FLUCTUATIONS OF THE LOCAL MAGNETIC FIELD IN
FRUSTRATED MEAN-FIELD ISING MODELS
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ABSTRACT. We consider fluctuations of the local magnetic field in frus-
trated mean-field Ising models. Frustration can come about due to ran-
domness of the interaction as in the Sherrington-Kirkpatrick model, or
through fixed interaction parameters but with varying signs. We con-
sider central limit theorems for the fluctuation of the local magnetic field
values w.r.t. the a priori spin distribution for both types of models. We
show that, in the case of the Sherrington-Kirkpatrick model there is
a central limit theorem for the local magnetic field, a.s. with respect
to the randomness. On the other hand, we show that, in the case of
non-random frustrated models, there is no central limit theorem for the
distribution of the values of the local field, but that the probability dis-
tribution of this distribution does converge. We compute the moments
of this probability distribution on the space of measures and show in
particular that it is not Gaussian.

1. FRUSTRATED ISING MODELS AND THE LOCAL FIELD DISTRIBUTION

The celebrated Sherrington-Kirkpatrick model of a spin glass is given by
the Hamiltonian

;X

Hgsg \/NHZ::I J;.jSiSj, (1.1)
where the s; = %1 are Ising spins and the interaction parameters J; ; are i.i.d.
random variables with Gaussian distribution. It was proposed and solved
in [1, 2] by Sherrington and Kirkpatrick using the replica trick. However,
their solution is flawed because it predicts negative entropy at low tempera-
tures. An alternative solution scheme was proposed by Parisi 3, 4], which is
generally regarded as being correct. However, it also involves the mathemat-
ically dubious replica trick and the mathematical status of the solution is
therefore still unclear. Indeed, this model presents a considerable challenge
to mathematicians [9]. Nevertheless, some progress has been made. Aizen-
man, Lebowitz and Ruelle [6] proved that, in the absence of an external
field, the Sherrington-Kirkpatrick (SK) solution is correct in the high tem-
perature domain. Pastur and Schcherbina [7] proved that the SK solution is
correct unless the Edwards-Anderson order parameter is not self-averaging
(which implies the latter). Guerra [8] derived a beautiful inequality which
implies that the the SK solution is correct in the high-temperature domain,
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even in the presence of an external field, and recently, Talagrand [10, 11]
extended Guerra’s bounds in various ways.

A different class of models with frustrated interactions was introduced by
Eisele and Ellis [14, 15, 16]. Their models have Hamiltonians of the form

N . .

1 1 J
Hpp= Y J(w — )sis;, 1.2
pE =5 2 Iy )5 (1.2)

,j=1

where J(x) is a bounded continuous function. If this function takes on both
positive and negative values, for example J(z) = cos(z), then the model is
frustrated. A detailed study of these models was made in [14, 15] using large
deviation theory.

Here we consider the local magnetic field fluctuations for both types of
models. Unsurprisingly, we find that the two models behave quite differently,
but remarkably, the SK model behaves in a more regular way in that a
central limit theorem holds with probability 1. More precisely, we define
the occupation measure for the fluctuations by

N
1
N = N;éfﬁﬂv-v]@m (1.3)
1=

and show that uy converges a.s. in the parameters J;;, in probability
with respect to the a priori (‘flat’) distribution of the spins to a normal
distribution as N — oo. This weak result (which does not seem to have
been observed before) is a prerequisite for a large deviation property for
these variables, which would be of interest in considering the thermodynamic
limit of the model. The local fields play a pivotal role in mean-field models,
see also the approach of Thouless, Anderson and Palmer [12] and Mézard,
Parisi and Virasoro [13].

On the other hand, in the models introduced by Eisele and Ellis we show
that pny does not converge, even in probability. In fact, we consider a
slight variant of their models, which does not quite fit within their class,
but is more closely related to the SK model. It is given by the interaction
parameters

-1, if0<|i—j|<Morl|i—j|>N—-M,
Jij = 0, ifi=y; (1.4)
+1, ifM<|i—j|<N-M=3M+1.

Here N = 4M + 1. If the measure (1.3) were to converge to a stable law ~
then we would have

E [g(f,um} — 4, [6i<f,u>} — il (1.5)

for continuous functions f. We will show that the distribution of the mea-
sures py does converge but (1.5) does not hold. Indeed, we compute all mo-
ments limy .« E[(f, un)¥] and show that the series converges for bounded
continuous functions f. We then prove that this implies the convergence of
the probability distribution of the measures uy to a nontrivial measure on
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the set M'(R) of probability measures on R. (Notice that for fixed ferro-
magnetic couplings J; ; = J, we have

B (et ) = ;VZGU(“% £ias) _ /eif(‘]w)'y(dx) (L.6)

{si}

which is also not the same as (1.5). In this case the limiting distribution is
a Gaussian distribution of d-measures.)

Probability measures on the space of states were introduced by Aizenman
and Wehr [17] for general translation-invariant random spin systems and
their importance in the case of short-range spin-glasses has been argued at
length by Newman and Stein [18, 19, 20]. Our example shows that such
measures can be remarkably complicated even in very simple situations.

2. THE LOCAL FIELD DISTRIBUTION IN THE SK MODEL

We prove that puy — - in probability w.r.t. the spin configurations a.s.
with respect to the randomness. This can also be formulated as follows:

Theorem 2.1. The random measures uy defined by (1.3) where the pa-
rameters J; ; are i.i.d. random variables with standard normal distribution
satisfy E[F (un)] — F(7) a.s. with respect to the distribution of the coupling
parameters, for any continuous function F' on the space of probability mea-
sures MY (R) with the topology of weak convergence, where v is the Gaussian

; ; ; e~ % 2/2 dx_
measure on R with mean zero and variance 1, i.e. y(dzx) = N
Proof. We first prove convergence for functions F of the form F(u) = e/
This can be done by proving convergence of the moments E[{(uy, f)P]. To
prove that these converge to (7, f)P almost surely, we compute

2
(B[(pn, FP] = (0, F)P)° (2.7)
where the ‘overline’ denotes the average over the random couplings. (In case
of long expressions, we also use the notation [---]7.) First consider the first

moment (p = 1). We put f(z) = € so that (y, f) = e /2 = ¢(t), and
compute

(E[{un, £)] = (7. £)°

2\
3~
&

Now,

al t al 1 i—J i—t_J, N 2
I = I IV Y] NI ) — —gmt? _ t
[ eos () =T (R0 400 ) = T et

and similarly
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if 41 # i and otherwise

oo (o) =TI (<57 o)’
cos Ji,jl) - — (VR e VR
j=1 VN Jj=1 1
N N
1/ 2t . 1 2 42
_ Hf evN“h 4 1) = |:(6_Nt —|—1):| (211)
35 -
Hence
(B[, )] = (v, 1))
;NN ¢ "
= Ccos Ji, j | cos Jiyj t)?
N2 “%:Ijl_‘[l (\/7 10) (\/N 27]> C()
1 (1 N
=< ([2(efztz + 1)} - c(t)2> (2.12)
— (1= t* ﬁ " 1 e
SN\ N2 N°
< %e—ﬁ (et4/N _ 1) =O(N72). (2.13)

By the Borel-Cantelli lemma we can now conclude that, almost surely,

E < / em,uN(dq:)> - / ety (dz) (2.14)

and by interchanging the order of integration and the fact that convergence
of characteristic functions implies weak convergence of bounded measures
(see [21]),

E[(un, /)] = (v, f) as. (2.15)

for all bounded continuous functions f.
The same strategy applies also to higher moments. In that case we con-
sider

(E [H</’LN7fOé>] - H<7a foz>> (2'16)

a=1



with f,(z) = ee®. As above we get

P p 2
(E [H</‘Nafa>] - H<’77 fa))
a=1

a=1
1 N N » 2
_ MZL%%:ME[Icos(\/»Zt JzaJ) —E c(ta)

- ﬁ Z Z [ Hcos <\/1>(t1J11] +o A tpdiy > — Hc(ta)

i1y i ety L \g=1 a=1

X cos(\/lﬁ( 1y + +tp”> Hcta ] . (217)

We distinguish three cases. The first case is when all i, and all z’ﬁ are
different, i.e. #{i1,...,ip,4,...,%,} = 2p. These contribute nothing to the
above sum because of (2.9). The second case is when one pair is equal, i.e.
#{i1, -, ip, iy, .. .,i,} = 2p — 1. In this case there are two possibilities:
either #{i1,...,i,} = #{i},...,4,} = p and there exists one pair (a, )
such that iq = ij5 or {i1,...,ip} N{i},... 3} = 0 but #{i1,...,i,} = p and
#{if, ... ,i;,} = p — 1 or vice versa. The second possibility again gives no
contribution because the two factors in the last expression of (2.17) separate
and we can use (2.9) again in one of the factors. In case #{i1,...,ip} N
{i1,- .- ip} = 1 we can assume i, = i3 and we have

1
H cos <f(t1le gttt szg)) cos <\/N(t1Ji,1’j -+t sz’j)>

N , P -
1 2
- U 5 | | 77 | (et to)ias + > tadigit D ey

o'=1,0/ #a B'=18"#8
: P p -
i
+ exXp ﬁ (ta - tﬁ)e]ia,j + Z ta’Jia/,j - Z tﬁl‘]’i%,,j
o'=1,0/#a B'=1,0'#8
— 5k (tattp)? otz \ N
_ (e an (fatts) —;e o (ta—to) ) o= (B H2) (3 4+13) /2 (2.18)

If #{i1, ... ip, 17,50y} < 2p — 2 then we simply bound the two factors in
the right-hand side of (2.17) by 22 = 4. The total number of terms in the
sum in this case is bounded by

[3 (Zf > + (2;9 ﬂ NP2, (2.19)
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and the number of terms in the second case is less than p? N??~1. We thus
obtain

([fton] - f1on)

a=1

S 6

+i i <e (tatts)*/2N 4 o= (ta—1p) /2N> _ (432

2

= O(N7?. (2.20)

As in the case of p = 1 above, we conclude that

IE[/ flx1, .. zp)pun(der) ... pn(dey)] — /f(xl, o xp)y(dey) Loy (day)
(2.21)
a.s. for all bounded continuous functions f. In particular,

E[{un, )] = (v, /)P (2.22)

a.s. for all bounded continuous functions f. By expanding the exponential,
it then follows that

E[é(ﬂmf)] — ) (2.23)
Unlike the finite-dimensional situation, this is not sufficient for the con-
vergence of the measures. By Prokhorov’s theorem [22], we need to prove
tightness of the sequence of probability distributions of the p. This is done
in the following lemma. O

Tightness of the sequence of probability measures on M (R) follows from:

Lemma 2.2. For all ¢ > 0 there exists a compact set K. C M'(R) such
that for all N € N,
Pluny ¢ K¢) < € (2.24)

a.s. with respect to the coupling parameters.
Proof. We define
K,={pe MI(R)| pl(—oc0, —a) U (a,+00)] < nte™Va € N}.  (2.25)
Clearly, K, is compact. By Chebyshev’s inequality,
P (vl(~00, ~a) U (a, +00)] > n'e™) < n e B (v, 1 (e, -a)uarioc)))

We now bound 1(_ s _a)u(aso0) by €29 + e2E+9) and compute (2.26)
s Ly + 2 yN g )
E ({p, 2)) = N;EG VN ]> =’ (2.27)
It follows that "
P (un[(—00) U (a, +00)] > nfe—a) < 2n~%e?~0. (2.28)

By the Borel-Cantelli lemma, we conclude that, for n large enough,

P (un[(—00, —a) U (a, +00)] > ne™®) < 2n~2e? ¢ (2.29)



a.s. for all @ € N. The lemma now follows from

Pluy € KS) < 3P (un[(—00, —a) U (a,+00)] > n*e™?)

(o]
< 2e2n72 Z e “
a=1
2e? 9
= v < 2.30
o <e€ (2.30)
for n large enough. O

3. THE LOCAL FIELD DISTRIBUTION IN THE FRUSTRATED MODEL

3.1. The first and second moment. For the first moment, the conver-
gence is easy: Let us introduce the notation

N 1 N
({SSL‘}) = f? f T = z,ySy | - (31)
N pN) ; T z::

Then

;{;}LN({%» - 2 Z (2M Jf (%) 62

: . N -1 +3M

(To see this, write 37,1 Joysy = — >0 20 ar Sy— Zy S sy—i-zg o M1 5y
and sum over the possible values 2k of this variable with possible number
of occurrences at fixed . The sum over s, gives an additional factor 2.)
Hence

Jim E [, ) = jfﬁ /R F(@)e " 2dz = (f,7). (3.3)

Therefore, if (1.5) were to hold the limiting measure v would be a standard
normal distribution. Computation of the higher moments is more compli-
cated. We first consider the case k = 2.

For the second moment, we need to compute the limit

lim Z Ly({s:})°. (3.4)

N—oo 2NN2
{s2}

Now

S In({se})? =D Zf( Zy: o y> (\ﬁZJxQ,ysy) (3.5)

{sz} 1,22 {s }
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To compute the limit of this expression we consider it as a quadratic form
and insert e”1# and e2? for f. We then need to compute

. 1 7
Ry g0 DD exp [\/N Zy:(tl Sy + tsz,y)Sy]

1,22 {sz}

_ : 1 INTY2(ty Ty y+tadey y)s
= i o ST X N e g

T1,L2 Y sy=:|:1

1 1
- dmg X e (Gt ttn)

Z1,T2 Y

Now, if |21 — 22| < 2M, the number of y for which Jp, 4y = Jp,y is
2(2M — |z1 — 22| — 1) and the number of y for which Jg, , = —J4,, is
2|zy — xo| + 1. (Except of course if z1 = x2, but this case is negligible
as we are dividing by N2. Similarly, the cases y = z1, 22 are irrelevant.)
On the other hand, if |x; — z2| > 2M then the number of y with J,, , =
Jrsy i 2(|z1 — 22| — 2M — 1) and the number of y with Jg, y = —Jg, is
2(N — |x1 — x2|) — 1. Thus, the above limit equals

N-1 2(k—2M—1) 2(N—k)—1
+ Z cos (N7V2(t; + to) cos (N7V2(t; — ty) }
3 D (5 )
1 (2M 1 ) N—2k 1 , 2k
= NIE%ON{ 2 (1 ~ gyt ) (1 ~ gy 1) )
N 1 2k—N 1 2(N—k)
2 2
+ Z (1_2]V(t1+t2) ) (1—2]V<t1—t2) ) }
k=2M+1
1 [t 1 5 )
= 3 exp —5{(1 —8)(t1 +t2)* + s(t1 —t2)°}| ds
0
2 1
+/ exp [—2{s(t1 +19)% 4 (2 - 5)(t, — t2)2}] ds}. (3.7)
1
This can be rewritten as
L _(2v2)/2 ! t1t
3¢ (#r+t3)/ / e’ du. (3.8)
-1

The limit (3.4) is therefore given by

/_O; dxy /_Z dxg pa(z1,22) f (1) f(22), (3.9)



where po is the density of the measure with characteristic function given by

(3.8), i.e.

= > : 1 iy [F
/ dxy / dzs pa (21, $2)ez(t1z1+t2x2) — o (+13)/2 / estit2 g
—00 —00 2 1

Diagonalising 2 — 2st1ts + t3 we find

(z1+e)? (g -w9)?

1 L o™ 7aa—s) 1(1+s)
p2(r1,22) = 477/1 N ds.

(3.10)

(3.11)

Clearly, this is not equal to the density of v ® =, i.e. %6_(1’%*’6%)/2 which

would be the result if (1.5) were to hold.
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FIGURE 1. Plot of the function (3.11). It appears
from this plot that po is constant on squares, i.e.
it only depends on |z1| V |x2|. This will be proved
in the appendix.
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3.2. Higher moments. The computation of the higher moments follows
the same strategy but the result is more complicated and cannot be ex-
pressed in such a simple fashion. Analogous to (3.5) we have

S In({s} = > ZHf(\ﬁZJgghysy) (3.12)

{sa} T1yeesTp {85} =1

Inserting exponentials e** we have to compute

NHOO2NNP Z ZeXp[\ﬁZSthJ%y]

L1yeeyLp {Sm
1
= ]\}gnoo W ) ZI 1;[ cos (\/]V ; tinmy) . (3.13)
» =

We now show that a calculation as in the case of the second moment yields
the following:

Theorem 3.1. For bounded continuous functions f, the limit
1
. _ . p
R L W L {Z}LN o
Sz

exists and equals

/m day . ../OO Ay pp(@rse e (1) - (),

—00 —00

where the probability density py, is given by

1 1 1 doq Ce dap 1 ap) 1z
1 —5(z, S(a1,e.,ap) )
TlyeonyXp) = €
pp( 1 p) (‘37-(-)]2/2 /0 /0 \/det S(a17 cee 7“?)

and the matriz S(a1, ..., ap) has matric elements s(o; — ), 4,5 =1,...,p,
where

1—4|a|  ifla <
s(a) = (3.15)
Aol =3 if ol >

D=

N[ —=

Proof. First notice that for all pairs i < 7,
) B o N—2|x]’*l‘i| if |$j*l‘i|§2M,
#{y Jzi,y*t]x]-,y} o { 2|£Cj*l‘i|*N if |-Tj*lii| > 2M.
(3.16)
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(N.B. The right-hand side is correct up to an error of at most 2, which is
irrelevant in the limit N — oo.) We now rewrite the limit (3.13) as follows:

i 3 I (o)

Tly-Tp Y

= A}gnooﬁ Z Hexp ——Ztt o yda;y

Z1,--Tp Y 7.] 1
— St +-+t7) =
- o ;%wzm LD SR
Z1,--Tp B Z<J
— s td) - _ _
= e 2 ]\}EHOON Z exp Ztt]Ns zi)/N)
L1y Tp L Z<]
(3.17)
The last expression follows from the fact that
iji,y‘]rj,y = #{y : in,mej,y = 1} - #{y : Jwi,y‘]mj,y = _1}
_ N_2|xj_xi’_2‘$j_xi| if |xi—wj\§2M,
- 2|xj—a:i]—N—(2N—2|a:j—mi\) if |xj—a;i\ > 2M.
(3.18)
Taking the limit N — oo now yields
1 1
e~ 3t +t3) / daj .. / day, Hexp [—titjs(a; — aj)]. (3.19)
0 0

1<j

The result (3.14) then follows from the well-known Fourier transform formula
for Gaussian functions. 0

The formula (3.14) can be simplified by a transformation of variables. We
subdivide the domain of integration into subdomains as follows. First let

uj := oj41 — a1 and define s; := s(u;) for j=1,...,p— 1.
Lemma 3.2. Let 7 be a permutation of {1,...,p—1} and let oq,...,0p—1 €
{£1}. Define the region R(m, o) C [0,1]P71 by (u1,...,up—1) € R(m, o) iff
1 1 1
0 < up) — Z(Jw(l) +1) <o < Ug(po1) — 4( xp—1) T 1) < 3 (3.20)

Then the region R(m, o) is equivalent to
=1 <or)sa) <0 < Tr(p—1)Sa(p-1) < L. (3.21)
and the elements of the matriz S are given by

Sii =1 forall1<i<p
S = Siio= s foralll<i<p
Sij = Sj = 0j-18-1—0i-15j-1+ 01051 if 0181 < 0j-15_1.
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Moreover, if we denote b; := 0(;ySx(;), then

p—2
det S(ax, ..., ap) = 2P (14 b)) (1 = bp1) [ [ (Big1 — o). (3.22)
=1

Proof. The equivalence of regions follows immediately from (3.15) which
implies

. 1—4uk, ifdk:—l
Sk T\ dug — 3, if o, = +1

which can be written as

sg = dopuy, — 1 — 20y, (3.23)
from which
1 1
uk—z(ak—&—l) = Z(Uksk—l-l). (3.24)

To determine the matrix elements of .S, notice first that S;; = s(0) =1
and Si,l = Sl,i = S(’ui_ﬂ) = s;_1 for i > 1. Moreover, if 1 < i < 7,
Sij = Sji = s(luj—1 — ui—1]), so we may assume o; < 0;js;. Now, by (3.23)
we have

s(ui_l — Uj_l) = 40"711‘_1 - Uj_l‘ —1- 20’, (325)
where 0 = —1 if |uj—1 —uj—1| < % and ¢ = +1 otherwise. By the above
equivalence, 0 < u;_1 — %(0171 +1) <wj_q — %(aj,l +1) < % and hence

1 1 1
Z(O'jfl —0i-1) S uj1 —ui—1 < Z(Ujfl —0i-1) + ok (3.26)

;From this it is easy to see that

it — 1| = Uj_1 — Uji—1, }f i1 <051
i1 —uj1, if o1 > 051

and

o — -1, if 051 > 0j_1,
- +1, if 0i—1 < 0j—1.

This implies
1
o= —1—|—§(1 —O'ifl)(l—%dj,l) (327)
and

[ui—1 — uj—1|

= 0,_10j_10. 3.28
e =00 (3.28)

Inserting these identities into (3.25) we obtain
s(ui—1 —uj—1) = 4oi—10j-1(ui—1 — uj—1) + 01051 — 0j_1 + 01,

which is the stated result.
To evaluate det S we perform several elementary row and column op-
erations and show the resulting matrix to be the matrix B, given in the



13

appendix. For all 2 < ¢ < p multiply each entry in row i by o; and each en-
try in column 7 by 0;. Notice that if 1 <7 < j <pand 0,_15,_1 < 0j_15j-1,
then the resulting matrix S satisfies

Sij = 0i-10j-1(0j-18i—1 — 0i-18j-1 + 0i-10j-1)
= 0i-18i-1 —0j-18j-1+ 1
= bﬂ71(i) — bﬂ.fl(j) + 1.
The entries in the row 1 now read (1 by-1(1) ... br-1(,—1)). Reorder the
rows and columns, according to the permutation 7, so that the b indices are
increasing in the first row and column. The resulting matrix is B. The total
number of row and column operations is even, due to the symmetry of the

matrix S, so the sign of the determinant is preserved. Thus det .S = det B,
which is evaluated in the Lemma A.2 in the appendix. O

The inverse of the matrix B can also be worked out: see Lemma A.2 in
the Appendix. This leads to the following representation of the density pp:

Corollary 3.3. The density p, of (3.14) can be written as

2 p+1 .
Pp(X0, T1,- . Tp—1) p/2 ng (0, T15. .., Tp_1;0, ), (3.29)

where

w/2
g([]jo7 Ti,...,Tp-1;0, 7'() = /1;%+---+1122<4 dUl ‘e dvp_g / /2 da (330)

v; >0, Vi

+ T T 2 - m(p— 2
exp{_l ((””0 Tx()Tx()” (T0 = Tn(p-1)Trp-1)) (3.31)

2 o 3(4= X0 v))(1 — sina)
= (UW(i)xW(i) — O-W(i+1)$7r(i+1))2
S 2 (3.32)
i—1 i+l
n (Tn(p—2)Tn(p—2) — ‘77r(z>—1)957r(p—1))2 (3.33)
- X7 rsing) ) [ |

In particular, g3(zg, z1, z2; 7, ) is given by

93(xo, 1, x2; 0, ) / dvo/
—7/2
1
ex —_—=
P73

Figure 3.2 shows a contour plot of the density ps at fixed xo from which it is
apparent that the simple property of po mentioned in the caption of Figure
3.1 does not generalise to higher p.

(20 + Or(1)Tr(1))? N (20 — Or2)Tr(2)?
2

v§ (2—03/2)(1 —sina)

(Or()Tr(1) = Or(2)Tr(2))?
T2 w2/2) 1 +sina) ” (3:34)
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=1 =05 n e 1

FiGure 2. Contour plot of the function

p3(zo,21,0.6) generated using the integrals in
(3.34).

3.3. Convergence of the probability distribution on the space of
measures. The convergence of the characteristic functions E [e“f N )] fol-
lows immediately from the theorem of Section 3, but as in Section 1 (Lemma 2.2),
this does not yet imply that the corresponding distributions converge. This
therefore requires a proof:

Theorem 3.4. The sequence of probability distributions of the measures
(1.5) converges weakly to the probability distribution on M (R) with char-
acteristic function given by

E [€i<fv‘>} = Z Z /dml .. ./dl‘ppp(xl, ooy p) fwr) oo f(2p)3.35)
p=0""

This theorem follows from

Lemma 3.5. For all € > 0, there is a compact K. C MY(R) and Ny € N
such that

P(#N ¢K€) <e€
for all N =4M + 1 with M € N.

Proof. Let

K. = { 1€ MYR) | p[(—o00, —a) U (a,+o0)] < e“; " Va € N } .

Clearly this K. is compact, since for all § > 0 there exists a > 1 such that
w([—a,a]€) <06 forall p € K, ie. K, istight. Using Chebychev’s inequality
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we have

P(MN[(—OO,—a)U(a,+oo)} i 8) o BN Lo —a)utasto))

€ e—a?/8

(3.36)
where, as in (3.2) with f(z) = 1(_o,—a)U(a,+00)

B3 Lasoo)) = gy O In({s:])
{52}

! %”: M, 2%
= o 2 \aag - ) e \ UaarT

1 & AM
- o4M Z 2M + k)
k=[av M]+1

We now use the bounds (3%) < % forall M > 1 and 2%}_1“71 < exp (14]/2[i)

for all 1 <14 < 2M, which follows from e™* > 1 —x, to bound the coefficients

(211\1/11\44%) < \2/% exp (Z—}fj) This gives the following bound

1 X M —k?
]E(<:U’N71(infty,fa)u(a,+oo)>) < W Z \/meXp<4M>

k:[a\/ﬂ]—i-l
+o0
V2M Joyir
+oo 2 /9
= / e U 2y,
a/\/i
< e /4,

Applying this to (3.36) gives the result:

6—a2/8 e—a2/8
P | pn(a,00) > V271 - < em.

This yields as before

() efaz/
P(uy € KY) < ZP<uN[<—oo,—a>u<a,+oo>]>m )
a=1

€ s 2
< e /8
- \/271';
€ +oo 2
< —u /8y = e. 3.37
< \/ﬂ/o e u=ce€ (3.37)

O

Proof. (of Theorem 3.4.) By Prokhorov’s theorem (see [22]) the lemma
implies that the set of probability measures {y} is relatively compact. This
means that every subsequence has a convergent subsequence which must
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have the characteristic function given by (3.35) and is therefore uniquely
determined. It follows by the usual subsequence argument that the sequence
un itself must converge to this measure. U

APPENDIX
Lemma A.1. The value pa(x,y) given in (3.11) depends on |z| V |y| only.

Proof. Notice that it is clearly symmetric under interchange of x and y and
also under sign change of  or y. We can therefore assume that 0 < z < y.
Differentiating w.r.t. = then yields

_ 2?42say+y?

d 1! e
d.ﬁUpQ(l"y)_Zl’]T/_l(:E—i—Sy) (1—82)3/2 S

Notice that the exponent can be rewritten as

(z + sy)* 1,
21— s2) ' 27
Since z < y, x + sy has a zero inside the integration interval [—1,1]. We

therefore divide this range into the intervals [—1, —z/y| and (—z/y,1]. On
the second interval we change variables to s’ in such a way that

s=1= s =-lands=—z/y = s =—a/y

whereas
r+sy x5y
V1—s2 V1—g7
and
ds ds’
1—s2  1-—g7

Solving the latter yields
o c(l—s)—(1+s)
c(l—s)+(1+s)

and inserting the boundary conditions then gives

2
y—x
C =
=)

A simple calculation shows that the other identity also holds. The in-
tegral over the interval (—x/y,1] now transforms into minus the integral
over [—1,—xz/y) so that the two contributions cancel and the derivative is
Zero. O

Lemma A.2. Let B be the symmetric matriz with entries:

By =1 for1<i<p
Bi; = Bix = bi for2<i<p
Bij = Bj; = bi_1—bj_1+1, for1<i<j<p.

Then det B = 2p—2(1 + bl)(bg — bl) ... (bpfl — bp72)(1 — bpfl). Define
bo := —1, by := 1 and w; := (2(biy1 — b;))~" for all i = 0,...,p. Then the
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inverse B™' is given by:

Bl_j = wWp-1+ wo
i_ﬂ-l = wig2+wi1 for2<i<p
Biy, = Byy = w
B;%_l = B;_ll,i = —w;_1 for2<i<p-1
B, = Bp—j = —wp_1.

Proof. The determinant is obtained by elementary row and column opera-
tions: subtract row 1 from all other rows; then add column 2 to column 1;
finally successively subtract column ¢+ 1 from column ¢ fori =2,...,p—1.
The resulting matrix is upper triangular and the product of diagonal ele-
ments is the said value.

To prove the statement about the inverse of B~!, we multiply row x
of B and column y of B~ and consider various cases. If x = y = 1 we
have (BBil)n = bp_l(—wp_l + (w() -+ wp_1> +bwy =1 Ife=y=2
we have (BB~ 1)ay = bjwgy + (wo + w1) + (b1 — by + 1)(—wy) = 1, and if
x=y>1 (BB )y = (by—2—by—1+1)(~wy—2) + (wy—2 +wy—1) + (by—1 —
by + 1)(—wy—1) = 1.

The (1,2)- and (2,1) elements are: (BB~ !)1s = wo + by(wo + wy) +
bg(—wl) =0 and (BB_l)Ql = (bl —bp,l—l—l)(—wp,1)+b1(w0+wp,1)+w0 =
0. For y > 2 we get (BB 1)1, = by_o(—wy—2) + by_1(wy—2 + wy_1) +
by(—wy—1) = 0 and (BB~ ')y1 = (by—1 — bp-1 + 1)(~wp—1) + by—1(wp-1 +
’u)o) + (bl — by_l + 1)w0 = 0.

For the cases |z —y| > 2, first assume, 1 < 2 <y < p. Then (BB™1),, =
(bz—1 = by—2 + 1)(—wy—2) + (bo—1 — by—1 + 1)(wy—2 + wy—1) + (bg—1 — by +
1)(—wy—1) = 0. If y = p we have (BB 1)y, = (by—1 — bp—2 + 1)(—wp_2) +
(bmfl — bpfl + 1)(wp,2 + wp,l) + bz,l(—wp,l) =0 fl<y<ax<np,
(BB )2y = (by—2—bz—1+1)(—wy—2)+(by—1—by—1+1)(wy—o+wy_1)+ (by—
br—1+ 1)(—wy—1) = 0. Finally, if 2 <y <p—1, (BB 1),y = (by—2 — bp—1 +
D) (=wy—2)+ (by—1 = bp—1+1)(wy—2+wy—2)+(by —bp-1+1)(—wy—1) = 0 and
(BB_l)pQ = bp,1w0+(b1—bp,1+1)(w0—|—w1)—|—(bg—bp,l—l—l)(—wl) =0. O

Lemma A.3. The density pp(z1,...,x,) may be expressed as

1 o
pp(x0,T1,. . Tpa1) = ——— g g(xo, x1,...,Tp_1;0,m)
T1yeney o'p_lE:tl
mwEPerm[l,p—1]
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where the sum is over all permutations © of {1,...,p — 1} and

/2

9(zo,x1,...,2p_1;0,T) = /v%mﬂ;_2<4 dvy .. .dvy—2 /_ﬂ/2 do
v; >0,V

o] L [0t I Za) (@0 = Onp-1)Tap-1)’

v? L= Y72 0?)(1 - sina)
P22 (0 Tn(i) — Tn(s
(1) L (i) Uﬂ'(erl)xﬂ'(erl))
> .2

2
+(ffw(p Tr(p-2) = In(p-1)Tn(p-1)_ | |
14— 02)(1 +sina)

Proof. Because of periodicity of the function s(«) the p-fold integral in (3.14)
can be transformed into the following p — 1-fold integral over u; = ;41 — .
Since s is an even function of u, we have that 2! regions are similar and
we obtain

pp(x1, ..., xp) =

or—1 / duy . ..dup—1
(2m)p/2 [0,1]p—1 \/det S(ut, ..., up—1)

X exp {—;(f,S(ﬁ)‘l.@}

Next, we perform a change of variables to §. By (3.23) we have ds;/du; =
40;, and the above integral may be written as

+1
pp(21 x)_2p Z/ d51. - dsp
(1, .., 2p) = 5
(2m)p/ 1<04(1)87(1) S <On(p_1)Sm(p_1)<1 \/ det S(s,a,w)

1
X exp {—2(9?, S(s, 6’,77)_1@}.
Now change variables to b. This yields

1 / dby ...dbp_1
N = —
pp(1 p) 2p—1(27)p/2 Z 1<y < <by <t et S’(l_;, G

esp {3 (@ 507,10}

We now recall that det S(b, &, 7) = 22"2(14b1)(by — by) . .. (bp—1—bp—2)(1—
-1

bp—1). Moreover, the scalar product (&, S (b, &, 7)) simplifies by reorder-
ing the vector & according to the permutation 7, multiplying each entry by
it’s corresponding o value and then using the matrix B rather than S. Thus
we have
(o, x1,...,2p-1),5(b, 7, )7 (20,21, .. , Tp—1))

= <(:U07 On(1)Lr(1)s - -+ ?O—Tl'(p—l)xo'(p—l))7 B (xO’ On(1)Lr(1)s - -+ 7U7r(p—1)xa(p—1))>
A brief calculation shows that this value is indeed

(xO + 0-7r(1):1:7r(1))2 + (LL’O Or(p—1)Lr(p— + Z Uﬂ @) Pr() = Or(i+1)T 7r(i+1))2
2(1+b1) 2(1 - bp 1) (bit1 —b;) '
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and so

g(xo,xl,...,xp_l;a,ﬂ) = / dbl...dbp_l
—1<by <+<bp 1<1

(%0 + or(1)Zr(1))?/(2(1 + b1))
exp 4 —3 (20 = T (p-1)Tr(p—-1))/(2(1 = bp-1))
4‘§:£;f(0wu)$wu)—‘Uw@+1yrw@+1ﬂz/(20H+1——bﬁ)
\/2p72(1 + bl)(bg — bl) - (bpfl — bpfg)(l — bpfl)
Finally, we perform the following change of variables. For shorthand in this
proof, let V := v +.. .—|—UI%_2. For1<i<p-2letb; = (vi+---+v?)/2-1
and b,_1 = 1(V + (4 — V)sina). Then the Jacobian is Obpm) |

O(v1,...,0p—2,0x)

%Uva . ..vp_2(4 — V)cosa. This is also the value of the denominator in
the integral when expressed in the new variables. Thus the two cancel to
leave only an exponential term. Under this change of variables, the region
{5 ERPL| —1<b <o < b,—1 < 1} is equivalent to the region
{ve R’i—Q,a |17l < 2,—7/2 < a < m/2}. The resulting integral is just the
one stated in the lemma, which is also (3.30).

O
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