctahedral groups, respectively, on n letters.
We regard elements of the hyperoctahedral group Bn as signed permutations written as
π = π1π2 . . . πn in which each of the symbols 1, 2, . . . , n appears, possibly signed. Clearly,
the cardinality of Bn is 2nn!. We define the signing operation as the one which changes the
symbol πi to −πi and −πi to πi, so it is an involution, and define the absolute value notation
by |πi| if πi is πi positive and −πi otherwise.

Definition 1.1. A signed permutation π ∈ Bn is said to contain a pattern α ∈ Bk if there
exists a sequence 1 ≤ i(1) < · · · < i(k) ≤ n such that

• {|πi(1)|, . . . , |πi(k)|} is an occurrence of the pattern {|α1|, . . . , |αk|}, and,
• πi(j) > 0 if and only if αj > 0 for all 1 ≤ j ≤ k.

A signed permutation π which does not contain such a pattern α is said to avoid α.

Let π be any signed permutations. Writing the permutation |π| in disjoint cycle represen-
tation, and then replacing each entry πi with −πi if −πi is in the range of π, we obtain
a cycle representation for π. For example, the cycle representation of π = -3 -4 1 -2 5 is
(-3, 1)(-4, -2)(5).

Let In := {π ∈ Sn : π2 = id} be the set of involutions in Sn and we denote the cardinality
of this set by invn. These numbers satisfy the well-known recursion

invn = invn−1 + (n− 1)invn−2, inv0 = inv1 = 1. (1.1)

Let In := {π ∈ Bn : π2 = id} be the set of signed involutions on n letters (see [2]).
In other words, an involution on n letters in Bn is a signed permutation such that its cycle
representation contains cycles of either two non-signed symbols or two signed symbols. Denote
by In(T ) the collection of signed involutions which avoid a set T of signed permutations. For
example, avoiding the pattern 21 or (resp. -2 -1) in a signed involution means that all the
positive (resp. negative) symbols are semi-fixed points (we say that π has a semi-fixed point
at i if and only if |πi| = i), and having a pattern -2 1 in a signed involution implies you must
have a pattern 2 -1.

We define three simple operations on signed permutations: the reversal (i.e., reading the per-
mutation right-to-left: π1π2 . . . πn 7→ πn . . . π2π1), the signing (i.e., π1π2 . . . πn 7→ (-π1)(-π2)
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· · · (-πn)), and the complement (i.e., π1π2 . . . πn 7→ σ1σ2 . . . σn where σi = n + 1− πi if πi > 0
and −(n + 1)− πi otherwise).

Let us denote by Gb the group which is generated by the signing operation and the compo-
sition of the reversal and the complement operations.

Proposition 1.2. Every element g ∈ Gb provides a bijection which shows that if T and T ′ are
both sets of signed patterns such that T ′ = g(T ) = {g(α) | α ∈ T}, then |In(T )| = |In(T ′)|.

In the symmetric group Sn, for every 2-letter pattern τ the number of τ -avoiding permuta-
tions is 1, and for every pattern τ ∈ S3 the number of τ -avoiding permutations is given by the
Catalan numbers. Simion [5, Section 3] proved there are similar results for the hyperoctahe-
dral group Bn (generalized by Mansour [3]), for every 2-letter signed pattern τ the number of
τ -avoiding signed permutations is given by

∑n
j=0

(
n
j

)2
j!. Mansour and West [4] enumerated

the collections of signed permutations that avoid a signed pattern T , Bn(T ), for all possible
T ⊆ B2. In the present paper, we find the cardinalities of In(T ) for all possible T ⊆ B2.
(The exhaustive treatment of cases was suggested by the influential paper of Simion and
Schmidt [6], which followed a similar program for the cardinalities |Sn(T )| where T ⊆ S3).

2. The |T | = 1 cases for T ⊂ B2

Taking advantage of Proposition 1.2, the question of determining the values |In(τ)| for the
8 choices of a single 2-letter signed pattern, namely 12, 1 -2, -1 2, -1 -2, 21, 2 -1, -2 1 and
-2 -1, can be reduced to 4 cases, which are |In(12)|, |In(1 -2)|, |In(21)| and |In(2 -1)|. These
numbers, for n ≤ 9 are given in Figure 1.

|In(τ)|n≥0 τ

1, 2, 5, 14, 43, 142, 499, 1850, 7193, 29186 12, 1 -2, 21, -2 -1, -1, -2, -1 2
1, 2, 6, 18, 58, 190, 642, 2206, 7746, 27662 2 -1, -2 1

Figure 1. The values of |In(τ)| for n = 0, 1, . . . , 9 and τ ∈ B2.

Theorem 2.1. For all n ≥ 0,

|In(12)| = |In(21)| = |In(1 -2)|.

Proof. We begin by proving |In(12)| = |In(21)| for all n ≥ 0. To do this we define a function
p : In(12) → In(21) as follows: given π = π1π2 . . . πn ∈ In(12) we define p(π) by

p(π)m =
{

πm, if πm < 0,
n + 1− πm, otherwise.

In other words, the map p acts on π by reversing the order of the unsigned symbols in π. For
example, if π = 6 -5 4 3 -2 1 then p(π) = 1 -5 3 4 -2 6. From this definition it can be seen easily
that p is an involution, that is, p2 is the identity function on In(12).

Now let us prove that |In(12)| = |In(1 -2)| for all n ≥ 0. To do so we recursively define
a function f : In(12) → In(1 -2) as follows: given a signed permutation π = π1π2 . . . πn ∈
In(12) we consider the four cases:

(1) if π1 = -1, then let f(π) = -1(f(π′−1)+1), where π′ = π2 . . . πn and for any sequence
β of signed numbers and positive number a we define two operations

(β − a)i =

 βi, |βi| ≤ a
βi − 1, βi > a
βi + 1, βi < −a

and (β + a)i =
{

βi + 1, βi ≥ a
βi − 1, βi < −a
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(2) if π1 = -t with t > 1, then f(π) = α, where α1 = -t, αt = -1, and

(α2, . . . , αt−1, αt+1, . . . , αn) = (f(((π2, . . . , πt−1, πt+1, . . . , πn)− t)− 1) + 1) + (t− 1).

(3) if π1 = 1, then πm is a signed number for all m > 1. So, f(π) can be defined as the
signed permutation (1,−π2, . . . ,−πn).

(4) if π1 = t (so πt = 1), then define α = f(π) as follows: αm =
{

πm, πm < 0,
−πm, πm > 0,

for

all m such that |πm| > t or m > t, and α1 = t, αt = 1. To define the remaining
values of α, let i1, i2, . . . , is be the positions such that |πij | < t and 1 < ij < t. Let
π′ be the signed permutation of length s which is order-isomorphic to πi1 , . . . , πis .
Then (αi1 , . . . , αis) = β, where β is the signed permutation that is order-isomorphic
to f(π′) and |f(π′)|j ∈ {|πi1 |, . . . , |πis |} for all j = 1, 2, . . . , s.

For example, if π = -1 -3 -2 6 5 4 -7 then using (1), (2) and (4) we obtain that

f(π) = -1(f(-2 -1 5 4 3 -6) + 1) = -1 -3-2(f(3 2 1 -4) + 3) = -1 -3 -2 -6 -5 -4 7.

It is easy to see that f2 = id. Hence f is bijection between In(12) and In(1 -2), as required.
�

We now turn our attention to the sets In(21) and In(-2 1).

Proposition 2.2. The exponential generating function for the numbers |In(21)|n≥0 is∑
n≥0

|In(21)| x
n

n!
= exp

(
2x +

x2

2

)
.

Proof. Let π ∈ In be an involution which avoids 21 with exactly j unsigned symbols. Since π
avoids 21, the unsigned symbols form an increasing subsequence, and since π is an involution
we have that if πm is positive, then πm = m. Hence the number of involutions in In(21) is
exactly

∑n
j=0

(
n
j

)
invj . Thus the exponential generating function for the number involutions

in Bn that avoid 21 is exp(2x + x2/2). �

To enumerate the second class of signed involutions, the set In(-2 1), we require some further
definitions. Indeed, these definitions may be used for the more general problem of enumerating
In(T ), for general subsets T of signed patterns in Bk. Given a1, a2, . . . , ad ∈ Z, we define

In;a1,a2,...,ad
(T ) = {π1π2 . . . πn ∈ In(T ) | π1π2 . . . πd = a1a2 . . . ad}.

As a direct consequence of the above definitions, we have

|In(T )| =
n∑

j=1

|In;j(T )|+
n∑

j=1

|In;−j(T )|. (2.1)

Also, we need the following lemma which holds immediately by induction and (1.1).

Lemma 2.3. Let dn(t) = dn−1(t− 1) + (t− 4)dn−2(t− 2), for all 4 ≤ t ≤ n− 3. Then

dn(t) = invt−3dn+3−t(3),

where invt−3 is the number of involutions in It−3.

Using this decomposition and the above lemma, we may now enumerate the signed permu-
tations in In(2 -1).
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Proposition 2.4. Let cn := |In(2 -1)|. The numbers satisfy c0 := 1, c1 = 2, c2 = 6 and for
n > 2,

cn = 2cn−1 + ncn−2 −
n−3∑
j=1

j · invn−2−jcj .

Proof. Define cn(t1, . . . , td) := |In;t1,...,td(2 -1)| for any n, d and an(t) := cn(t) + cn(-t). It is
not difficult to see that an(1) = 2cn−1, an(2) = 2cn−2, and for t ≥ 3,

cn(t) = cn(t, 2) +
∑t−1

j=3 cn(t, j) +
∑n

j=t+1 cn(t, j)
= cn−1(t− 1) + (t− 3)cn−2(t− 2) +

∑n−2
j=t−1 cn−2(j),

and
cn(-t) = cn(-t, -2) +

∑t−1
j=3 cn(-t, -j) +

∑n
j=t+1 cn(-t, -j)

= cn−1(-(t− 1)) + (t− 3)cn−2(-(t− 2)) +
∑n−2

j=t−1 cn−2(-j).
Thus

an(t) = an−1(t− 1) + (t− 3)an−2(t− 2) +
∑n−2

j=t−1 an−2(j).
If dn(t) = an(t)− an(t− 1), then from the above recurrence relation we obtain that

dn(3) = an(3)− an(2)
= an−1(2) +

∑n−2
j=2 an−2(j)− an(2)

= 2cn−3 + cn−2 − an−2(1)− 2cn−2

= 2cn−3 + cn−2 − 2cn−3 − 2cn−2 = −cn−2,

and dn(t) = dn−1(t − 1) + (t − 4)dn−2(t − 2), for t ≥ 4. Thus Lemma 2.3 gives dn(t) =
invt−3dn+3−t(3). Since cn =

∑n
t=1 an(t), see (2.1), we have

cn − 2cn−1 − 2cn−2 = (n− 2)cn−2 +
n∑

t=4

t−3∑
i=1

invidn−i(3),

which is equivalent to cn = 2cn−1 + ncn−2 −
∑n−3

j=1 j · invn−2−jcj , as required. �

3. The |T | = 2 cases for T ⊆ B2

By appealing to Proposition 1.2 again, the second question of determining the values In(τ1, τ2)
for the 28 choices of two 2-letter signed patterns reduces to the following 12 cases:

B1 = {1 2, 1 -2}; B
(1)
1 = {1 2, 2 1}; B2 = {1 2, -1 -2};

B
(1)
2 = {1 2, -2 -1}; B

(2)
2 = {2 1, -2 -1}; B3 = {1 2, 2 -1};

B4 = {1 -2, -1 2}; B5 = {1 -2, 2 1}; B6 = {1 -2, 2 -1};
B

(1)
6 = {-1 2, 2 -1}; B7 = {2 1, 2 -1}; B8 = {2 -1 -2 1}.

Labels with equal subscripts in the collections above denote equicardinality of the numbers,
i.e. |In(B1)| = |In(B(1)

1 )| etc., which we now prove.

Proposition 3.1. We have

(1) there exists a bijection between the set In(12, 1 -2) and the set In+1 of involutions in Sn+1;

(2) there exists a bijection between the set In(12, 21) and the set In+1.

Proof. To see (1) we define a function p : In(12, 1 -2) → In+1 as follows: Given π =
π1π2 . . . πn ∈ In(12, 1 -2), either π1 < 0 or π1 = n. Therefore, we define p(π) as follows:

• if π1 = −1 then p(π) = 1(p(π2 . . . πn − 1) + 1),
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• if π1 = n (so πn = 1), then p(π) = (n + 1)(p(π2 . . . πn−1 − 1) + 1)1,
• if π1 = −t with t > 1 (so πt = −1), then p(π) = α where α1 = t, αt = 1, and

α2 . . . αt−1αt+1 . . . αn = (p((π2 . . . πt−1πt+1 . . . πn − t)− 1) + 1) + t.

From the definition of p and induction on n with the initial conditions p(1) = 21 and p(−1) =
12, the fact that p is a bijection is easily verified. For example, if π = -1 -4 5 -2 3 ∈ I5(12, 1 -2)
then p(π) = 1(p(-3 4 -1 2) + 1) = 14x2y with xy = (p(21) + 1) + 1 = 53, thus p(π) = 14523.

To prove (2) let π = π1π2 . . . πn ∈ In(12, 21), so π contains at most one unsigned element.
More precisely, either there exists an unique m such that πm = m > 0 or for all m we have
πm < 0. Now to prove our result we define a function p : In(12, 21) → In+1 as follows: for π =
π1π2 . . . πn ∈ In(12, 21) with no unsigned elements we define p(π) = (−π1)(−π2) . . . (−πn)(n+
1), and for π with exactly one unsigned element, say πm > 0, we define p(π) = α, where
αm = n+1, αn+1 = m, and α1 . . . αm−1αm+1 . . . αn = p(π1 . . . πm−1πm+1 . . . πn−m)+m. �

Proposition 3.2. For all n ≥ 0,

|In(21, -2 -1)| = |In(12, -1 -2)| = |In(21, -1 -2)| = 2n.

Proof. Using the same argument as Proposition 2.2, let π ∈ In be an involution which avoids
the patterns 21 and -2 -1. Suppose further that π has j unsigned symbols and n − j signed
symbols. If πm is positive, then πm = m, and similarly if πm is negative then πm = −m (i.e.
there can be no transpositions in the permutation since transpositions in signed involutions
always lead to a 21 or -2 -1 pattern.) Thus |In(21, -2 -1)| =

∑n
j=0

(
n
j

)
= 2n. Similarly, the

other cases hold. �

Proposition 3.3. We have
∑

n≥0 |In(21, 1 -2)|xn =
(
1 +

∫ x
0 e−t2/2dt

)
ex+x2/2.

Proof. Let π ∈ In be an involution of length n which avoids the patterns 21 and 1-2. It is
easy to see the first letter of π, π1 must be either 1, −1, or −t < −1. This implies that for all
n ≥ 2, |In(21, 1 -2)| = |In−1(21, 1 -2)| + (n − 1) |In−2(21, 1 -2)| + 1 with the initial condition
|I0(21, 1 -2)| = 1. The rest is easy to check. �

Proposition 3.4. For all n ≥ 1, |In(12, 2 -1)| = invn +
∑n−1

k=0 invk
∑n−1−k

m=0 invn−1−k−m.

Proof. A simple argument shows that any permutation π ∈ In(12, 2 -1) has all elements
signed (thereby contributing invn permutations), or there are elements which are unsigned.
In this case, the permutation π essentially consists of three blocks π = αβγ of sizes k, m
and n − (k + m), respectively, where elements in α and γ are signed and those in β are
unsigned. Since there is no occurrence of 2- 1 (by the cycle representation of π, also there no
occurrence of -2 1) we find the modulus of all elements in α are less than those in β, and in
turn the modulus of those in β are less than those in γ. Now since 12 is forbidden, the letters
of β must be strictly decreasing and since they are consecutive also, there is only one such
configuration. There are, however, invkinvn−k−m choices for α and γ. Summing over k and
m yields the result. �

Proposition 3.5. Let an := |In(1 -2, -12)|. Then for all n ≥ 1, an = 2invn+
∑b(n−1)/2c

j=1 j!an−2j

with the initial condition a0 = 1.

Proof. The involutions in In(1 -2, -12) may have all signs the same, in which case there are
2invn involutions of this type. Otherwise there are sign changes within the involution.

Let π ∈ In(1 -2, -12) be such an involution and suppose the first sign-change occurs at position
j, i.e. sgn(π1) = . . . = sgn(πj) 6= sgn(πj+1), for some 1 ≤ j ≤ b(n− 1)/2c. Then

π = (τ−1 + (n− j), σ + j, τ)
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where σ ∈ In−2j(1 -2, -12) and τ is a permutation of {1, . . . , j} whose entries have sign
6= sgn(σ).

It is easy to see why this latter condition must hold, for if c ≤ j is the smallest entry which
does not appear in |τ1|, . . . , |τj |, then there exists c′ > j which appears in {|πn−j |, . . . , |πn|},
thereby forming the ‘2’ in an occurrence of -1 -2 (if sgn(π1 = +1) or 1-2 (if sgn(π1) = −1).

There are an−2j choices for σ, and j! choices for τ (the sign of all entries in τ being different
to σ1). Summing over all j we have

an = 2invn +
b(n−1)/2c∑

j=1

j!an−2j

with the initial condition a0 = 1. �

Proposition 3.6. For all n ≥ 0, |In(1 -2, 2 -1)| = |In(-1 2, 2 -1)| =
∑n

k=0 invkinvn−k.

Proof. First, let us prove that there exists a bijection p : In(1 -2, 2 -1) → In(-1 2, 2 -1). Let
π = π1π2 . . . πn ∈ In(1 -2, 2 -1). If π1 > 0 then π ∈ Sn and let p(π)i = -πi for all 1 ≤ i ≤ n, so
that p(π) avoids both -1 2 and 2 -1. If π1 = −t < 0 then let π′ be the signed involution on the
elements πi of π with |πi| > −π1 and i > t. It is easy to see that each element in π, but not in
π′, is signed. Now define p(π) by signing each element of π which is not in π′ and then map
the elements of π′ by p(π′). Hence, by induction on n and the definition of p we have that p is
a signing operation, thus p is a bijection. For instance, if π = (-3, -4, -1, -2, 6, 5) ∈ I6(1 -2, 2 -1)
then p(π) = (3, 4, 1, 2, -6, -5) ∈ I6(-1 2, 2 -1) (π′ = 65).

To count the number of elements of the set In(-1 2, 2 -1) we require some new definitions.
Let cn(t1, . . . , td) := |In;t1,...,td(-1 2, 2 -1)|. It is not hard to see that cn(−1) = invn−1 and
cn(−t) = invn−2 with t = 2, 3, . . . , n. Also, cn(1) = cn−1, cn(2) = cn−2, and for t ≥ 3,

cn(t) = cn(t, 2) +
∑t−1

j=3 cn(t, j) +
∑n

j=t+1 cn(t, j)
= cn−1(t− 1) + (t− 3)cn−2(t− 2) +

∑n−2
j=t−1 cn−2(j).

If dn(t) = cn(t)− cn(t− 1), then from the above recurrence relation we obtain that

dn(3) = cn(3)− cn(2)
= cn−1(2) +

∑n−2
j=2 cn−2(j)− cn(2)

= cn−3 + cn−2 − cn−2(1)−
∑n−2

j=1 cn−2(−j)− cn−2

= cn−3 + cn−2 − cn−3 − invn−3 − (n− 3)invn−4 − cn−2

= −invn−3 − (n− 3)invn−4 = −invn−2,

and for t ≥ 4,

dn(t) = dn−1(t− 1) + (t− 4)dn−2(t− 2).

Thus Lemma 2.3 gives dn(t) = invt−3dn+3−t(3). Since cn =
∑n

t=1(cn(t) + cn(−t)) (see
Equation (2.1)), using Equation (1.1) we have

cn = cn−1 + (n− 1)cn−2 + invn−1 + invn−2 −
n∑

t=3

t∑
j=4

invj−4invn+1−j ,

which is equivalent to cn = cn−1 + (n − 1)cn−2 + invn−1 + invn−2 −
∑n−3

j=1 j · invn−2−j invj .
Substituting cn = an +

∑n
k=0 invkinvn−k and using (1.1) we arrive at an = an−1 +(n−2)an−2

with a0 = a1 = 0. Hence cn =
∑n

k=0 invkinvn−k, as required. �
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Proposition 3.7. Let cn := |In(21, 2 -1)|. The numbers satisfy c0 := 1 and

cn = 2cn−1 + (n− 1)cn−2 −
n−2∑
j=1

j · invn−2−jcj−1.

Proof. Let cn(t1, . . . , td) = |In;t1,...,td(21, 2 -1)|. It is not hard to see that cn(1) = cn(-1) =
cn−1, cn(2) = 0, cn(-2) = cn−2, cn(t) = 0 and

cn(−t) = cn(−t,−2) +
∑t−1

j=3 cn(−t,−j) +
∑n

j=t+1 cn(−t,−j)
= cn−1(−(t− 1)) + (t− 3)cn−2(−(t− 2)) +

∑n−2
j=t−1 cn−2(−j).

,

for all t ≥ 3. If dn(t) = cn(−t) − cn(−(t − 1)), then from the above recurrence relation we
obtain that

dn(3) = cn(-3)− cn(-2)
= cn−1(-2) +

∑n−2
j=2 cn−2(-j)− cn(-2)

= cn−3 + (cn−2 − cn−2(-1)− cn−2(1))− cn−2

= cn−3 + cn−2 − cn−3 − cn−3 − cn−2

= −cn−3,

and dn(t) = dn−1(t − 1) + (t − 4)dn−2(t − 2) for t ≥ 4. Thus Lemma 2.3 gives dn(t) =
invt−3dn+3−t(3). Since cn =

∑n
t=1(cn(t) + cn(−t)) we have

cn = 2cn−1 + (n− 1)cn−2 −
n∑

t=3

t∑
j=3

invj−3cn−j ,

which is equivalent to cn = 2cn−1 + (n− 1)cn−2 −
∑n−2

j=1 j · invn−2−jcj−1. �

Proposition 3.8. For all n ≥ 0,

|In(2 -1, -2 1)| = cn,

where c0 = 1 and cn = 2cn−1 + ncn−2 −
∑n−3

j=1 j · invn−3−jcj.

Proof. To count the number of elements of the set In(2 -1, -2 1) let us define cn(t1, . . . , td)
to be the number of involutions π = π1 . . . πn ∈ In(2 -1, -2 1) such that |πj | = tj for all
j = 1, 2, . . . , d. It is not hard to see that cn(1) = 2cn−1, cn(2) = 2cn−2, and for t ≥ 3,

cn(t) = cn(t, 2) +
∑t−1

j=3 cn(t, j) +
∑n

j=t+1 cn(t, j)
= cn−1(t− 1) + (t− 3)cn−2(t− 2) +

∑n−2
j=t−1 cn−2(j).

If dn(t) = cn(t)− cn(t− 1), then from the above recurrence relation we obtain that

dn(3) = cn(3)− cn(2)
= cn−1(2) +

∑n−2
j=2 cn−2(j)− cn(2)

= cn−3 + (cn−2 − cn−2(1))− 2cn−2

= cn−3 + cn−2 − cn−3 − 2cn−2

= −cn−2,

and dn(t) = dn−1(t − 1) + (t − 4)dn−2(t − 2), for t ≥ 4. Thus Lemma 2.3 gives dn(t) =
invt−3dn+3−t(3). Since cn =

∑n
t=1 cn(t) we have cn = 2cn−1+ncn−2−

∑n
t=4

∑t
j=4 invj−4cn+1−j ,

which is equivalent to cn = 2cn−1 + ncn−2 −
∑n−3

j=1 j · invn−3−jcj . �
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4. The |T | = 3 case for T ⊂ B2

Proposition 1.2 reduces determining the values |In(τ1, τ2, τ3)| for the 56 choices of two 2-
letter signed patterns to the 20 cases listed below. The following proposition helps reduce
repetitive arguments in what follows.

Proposition 4.1. If X ⊂ B2 contains 2 -1 (resp. -2 1) but not -2 1 (resp. 2-1) and Y :=
X ∪ {2-1, -2 1}, then |In(X)| = |In(Y )|. Denote this relation by Y ∼ X.

Proof. It is easy to see that an involution π contains the pattern 2-1 if and only if it contains
the pattern -21. �

Let C1 = {1 2, 1 -2, -1 2}; C2 = {12, 1-2, -1-2}; C3 = {12, 1-2, 21};
C4 = {12, 1-2, 2-1}; C

(1)
4 = {12, 1-2, -21}; C

(2)
4 = {1-2, 21, 2-1};

C
(3)
4 = {1-2, 21, -21}; C5 = {12, 1-2, -2-1}; C6 = {12, -1-2, 21};

C
(1)
6 = {12, 21, -2-1}; C

(2)
6 = {1-2, 21, -2-1}; C7 = {12, -1-2, 2-1};

C8 = {12, 21, 2-1}; C9 = {12, 2-1, -21}; C10 = {12, 2-1, -2-1};
C11 = {1-2, -12, 21}; C12 = {1-2, -12, 2-1}; C13 = {1-2, 2-1, -21};
C14 = {21, 2-1, -21}; C15 = {21, 2-1, -2-1}.

We remind the reader that those classes listed above with the same subscripts will be shown
to be equi-numerous.

Proposition 4.2. The numbers an = |In(1 2, 1 -2, -1 2)| are given by

an = invn + ((n− 1)/2)! +
(n−2)/2∑

k=0

k!an−2−2k,

where a! := 0 when a is not a nonnegative integer.

Proof. For case C1: Let π ∈ In(12, 1 -2, -1 2). Either π is an involution of -1, -2, . . . , -n, or π =
β((n+1)/2)β−1 with β−1 a permutation of -1, -2, . . . , -((n−1)/2), or π = β(n−m)γ(m+1)β−1

with β a permutation of -1, -2, . . . , -m and γ a signed involution of -(m+2), -(m+2), . . . , -(n−
m− 1) that avoid 12, 1 -2, and -1 2. Hence the number of such signed involution an satisfies
the recurrence relation an = invn + ((n− 1)/2)! +

∑(n−2)/2
k=0 k!an−2−2k, where a! = 0 when a

is not an integer with initial values a0 = 1, a1 = 2 and a2 = 3. �

Proposition 4.3. For all n ≥ 0, |In(12, 1-2, -1-2)| =
(

n+1
dn/2e

)
.

Proof. For case C2: Let an(t1, . . . , td) := |In;t1,...,td(12, 1 -2, -1 -2)|. It is not hard to see that
an(t) = 0 for all t = 1, 2, . . . , n−1, and an(n) = an(-n) = an−2 the number of such involutions
of length n− 2. Also, an(-1) = 1, and for all t = 2, 3, . . . , n− 1,

an(-t) = an(-t, n) + an(-t, -2) +
t−1∑
j=3

an(-t, -j) = an−2(-(t− 1)) + an−2(-1) +
t−1∑
j=3

an−2(-(j − 1)),

which is equivalent to

an(-t) =
t−1∑
j=1

an−2(-j). (4.1)



SIGNED INVOLUTIONS AVOIDING 2-LETTER SIGNED PATTERNS 9

Now, define An(v) to the the polynomial
∑n

t=1(an(t)+an(-t))vt−1. Multiplying (4.1) by vt−1

and summing over all t = 2, . . . , n− 1 we arrive at

An(v) = 1 + 2vn−1An−2(1) +
v

1− v
(An−2(v)− vn−2An−2(1))− vn−2An−4(1),

for all n ≥ 4 with the initial conditions; A0(v) = 1, A1(v) = 2, A2(v) = 1 + 2v, and
A3(v) = 1 + v + 4v2. Multiplying the above recurrence relation by xn/vn and summing over
n ≥ 4 we obtain the functional equation(

1− x2

v(1− v)

)
A(x/v, v) =

v2(v + x)− x2v(1 + x) + x4

v2(v − x)
+

x2(v − 2v2 − x2(1 + v))
v2(1− v)

A(x, 1).

This type of equation can be solved systematically using the kernel method [1]. Substitute
v = 1+

√
1−4x2

2 in this equation to get A(x, 1) = 4x2−1+
√

1−4x2

x2(1−2x)
=

∑
n≥0

(
n+1
dn/2e

)
xn. �

Proposition 4.4. For all n ≥ 0,
|In(12, 1-2, 21)| = invn +

∑(n−1)/2
k=0 k!

(
n−k−1

k

)
invn−1−2k

|In(12, 1-2, 2-1)| =
∑n

j=0 invj

|In(12, 1-2, -2-1)| = Fn+2.

where Fn is the nth Fibonacci number given by; F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2.

Proof. For case C3: Let π ∈ In(12, 1 -2, 21), so either π is an involution of -1, -2, . . . , -n, or π
contains exactly one positive element πn−k and πn−k = n − k is a fixed point. From this, it
is easy to see that the number of such signed involutions is given by

invn +
(n−1)/2∑

k=0

k!
(

n− k − 1
k

)
invn−1−2k.

For case C4: If π ∈ In(12, 1 -2, 2 -1) (resp. π ∈ In(12, 1 -2, -21)), then π = βn(n−1) . . . (m+1),
where β is an involution of the numbers -1, -2, . . . , -m. Hence the number of signed involutions
in In(12, 1 -2, 2 -1) (resp. π ∈ In(12, 1 -2, -21)) is given by

∑n
m=0 invm. If π ∈ In(1 -2, 21, 2 -1)

(or π ∈ In(1 -2, 21, -21)), then π = β(m + 1)(m + 2) . . . n, where β is an involution of the
numbers -1, -2, . . . , -m. Thus the number of the signed involutions in In(1 -2, 21, 2 -1) (resp.
In(1 -2, 21, -21)) is given by

∑n
m=0 invm.

For case C5: Let π be any signed involution of length n that avoids 12, 1 -2 and -2 -1. The
first letter of π must be either -1 or n, giving us |In(C5)| = |In−1(C5)| + |In−2(C5)| with
initial conditions I0(C5) = 1, I1(C5) = 2. Hence In(C5) is Fn+2, the (n + 1)th Fibonacci
number. �

Proposition 4.5. For all n > 2,

|In(12, -1-2, 21)| = n + 1, |In(12, 21, 2 -1)| = invn +
∑n−1

k=0 invkinvn−1−k,

|In(12, -1-2, 2 -1)| = 2n, |In(12, 2-1, -2 1)| = invn +
∑n−1

k=0 invk
∑n−1−k

j=0 invj ,

|In(1-2, -12, 2 -1)| = 2invn, |In(1-2, -12, 21)| = invn +
∑n

k=1((n− k)/2)!,
|In(21, -2-1, 2 -1)| = 2n, |In(1-2, 2-1, -21)| = |In(1-2, 2-1)|,
|In(21, 2-1, -2-1)| = 2n, |In(21, 2-1, -21)| = |In(21, 2-1)|,

where a! := 0 when a is not a nonnegative integer.
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Proof. For case C6: It is not hard to see that

In(12, -1 -2, 21) = {-n -(n− 1) . . . -(n-m-2)m -(n-m + 1) . . . -1) | m = 0, . . . , n} (4.2)
In(12, 21, -2 -1) = {-1 -2 . . . -(m− 1)m -(m + 1) . . . -n) | m = 0, . . . , n} (4.3)
In(1 -2, 21, -2 -1) = {-1 -2 . . . -m(m + 1) . . . n) | m = 0, . . . , n}, (4.4)

giving |In(12, -1 -2, 21)| = |In(12, 21, -2 -1)| = |In(1 -2, 21, -2 -1)| = n + 1.

For case C7: One can easily notice that In(12, -1 -2, 2 -1) is {m(m−1) . . . 1 -n -(n−1) . . . -(m+
1) | m = 0, . . . , n} ∪ {-n -(n−1) . . . -(m+1)m . . . 1 | m = 1, ..., n−1}, hence |In(12, -1 -2, 2 -1)| =
2n.

For case C8: If π ∈ In(12, 21, 2 -1), then either π is an involution of -1, -2, . . . , -n or π = β(m+
1)γ, where β is an involution of -1, -2, . . . , -m and γ is an involution of -(m+2), -(m+3), . . . , -n.
The number of such signed involutions is invn +

∑n−1
k=0 invkinvn−1−k.

For case C9: Let π ∈ In(12, 2 -1, -2 1). Either π is an involution of -1, -2, . . . , -n or π =
β(n − k)(n − k − 1) . . . (m + 1)γ, where β is an involution of -1, -2, . . . , -m and γ is an
involution of -(n− k + 1), -(n− k + 2), . . . , -n. The number of such signed involutions is thus
invn +

∑n−1
k=0 invk

∑n−1−k
j=0 invj .

For case C10: Let π ∈ In(21, -2 -1, 2 -1) and an = |In(21, -2 -1, 2 -1)|. Since π avoids 21 and
-2-1, π cannot contain any transpositions. Thus π contains only fixed points, each of which
may be signed or unsigned. Hence an = 2n.

For case C11: Let π ∈ In(1 -2, -1 2, 21), so all the positive elements of π are increasing giving
us that all the positive elements of π are fixed points. Thus π has one of the following forms:
either π is an involution of -1, -2, . . . -n or π = β(m + 1)(m + 2) . . . (n−m)β−1 where β any
permutation of -(n−m + 1), . . . , -n and n ≥ 2m + 1. Hence the number of such involutions
is invn +

∑n
k=1((n− k)/2)!.

For case C12: Every signed involution avoiding 1 -2, -12 and 2 -1 must be an involution of
either 1, 2, . . . , n or -1, -2, . . . , -n. Hence |In(1 -2, -12, 2 -1)| = 2invn.

For cases C13 and C14: By Proposition 4.1, we have C13 ∼ B6 and C14 ∼ B7. For case C15:
This follows directly from Proposition 3.2 and we have |In(21, 2-1, -2-1)| = 2n. �

5. The |T | ≥ 4 case for T ⊂ B2

The 70 choices of four 2-letter signed patterns reduce to 26 in light of Proposition 1.2. Let

D1 = {12, 1-2, -12, -1-2}; D2 = {12, 1-2, -12, 21}; D3 = {12, 1-2, -1-2, 21};
D

(1)
3 = {1-2, -12, -1-2, 21}; D4 = {12, 1-2, -12, 2-1}; D

(1)
4 = {1-2, -12, 21, 2-1};

D5 = {12, 1-2, -1-2, 2-1}; D
(1)
5 = {12, -12, -1-2, 2-1}; D

(2)
5 = {1-2, -1-2, 21, 2-1};

D
(3)
5 = {-12, -1-2, 21, 2-1}; D

(4)
5 = {12, 21, 2-1, -2-1}; D

(5)
5 = {1-2, 21, 2-1, -2-1};

D
(6)
5 = {-12, 21, 2-1, -2-1}; D6 = {12, 1-2, -1-2, 21, 2-1}; D

(1)
6 = {12, -12, -1-2, 21, 2-1};

D7 = {12, -1-2, 21, 2-1}; D8 = {12, 1-2, 2-1, -21}; D
(1)
8 = {1-2, 21, 2-1, -21};

D9 = {1-2, -12, 2-1, -21}; D10 = {12, -1-2, 2-1, -21}; D11 = {12, 21, 2-1, -21};
D12 = {-1-2, 21, 2-1, -21}; D13 = {12, 1-2, 21, -2-1}; D

(1)
13 = {1-2, -12, 21, -2-1};

D14 = {12, -1-2, 21, -2-1}; D15 = {21, 2-1, -21, -2-1}.
Due to the large number of restrictions, quite a few of the sequences which enumerate these
classes are the same as |T | = 3 cases via a simple application of Proposition 4.1. We list
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these here without proof and then concentrate on the new sequences which occur:

D8 ∼ C4, D
(1)
8 ∼ C4, D9 ∼ C12, D10 ∼ C7, D11 ∼ C8, D12 ∼ C10, D15 ∼ C15.

Proposition 5.1. For n > 2,

|In(D1)| = 2dn/2e, |In(D2)| = invn + ((n− 1)/2)!,
|In(D3)| = b(n + 3)/2c, |In(D4)| = invn + 1,
|In(D5)| = n + 1, |In(D6)| = invn + invn−1,
|In(D7)| = 3, |In(D13)| = 2,
|In(D14)| = 0,

where a! := 0 when a is not a nonnegative integer.

Proof. For case D1: If π ∈ In(12, 1 -2, -1 2, -1 -2) then |π1| > |π2| > · · · > |πn|. Since each
pair of elements πi and πn+1−i, for i = 1, 2, . . . , dn/2e, can be signed or unsigned we find that
|In(12, 1 -2, -1 2, -1 -2)| = 2dn/2e.

For case D2: If we consider the number positive elements in a signed permutation π ∈
In(12, -1 2, 1 -2, 21), then either all the elements of π are negative or all the elements of π
are negative except π(n+1)/2 = (n + 1)/2. In the first case π is an involution of -1, -2, . . . , -n
and in the second case π = β((n + 1)/2)β−1 where β is a permutation of the elements
n, n− 1, . . . , (n− 1)/2. Thus the number of signed involutions in In(12, -1 2, 1 -2, 21) is given
by the formula invn + ((n− 1)/2)!.

For case D3: This class is easily enumerated by ensuring involutions given in Equation (4.2)
avoid the pattern 1-2. This corresponds to the cases m = 0 and n ≥ m > (n + 1)/2. The
number of such m is 1 + b(n + 1)/2c.

For case D
(1)
3 : An involution π in this class must have either π1 = 1 or π1 = -n. If π1 = 1 then

all remaining entries of π must be positive and therefore fixed points. However if π1 = -n,
then πn = -1 and the remaining entries of π must avoid the four patterns in this class.
Thus we have |In(D(1)

3 )| = 1 + |In−2(D
(1)
3 )|. Using the initial conditions |I2(D

(1)
3 )| = 2 and

|I3(D
(1)
3 )| = 3, we have the size of this class to be b(n + 3)/2c, the same as D3.

For case D4: This follows by adding the restriction that involutions in C12 cannot contain
the pattern 12. Thus either involutions have all negative signs, or all positive signs. If the
involution has all positive signs, it must avoid the pattern 12 and so there is only one such
involutions, namely (n, n− 1, . . . , 1). Thus |In(D4)| = invn + 1.

For case D5: This is straightforward by considering the exact form of the involutions in
In(C6) given in (4.2–4.4): |In(D5)| = |In(D(1)

5 )| = . . . = |In(D(6)
5 )| = n + 1.

For case D6: By considering the involutions π ∈ In(D6) avoiding 12, 1-2, 21 and 2-1, we
must have that either πn = n (in which case the signs of all other elements are - and so there
are invn−1 of them) or πn = −i for some i ≤ n (in which case all elements of the involution
are -, accounting for invn involutions). Thus |In(D6)| = invn + invn−1.

For case D7: Only 3 involutions in In(C7) avoid 21, hence |In(D7)| = 3. These involutions
are;

(1 -n -(n− 1) · · · -2), (-(n− 1) · · · -1 n) and (-n -(n− 1) · · · -1).

For case D13: This is similar to case C5 except the first letter of any such involution π1 6= n (for
otherwise it would contain a 21 pattern). Thus π1 = -1 and we have |In(D13)| = |In−1(D13)|
with initial condition |I1(D13)| = 2.

For case D14: Since D14 ⊃ C6, from (4.2) for n > 2 it is impossible to avoid the pattern -2-1,
hence |In(D14)| = 0. �
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The 56 choices for five 2-letter signed patterns reduce to 20 in light of Proposition 1.2. Many
of these cases are simply degenerate cases of |T | ≤ 4. Let

E1 = {12, 1-2, -12, -1-2, 21}; E2 = {12, 1-2, -12, -1-2, 2-1};
E

(1)
2 = {12, 1-2, -1-2, 21, 2-1}; E

(2)
2 = {12, -12, -1-2, 21, 2-1};

E
(3)
2 = {1-2, -12, -1-2, 21, 2-1}; E

(4)
2 = {12, 1-2, 21, 2-1, -2-1};

E
(5)
2 = {12, -12, 21, 2-1, -2-1}; E

(6)
2 = {1-2, -12, 21, 2-1, -2-1};

E3 = {12, 1-2, -12, 21, 2-1}; E4 = {12, 1-2, -12, 2-1, -21};
E

(1)
4 = {1-2, -12, 21, 2-1, -21}; E5 = {12, 1-2, -1-2, 2-1, -21};

E
(1)
5 = {1-2, -1-2, 21, 2-1, -21}; E

(2)
5 = {12, 21, 2-1, -21, -2-1};

E
(3)
5 = {1-2, 21, 2-1, -21, -2-1}; E6 = {12, 1-2, 21, 2-1, -21};

E7 = {12, -1-2, 21, 2-1, -21}; E8 = {12, 1-2, -12, 21, -2-1};
E9 = {12, 1-2, -1-2, 21, -2-1}; E10 = {12, -1-2, 21, 2-1, -2-1}.

The patterns equinumerous with the D patterns are: E4 ∼ D4, E
(1)
4 ∼ D

(1)
4 , E5 ∼ D5,

E
(1)
5 ∼ D

(2)
5 , E

(2)
5 ∼ D

(4)
5 , E

(3)
5 ∼ D

(5)
5 , E6 ∼ D6, E7 ∼ D7. Also trivial to see are |In(E8)| = 1

(since E8 ⊃ D13) and |In(E9)| = |In(E10)| = 0 (since E9, E10 ⊃ D14). The non-trivial cases
are

Proposition 5.2. |In(12, 1-2, -12, -1-2, 21)| = 1+(n mod 2), |In(12, 1-2, -12, -1-2, 2-1)| = 2
and |In(12, 1-2, -12, 21, 2-1)| = invn.

Proof. For case E1: If π ∈ In(E1), we must have |πi| = (n + 1 − i) for all 1 ≤ i ≤ n.
If n is even, then πi < 0 for all i whereas if n is odd we are allowed one unsigned letter
π(n+1)/2 = (n + 1)/2. Hence |In(E1)| = 1 + (n mod 2).

For cases E2–E
(6)
2 : We consider only In(E2) since the other 6 cases follow by the same

reasoning. If π ∈ In(E2), then π may only contain the patterns 2 1, -2 1, -2 -1. From this it
is clear that |πi| = n + 1− i for all 1 ≤ i ≤ n, and since π avoids 2-1 iff it also avoids -21, we
must have either all letters of π signed or all letters unsigned. Thus

|In(E2)| = |In(E(1)
2 | = . . . = |In(E(6)

2 | = 2.

For case E3: Permutations in In(E3) may only contain the patterns -1-2 and -2-1 and -21.
In this case the pattern -21 is irrelevant since 2-1 is forbidden. This class thus contains all
signed involutions containing only -1-2, -2-1, of which there are invn. �

Proposition 1.2 reduces the 28 choices for six 2-letter signed patterns to 12.

Let F1 = B2\{-21, -2-1}, F
(1)
1 = B2\{-1-2, -21} F2 = B2\{21, -2-1},

F
(1)
2 = B2\{-12, -2-1}, F

(2)
2 = B2\{12, -2-1}, F

(3)
2 = B2\{-12, 21},

F
(4)
2 = B2\{12, -1-2}, F3 = B2\{-1-2, -2-1}, F4 = B2\{-21, 2-1},

F5 = B2\{-12, -21}, F
(1)
5 = B2\{1-2, -21}, F6 = B2\{-12, 1-2}.

Proposition 5.3. For n > 2, |In(F1)| = 1, |In(F2)| = 2, |In(F3)| = invn and |In(Fi)| = 0 if
i > 3.

Proof. For case F1: Permutations in In(F1) may only contain the patterns {-21, -2-1}, but
since an involution contains the pattern -21 iff it contains the pattern 2-1, the involutions in
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this class can only contain the pattern -2-1, of which there is only one. F
(1)
1 holds in this way

also and we have |In(F1)| = |In(F (1)
1 )| = 1. For case F2: Permutations in In(F2) may only

contain the patterns {21, -2-1} giving πi = n + 1 − i for all 1 ≤ i ≤ n, or πi = −(n + 1 − i)
for all 1 ≤ i ≤ n, thereby giving 2 involutions. Cases F

(2)
2 –F

(4)
2 are similar to this and so

|In(F2)| = 2. For case F3: Since F3 ∼ E3, |In(F3)| = invn.

For cases F4–F6: Notice that F4, F5 ⊃ E9 and F
(1)
5 contains the sign change of E9, so

all three classes In(F4), In(F5) and In(F (1)
5 ) are empty. |In(F6)| = 0 since F6 ⊃ E10 and

|In(E10)| = 0. �

These extreme avoidances for |T | = 7 are easy, with the In(B2\{12}), In(B2\{-1-2}),
In(B2\{21}) and In(B2\{-2-1}) as the only non-empty sets containing exactly one invo-
lution each.

We mention that the techniques used in this paper may also be used to calculate the corre-
sponding numbers for the number of signed involutions in Bn with no fixed points, πi = i,
and no semi-fixed points, πi = ±i. We omit the details.
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