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Abstract. We consider fluctuations of the local magnetic field in frus-
trated mean-field Ising models. Frustration can come about due to ran-
domness of the interaction as in the Sherrington-Kirkpatrick model, or
through fixed interaction parameters but with varying signs. We con-
sider central limit theorems for the fluctuation of the local magnetic field
values w.r.t. the a priori spin distribution for both types of models. We
show that, in the case of the Sherrington-Kirkpatrick model there is
a central limit theorem for the local magnetic field, a.s. with respect
to the randomness. On the other hand, we show that, in the case of
non-random frustrated models, there is no central limit theorem for the
distribution of the values of the local field, but that the probability dis-
tribution of this distribution does converge. We compute the moments
of this probability distribution on the space of measures and show in
particular that it is not Gaussian.

1. Frustrated Ising models and the local field distribution

The celebrated Sherrington-Kirkpatrick model of a spin glass is given by
the Hamiltonian

HSK =
1√
N

N∑
i,j=1

Ji,jsisj , (1.1)

where the si = ±1 are Ising spins and the interaction parameters Ji,j are i.i.d.
random variables with Gaussian distribution. It was proposed and solved
in [1, 2] by Sherrington and Kirkpatrick using the replica trick. However,
their solution is flawed because it predicts negative entropy at low tempera-
tures. An alternative solution scheme was proposed by Parisi [3, 4], which is
generally regarded as being correct. However, it also involves the mathemat-
ically dubious replica trick and the mathematical status of the solution is
therefore still unclear. Indeed, this model presents a considerable challenge
to mathematicians [9]. Nevertheless, some progress has been made. Aizen-
man, Lebowitz and Ruelle [6] proved that, in the absence of an external
field, the Sherrington-Kirkpatrick (SK) solution is correct in the high tem-
perature domain. Pastur and Schcherbina [7] proved that the SK solution is
correct unless the Edwards-Anderson order parameter is not self-averaging
(which implies the latter). Guerra [8] derived a beautiful inequality which
implies that the the SK solution is correct in the high-temperature domain,
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even in the presence of an external field, and recently, Talagrand [10, 11]
extended Guerra’s bounds in various ways.

A different class of models with frustrated interactions was introduced by
Eisele and Ellis [14, 15, 16]. Their models have Hamiltonians of the form

HEE =
1
N

N∑
i,j=1

J(
i

N
− j

N
)sisj , (1.2)

where J(x) is a bounded continuous function. If this function takes on both
positive and negative values, for example J(x) = cos(x), then the model is
frustrated. A detailed study of these models was made in [14, 15] using large
deviation theory.

Here we consider the local magnetic field fluctuations for both types of
models. Unsurprisingly, we find that the two models behave quite differently,
but remarkably, the SK model behaves in a more regular way in that a
central limit theorem holds with probability 1. More precisely, we define
the occupation measure for the fluctuations by

µN =
1
N

N∑
i=1

δ 1√
N

∑N
j=1 Ji,jsj

(1.3)

and show that µN converges a.s. in the parameters Ji,j , in probability
with respect to the a priori (‘flat’) distribution of the spins to a normal
distribution as N → ∞. This weak result (which does not seem to have
been observed before) is a prerequisite for a large deviation property for
these variables, which would be of interest in considering the thermodynamic
limit of the model. The local fields play a pivotal role in mean-field models,
see also the approach of Thouless, Anderson and Palmer [12] and Mézard,
Parisi and Virasoro [13].

On the other hand, in the models introduced by Eisele and Ellis we show
that µN does not converge, even in probability. In fact, we consider a
slight variant of their models, which does not quite fit within their class,
but is more closely related to the SK model. It is given by the interaction
parameters

Ji,j =

 −1, if 0 < |i− j| ≤ M or |i− j| ≥ N −M ;
0, if i = j;
+1, if M < |i− j| < N −M = 3M + 1.

(1.4)

Here N = 4M + 1. If the measure (1.3) were to converge to a stable law γ
then we would have

E
[
ei〈f,µN 〉

]
→ δγ

[
ei〈f,µ〉

]
= ei〈f,γ〉 (1.5)

for continuous functions f . We will show that the distribution of the mea-
sures µN does converge but (1.5) does not hold. Indeed, we compute all mo-
ments limN→∞ E[〈f, µN 〉k] and show that the series converges for bounded
continuous functions f . We then prove that this implies the convergence of
the probability distribution of the measures µN to a nontrivial measure on



3

the set M1(R) of probability measures on R. (Notice that for fixed ferro-
magnetic couplings Ji,j = J , we have

E
(
ei〈µN ,f〉

)
=

1
2N

∑
{si}

e
i f

(
J√
N

∑N
j=1 sj

)
=
∫

eif(Jx)γ(dx) (1.6)

which is also not the same as (1.5). In this case the limiting distribution is
a Gaussian distribution of δ-measures.)

Probability measures on the space of states were introduced by Aizenman
and Wehr [17] for general translation-invariant random spin systems and
their importance in the case of short-range spin-glasses has been argued at
length by Newman and Stein [18, 19, 20]. Our example shows that such
measures can be remarkably complicated even in very simple situations.

2. The local field distribution in the SK model

We prove that µN → γ in probability w.r.t. the spin configurations a.s.
with respect to the randomness. This can also be formulated as follows:

Theorem 2.1. The random measures µN defined by (1.3) where the pa-
rameters Ji,j are i.i.d. random variables with standard normal distribution
satisfy E[F (µN )] → F (γ) a.s. with respect to the distribution of the coupling
parameters, for any continuous function F on the space of probability mea-
sures M1(R) with the topology of weak convergence, where γ is the Gaussian
measure on R with mean zero and variance 1, i.e. γ(dx) = e−x2/2 dx√

2π
.

Proof. We first prove convergence for functions F of the form F (µ) = ei〈µ,f〉.
This can be done by proving convergence of the moments E[〈µN , f〉p]. To
prove that these converge to 〈γ, f〉p almost surely, we compute

(E[〈µN , f〉p]− 〈γ, f〉p)2, (2.7)

where the ‘overline’ denotes the average over the random couplings. (In case
of long expressions, we also use the notation [· · · ]−.) First consider the first
moment (p = 1). We put f(x) = eitx so that 〈γ, f〉 = e−t2/2 = c(t), and
compute

(E[〈µN , f〉]− 〈γ, f〉)2 =

 1
N

N∑
i=1

N∏
j=1

cos
(

t√
N

Ji,j

)
− c(t)

2

. (2.8)

Now,

N∏
j=1

cos
(

t√
N

Ji,j

)
=

N∏
j=1

1
2

(
e
i t√

N
Ji,j + e

−i t√
N

Ji,j

)
=

N∏
j=1

e−
1

2N
t2 = c(t)

(2.9)
and similarly

N∏
j=1

cos
(

t√
N

Ji1,j

)
cos
(

t√
N

Ji2,j

)
= c(t)2 (2.10)
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if i1 6= i2 and otherwise

N∏
j=1

cos
(

t√
N

Ji,j1

)2

=
N∏

j=1

1
4

(
e
i t√

N
Ji,j + e

−i t√
N

Ji,j
)2

=
N∏

j=1

1
2

(
e

2it√
N

Ji,j + 1
)

=
[
1
2
(e−

2
N

t2 + 1)
]N

.(2.11)

Hence

(E[〈µN , f〉]− 〈γ, f〉)2

=
1

N2

N∑
i1,i2=1

N∏
j=1

cos
(

t√
N

Ji1,j

)
cos
(

t√
N

Ji2,j

)
− c(t)2

=
1
N

([
1
2
(e−

2
N

t2 + 1)
]N

− c(t)2
)

(2.12)

≤ 1
N

(
1− t2

N
+

t4

N2

)N

− 1
N

e−t2

≤ 1
N

e−t2
(
et4/N − 1

)
= O(N−2). (2.13)

By the Borel-Cantelli lemma we can now conclude that, almost surely,

E
(∫

eitxµN (dx)
)
→
∫

eitxγ(dx) (2.14)

and by interchanging the order of integration and the fact that convergence
of characteristic functions implies weak convergence of bounded measures
(see [21]),

E[〈µN , f〉] → 〈γ, f〉 a.s. (2.15)

for all bounded continuous functions f .
The same strategy applies also to higher moments. In that case we con-

sider

(
E

[
p∏

α=1

〈µN , fα〉

]
−

p∏
α=1

〈γ, fα〉

)2

(2.16)
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with fα(x) = eitαx. As above we get

(
E

[
p∏

α=1

〈µN , fα〉

]
−

p∏
α=1

〈γ, fα〉

)2

=

 1
Np

N∑
i1,...,ip=1

N∏
j=1

cos

(
1√
N

p∑
α=1

tαJiα,j

)
−

p∏
α=1

c(tα)

2

=
1

N2p

∑
i1,...,ip

∑
i′1,...,i′p

[ p∏
j=1

cos
(

1√
N

(t1Ji1,j + · · ·+ tpJip,j)
)
−

p∏
α=1

c(tα)


×

cos
(

1√
N

(t1Ji′1,j + · · ·+ tpJi′p,j)
)
−

p∏
j=1

c(tα)

]−. (2.17)

We distinguish three cases. The first case is when all iα and all i′β are
different, i.e. #{i1, . . . , ip, i′1, . . . , i′p} = 2p. These contribute nothing to the
above sum because of (2.9). The second case is when one pair is equal, i.e.
#{i1, . . . , ip, i′1, . . . , i′p} = 2p − 1. In this case there are two possibilities:
either #{i1, . . . , ip} = #{i′1, . . . , i′p} = p and there exists one pair (α, β)
such that iα = i′β or {i1, . . . , ip}∩ {i′1, . . . , i′p} = ∅ but #{i1, . . . , ip} = p and
#{i′1, . . . , i′p} = p − 1 or vice versa. The second possibility again gives no
contribution because the two factors in the last expression of (2.17) separate
and we can use (2.9) again in one of the factors. In case #{i1, . . . , ip} ∩
{i′1, . . . , i′p} = 1 we can assume iα = i′β and we have

N∏
j=1

cos
(

1√
N

(t1Ji1,j + · · ·+ tpJip,j)
)

cos
(

1√
N

(t1Ji′1,j + · · ·+ tpJi′p,j)
)

=
N∏

j=1

1
2

exp

 i√
N

(tα + tβ)Jiα,j +
p∑

α′=1,α′ 6=α

tα′Jiα′ ,j +
p∑

β′=1,β′ 6=β

tβ′Ji′
β′ ,j


+ exp

 i√
N

(tα − tβ)Jiα,j +
p∑

α′=1,α′ 6=α

tα′Jiα′ ,j −
p∑

β′=1,β′ 6=β

tβ′Ji′
β′ ,j

−

=

(
e−

1
2N

(tα+tβ)2 + e−
1

2N
(tα−tβ)2

2

)N

e−(t21+···+t2p)−(t2α+t2β)/2. (2.18)

If #{i1, . . . , ip, i′1, . . . , i′p} ≤ 2p− 2 then we simply bound the two factors in
the right-hand side of (2.17) by 22 = 4. The total number of terms in the
sum in this case is bounded by[

3
(

2p

4

)
+
(

2p

3

)]
N2p−2, (2.19)
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and the number of terms in the second case is less than p2N2p−1. We thus
obtain(

E

[
p∏

α=1

〈µN , fα〉

]
−

p∏
α=1

〈γ, fα〉

)2

≤ 4
N2

[
3
(

2p

4

)
+
(

2p

3

)]

+
1
N

p∑
α,β=1

(e−(tα+tβ)2/2N + e−(tα−tβ)2/2N

2

)N

− e−(t2α+t2β)/2


= O(N−2). (2.20)

As in the case of p = 1 above, we conclude that

E[
∫

f(x1, . . . , xp)µN (dx1) . . . µN (dxp)] →
∫

f(x1, . . . , xp)γ(dx1) . . . γ(dxp)

(2.21)
a.s. for all bounded continuous functions f . In particular,

E[〈µN , f〉p] → 〈γ, f〉p (2.22)

a.s. for all bounded continuous functions f . By expanding the exponential,
it then follows that

E[ei〈µN ,f〉] → ei〈γ,f〉. (2.23)
Unlike the finite-dimensional situation, this is not sufficient for the con-
vergence of the measures. By Prokhorov’s theorem [22], we need to prove
tightness of the sequence of probability distributions of the µN . This is done
in the following lemma. �

Tightness of the sequence of probability measures on M1(R) follows from:

Lemma 2.2. For all ε > 0 there exists a compact set Kε ⊂ M1(R) such
that for all N ∈ N,

P(µN /∈ Kε) < ε (2.24)
a.s. with respect to the coupling parameters.

Proof. We define

Kn =
{
µ ∈M1(R)

∣∣µ[(−∞,−a) ∪ (a,+∞)] ≤ n4e−a ∀a ∈ N
}

. (2.25)

Clearly, Kn is compact. By Chebyshev’s inequality,

P
(
µN [(−∞,−a) ∪ (a,+∞)] > n4e−a

)
< n−4eaE(〈µN , 1(−∞,−a)∪(a,+∞)〉).

(2.26)
We now bound 1(−∞,−a)∪(a,+∞) by e2(x−a) + e−2(x+a) and compute

E (〈µN , e±2x〉) =
1
N

N∑
i=1

E
(
e
± 2√

N

∑N
j=1 Ji,jsj

)
= e2. (2.27)

It follows that

P (µN [(−∞) ∪ (a,+∞)] > n4e−a) ≤ 2n−4e2−a. (2.28)

By the Borel-Cantelli lemma, we conclude that, for n large enough,

P
(
µN [(−∞,−a) ∪ (a,+∞)] > n4e−a

)
< 2n−2e2−a (2.29)
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a.s. for all a ∈ N. The lemma now follows from

P(µN ∈ Kc
n) ≤

∞∑
a=1

P
(
µN [(−∞,−a) ∪ (a,+∞)] > n4e−a

)
≤ 2e2n−2

∞∑
a=1

e−a

=
2e2

e− 1
n−2 < ε (2.30)

for n large enough. �

3. The local field distribution in the frustrated model

3.1. The first and second moment. For the first moment, the conver-
gence is easy: Let us introduce the notation

LN ({sx}) = N〈f, µN 〉 =
N∑

x=1

f

 1√
N

N∑
y=1

Jx,ysy

 . (3.1)

Then

1
N

∑
{sx}

LN ({sx}) = 2
2M∑

k=−2M

(
4M

2M − k

)
f

(
2k√
N

)
. (3.2)

(To see this, write
∑N

y=1 Jx,ysy = −
∑x−1

y=x−M sy−
∑x+M

y=x+1 sy+
∑x+3M

y=x+M+1 sy

and sum over the possible values 2k of this variable with possible number
of occurrences at fixed x. The sum over sx gives an additional factor 2.)
Hence

lim
N→∞

E [〈µN , f〉] =
1√
2π

∫
R

f(x)e−x2/2dx = 〈f, γ〉. (3.3)

Therefore, if (1.5) were to hold the limiting measure γ would be a standard
normal distribution. Computation of the higher moments is more compli-
cated. We first consider the case k = 2.

For the second moment, we need to compute the limit

lim
N→∞

1
2NN2

∑
{sx}

LN ({sx})2. (3.4)

Now

∑
{sx}

LN ({sx})2 =
∑
x1,x2

∑
{sx}

f

(
1√
N

∑
y

Jx1,ysy

)
f

(
1√
N

∑
y

Jx2,ysy

)
. (3.5)
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To compute the limit of this expression we consider it as a quadratic form
and insert eit1z and eit2z for f . We then need to compute

lim
N→∞

1
2NN2

∑
x1,x2

∑
{sx}

exp

[
i√
N

∑
y

(t1Jx1,y + t2Jx2,y)sy

]

= lim
N→∞

1
2NN2

∑
x1,x2

∏
y

∑
sy=±1

eiN−1/2(t1Jx1,y+t2Jx2,y)sy (3.6)

= lim
N→∞

1
N2

∑
x1,x2

∏
y

cos
(

1√
N

(t1Jx1,y + t2Jx2,y)
)

.

Now, if |x1 − x2| ≤ 2M , the number of y for which Jx1,y = Jx2,y is
2(2M − |x1 − x2| − 1) and the number of y for which Jx1,y = −Jx2,y is
2|x1 − x2| + 1. (Except of course if x1 = x2, but this case is negligible
as we are dividing by N2. Similarly, the cases y = x1, x2 are irrelevant.)
On the other hand, if |x1 − x2| > 2M then the number of y with Jx1,y =
Jx2,y is 2(|x1 − x2| − 2M − 1) and the number of y with Jx1,y = −Jx2,y is
2(N − |x1 − x2|)− 1. Thus, the above limit equals

lim
N→∞

1
N

{ 2M∑
k=1

(
cos
(
N−1/2(t1 + t2)

))2(2M−k−1) (
cos
(
N−1/2(t1 − t2)

))2k+1

+
N−1∑

k=2M+1

(
cos
(
N−1/2(t1 + t2)

))2(k−2M−1) (
cos
(
N−1/2(t1 − t2)

))2(N−k)−1
}

= lim
N→∞

1
N

{ 2M∑
k=0

(
1− 1

2N
(t1 + t2)2

)N−2k (
1− 1

2N
(t1 − t2)2

)2k

+
N∑

k=2M+1

(
1− 1

2N
(t1 + t2)2

)2k−N (
1− 1

2N
(t1 − t2)2

)2(N−k)}

=
1
2

{∫ 1

0
exp

[
−1

2
{(1− s)(t1 + t2)2 + s(t1 − t2)2}

]
ds

+
∫ 2

1
exp

[
−1

2
{s(t1 + t2)2 + (2− s)(t1 − t2)2}

]
ds

}
. (3.7)

This can be rewritten as

1
2
e−(t21+t22)/2

∫ 1

−1
est1t2du. (3.8)

The limit (3.4) is therefore given by∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 ρ2(x1, x2)f(x1)f(x2), (3.9)
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where ρ2 is the density of the measure with characteristic function given by
(3.8), i.e.∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 ρ2(x1, x2)ei(t1x1+t2x2) =

1
2
e−(t21+t22)/2

∫ 1

−1
est1t2ds.

(3.10)

Diagonalising t21 − 2st1t2 + t22 we find

ρ2(x1, x2) =
1
4π

∫ 1

−1

e
− (x1+x2)2

4(1−s)
− (x1−x2)2

4(1+s)

√
1− s2

ds. (3.11)

Clearly, this is not equal to the density of γ ⊗ γ, i.e. 1
2πe−(x2

1+x2
2)/2 which

would be the result if (1.5) were to hold.
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Figure 1. Plot of the function (3.11). It appears
from this plot that ρ2 is constant on squares, i.e.
it only depends on |x1| ∨ |x2|. This will be proved
in the appendix.
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3.2. Higher moments. The computation of the higher moments follows
the same strategy but the result is more complicated and cannot be ex-
pressed in such a simple fashion. Analogous to (3.5) we have

∑
{sx}

LN ({sx})p =
∑

x1,...,xp

∑
{sx}

p∏
i=1

f

(
1√
N

∑
y

Jxi,ysy

)
. (3.12)

Inserting exponentials eitiz we have to compute

lim
N→∞

1
2NNp

∑
x1,...,xp

∑
{sx}

exp

[
i√
N

∑
y

sy

p∑
i=1

tiJxi,y

]

= lim
N→∞

1
Np

∑
x1,...,xp

∏
y

cos

(
1√
N

p∑
i=1

tiJxi,y

)
. (3.13)

We now show that a calculation as in the case of the second moment yields
the following:

Theorem 3.1. For bounded continuous functions f , the limit

lim
N→∞

E [〈f, µN 〉p] = lim
N→∞

1
Np2N

∑
{sx}

LN ({sx})p

exists and equals∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxp ρp(x1, . . . , xp)f(x1) . . . f(xp),

where the probability density ρp is given by

ρp(x1, . . . , xp) =
1

(2π)p/2

∫ 1

0
. . .

∫ 1

0

dα1 . . . dαp√
det S(α1, . . . , αp)

e−
1
2
〈x, S(α1,...,αp)−1x〉

(3.14)

and the matrix S(α1, . . . , αp) has matrix elements s(αi−αj), i, j = 1, . . . , p,
where

s(α) =

 1− 4|α| if |α| < 1
2 ,

4|α| − 3 if |α| ≥ 1
2 .

(3.15)

.

Proof. First notice that for all pairs i < j,

#{y : Jxi,y = Jxj ,y} =
{

N − 2|xj − xi| if |xj − xi| ≤ 2M,
2|xj − xi| −N if |xj − xi| > 2M.

(3.16)
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(N.B. The right-hand side is correct up to an error of at most 2, which is
irrelevant in the limit N →∞.) We now rewrite the limit (3.13) as follows:

lim
N→∞

1
Np

∑
x1,...,xp

∏
y

1− 1
2N

(
p∑

i=1

tiJxi,y

)2


= lim
N→∞

1
Np

∑
x1,...,xp

∏
y

exp

− 1
2N

p∑
i,j=1

titjJxi,yJxj ,y


= e−

1
2
(t21+···+t2p) lim

N→∞

1
Np

∑
x1,...,xp

exp

− 1
N

∑
i<j

titj
∑

y

Jxi,yJxj ,y


= e−

1
2
(t21+···+t2p) lim

N→∞

1
Np

∑
x1,...,xp

exp

−∑
i<j

titjNs((xj − xi)/N)


(3.17)

The last expression follows from the fact that∑
y

Jxi,yJxj ,y = #{y : Jxi,yJxj ,y = 1} −#{y : Jxi,yJxj ,y = −1}

=
{

N − 2|xj − xi| − 2|xj − xi| if |xi − xj | ≤ 2M,
2|xj − xi| −N − (2N − 2|xj − xi|) if |xj − xi| > 2M.

(3.18)

Taking the limit N →∞ now yields

e−
1
2
(t21+···+t2p)

∫ 1

0
dα1 . . .

∫ 1

0
dαp

∏
i<j

exp [−titjs(αi − αj)] . (3.19)

The result (3.14) then follows from the well-known Fourier transform formula
for Gaussian functions. �

The formula (3.14) can be simplified by a transformation of variables. We
subdivide the domain of integration into subdomains as follows. First let
uj := αj+1 − α1 and define sj := s(uj) for j = 1, . . . , p− 1.

Lemma 3.2. Let π be a permutation of {1, . . . , p−1} and let σ1, . . . , σp−1 ∈
{±1}. Define the region R(π, σ) ⊂ [0, 1]p−1 by (u1, . . . , up−1) ∈ R(π, σ) iff

0 ≤ uπ(1) −
1
4
(σπ(1) + 1) < · · · < uπ(p−1) −

1
4
(σπ(p−1) + 1) ≤ 1

2
. (3.20)

Then the region R(π, σ) is equivalent to

−1 < σπ(1)sπ(1) < · · · < σπ(p−1)sπ(p−1) < 1. (3.21)

and the elements of the matrix S are given by

Sii = 1 for all 1 ≤ i ≤ p
S1i = Si1 = si−1 for all 1 < i ≤ p
Sij = Sji = σj−1si−1 − σi−1sj−1 + σi−1σj−1 if σi−1si−1 < σj−1sj−1.
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Moreover, if we denote bi := σπ(i)sπ(i), then

det S(α1, . . . , αp) = 2p−2(1 + b1)(1− bp−1)
p−2∏
i=1

(bi+1 − bi). (3.22)

Proof. The equivalence of regions follows immediately from (3.15) which
implies

sk =
{

1− 4uk, if σk = −1
4uk − 3, if σk = +1

which can be written as

sk = 4σkuk − 1− 2σk (3.23)

from which

uk −
1
4
(σk + 1) =

1
4
(σksk + 1). (3.24)

To determine the matrix elements of S, notice first that Si,i = s(0) = 1
and Si,1 = S1,i = s(|ui−1|) = si−1 for i > 1. Moreover, if 1 < i < j,
Si,j = Sj,i = s(|uj−1 − ui−1|), so we may assume σi < σjsj . Now, by (3.23)
we have

s(ui−1 − uj−1) = 4σ|ui−1 − uj−1| − 1− 2σ, (3.25)

where σ = −1 if |ui−1 − uj−1| ≤ 1
2 and σ = +1 otherwise. By the above

equivalence, 0 ≤ ui−1 − 1
4(σi−1 + 1) < uj−1 − 1

4(σj−1 + 1) ≤ 1
2 and hence

1
4
(σj−1 − σi−1) ≤ uj−1 − ui−1 ≤

1
4
(σj−1 − σi−1) +

1
2
. (3.26)

¿From this it is easy to see that

|ui−1 − uj−1| =
{

uj−1 − ui−1, if σi−1 ≤ σj−1

ui−1 − uj−1, if σi−1 > σj−1

and

σ =
{
−1, if σi−1 ≥ σj−1,
+1, if σi−1 < σj−1.

This implies

σ = −1 +
1
2
(1− σi−1)(1 + σj−1) (3.27)

and
|ui−1 − uj−1|
ui−1 − uj−1

= σi−1σj−1σ. (3.28)

Inserting these identities into (3.25) we obtain

s(ui−1 − uj−1) = 4σi−1σj−1(ui−1 − uj−1) + σi−1σj−1 − σj−1 + σi−1,

which is the stated result.
To evaluate detS we perform several elementary row and column op-

erations and show the resulting matrix to be the matrix B, given in the
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appendix. For all 2 ≤ i ≤ p multiply each entry in row i by σi and each en-
try in column i by σi. Notice that if 1 < i < j ≤ p and σi−1si−1 < σj−1sj−1,
then the resulting matrix S̃ satisfies

S̃ij = σi−1σj−1(σj−1si−1 − σi−1sj−1 + σi−1σj−1)
= σi−1si−1 − σj−1sj−1 + 1
= bπ−1(i) − bπ−1(j) + 1.

The entries in the row 1 now read (1 bπ−1(1) . . . bπ−1(p−1)). Reorder the
rows and columns, according to the permutation π, so that the b indices are
increasing in the first row and column. The resulting matrix is B. The total
number of row and column operations is even, due to the symmetry of the
matrix S, so the sign of the determinant is preserved. Thus det S = det B,
which is evaluated in the Lemma A.2 in the appendix. �

The inverse of the matrix B can also be worked out: see Lemma A.2 in
the Appendix. This leads to the following representation of the density ρp:

Corollary 3.3. The density ρp of (3.14) can be written as

ρp(x0, x1, . . . , xp−1) =
2−p+1

(2π)p/2

∑
~σ,π

gp(x0, x1, . . . , xp−1;~σ, π), (3.29)

where

g(x0, x1, . . . , xp−1;σ, π) =
∫

v2
1+···+v2

p−2≤4

vi≥0, ∀i

dv1 . . . dvp−2

∫ π/2

−π/2
dα (3.30)

exp

{
−1

2

(
(x0 + σπ(1)xπ(1))2

v2
1

+
(x0 − σπ(p−1)xπ(p−1))2

1
2(4−

∑p−2
i=1 v2

i )(1− sinα)
(3.31)

+
p−2∑
i=1

(
σπ(i)xπ(i) − σπ(i+1)xπ(i+1)

)2
v2
i+1

(3.32)

+

(
σπ(p−2)xπ(p−2) − σπ(p−1)xπ(p−1)

)2
1
2(4−

∑p−2
1 v2

i )(1 + sinα)

)}
. (3.33)

In particular, g3(x0, x1, x2;~σ, π) is given by

g3(x0, x1, x2;~σ, π) =
∫ 2

0
dv0

∫ π/2

−π/2
dα

exp

{
−1

2

[
(x0 + σπ(1)xπ(1))2

v2
0

+
(x0 − σπ(2)xπ(2))2

(2− v2
0/2)(1− sinα)

+
(σπ(1)xπ(1) − σπ(2)xπ(2))2

(2− v2
0/2)(1 + sinα)

]}
. (3.34)

Figure 3.2 shows a contour plot of the density ρ3 at fixed x2 from which it is
apparent that the simple property of ρ2 mentioned in the caption of Figure
3.1 does not generalise to higher p.
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Figure 2. Contour plot of the function
ρ3(x0, x1, 0.6) generated using the integrals in
(3.34).

3.3. Convergence of the probability distribution on the space of
measures. The convergence of the characteristic functions E

[
ei〈f,µN 〉

]
fol-

lows immediately from the theorem of Section 3, but as in Section 1 (Lemma 2.2),
this does not yet imply that the corresponding distributions converge. This
therefore requires a proof:

Theorem 3.4. The sequence of probability distributions of the measures
(1.5) converges weakly to the probability distribution on M1(R) with char-
acteristic function given by

E
[
ei〈f,·〉

]
=

∞∑
p=0

ip

p!

∫
dx1 . . .

∫
dxpρp(x1, . . . , xp)f(x1) . . . f(xp).(3.35)

This theorem follows from

Lemma 3.5. For all ε > 0, there is a compact Kε ⊂ M1(R) and N0 ∈ N
such that

P(µN 6∈ Kε) < ε

for all N = 4M + 1 with M ∈ N.

Proof. Let

Kε :=

{
µ ∈M1(R)

∣∣∣ µ[(−∞,−a) ∪ (a,+∞)] <
e−a2/4

ε
∀a ∈ N

}
.

Clearly this Kε is compact, since for all δ > 0 there exists a > 1 such that
µ([−a, a]c) ≤ δ for all µ ∈ Kε, i.e. Kε is tight. Using Chebychev’s inequality
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we have

P

(
µN [(−∞,−a) ∪ (a,+∞)] >

√
2π

e−a2/8

ε

)
<

ε E(〈µN , 1(−∞,−a)∪(a,+∞)〉)
e−a2/8

(3.36)

where, as in (3.2) with f(x) = 1(−∞,−a)∪(a,+∞)

E(〈µN , 1(a,+∞)〉) =
1

2N

∑
{sx}

LN ({sx})

=
1

24M+1

2M∑
k=−2M

(
4M

2M − k

)
1(−∞,−a)∪(a,+∞)

(
2k√

4M + 1

)

=
1

24M

2M∑
k=[a

√
M ]+1

(
4M

2M + k

)
.

We now use the bounds
(
4M
2M

)
< 24M

√
2M

for all M ≥ 1 and 2M+1−i
2M+i < exp

(
1−2i
4M

)
for all 1 ≤ i ≤ 2M , which follows from e−x > 1−x, to bound the coefficients(

4M
2M+k

)
< 24M

√
2M

exp
(
−k2

4M

)
. This gives the following bound

E(〈µN , 1(infty,−a)∪(a,+∞)〉) <
1

24M

2M∑
k=[a

√
M ]+1

24M

√
2M

exp
(
−k2

4M

)

≤ 1√
2M

∫ +∞

a
√

M
e−x2/4Mdx

=
∫ +∞

a/
√

2
e−u2/2du

< e−a2/4.

Applying this to (3.36) gives the result:

P

(
µN (a,∞) ≥

√
2π

e−a2/8

ε

)
< ε

e−a2/8

√
2π

.

This yields as before

P(µN ∈ Kc
ε ) ≤

∞∑
a=1

P

(
µN [(−∞,−a) ∪ (a,+∞)] >

√
2π

e−a2/8

ε

)

≤ ε√
2π

∞∑
a=1

e−a2/8

≤ ε√
2π

∫ +∞

0
e−u2/8du = ε. (3.37)

�

Proof. (of Theorem 3.4.) By Prokhorov’s theorem (see [22]) the lemma
implies that the set of probability measures {µN} is relatively compact. This
means that every subsequence has a convergent subsequence which must
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have the characteristic function given by (3.35) and is therefore uniquely
determined. It follows by the usual subsequence argument that the sequence
µN itself must converge to this measure. �

Appendix

Lemma A.1. The value ρ2(x, y) given in (3.11) depends on |x| ∨ |y| only.

Proof. Notice that it is clearly symmetric under interchange of x and y and
also under sign change of x or y. We can therefore assume that 0 ≤ x < y.
Differentiating w.r.t. x then yields

d

dx
ρ2(x, y) =

1
4π

∫ 1

−1
(x + sy)

e
−x2+2sxy+y2

2(1−s2)

(1− s2)3/2
ds

Notice that the exponent can be rewritten as

(x + sy)2

2(1− s2)
+

1
2
y2.

Since x < y, x + sy has a zero inside the integration interval [−1, 1]. We
therefore divide this range into the intervals [−1,−x/y] and (−x/y, 1]. On
the second interval we change variables to s′ in such a way that

s = 1 =⇒ s′ = −1 and s = −x/y =⇒ s′ = −x/y

whereas
x + sy√
1− s2

= − x + s′y√
1− s′2

and
ds

1− s2
= − ds′

1− s′2

Solving the latter yields

s′ =
c(1− s)− (1 + s)
c(1− s) + (1 + s)

and inserting the boundary conditions then gives

c =
(

y − x

y + x

)2

.

A simple calculation shows that the other identity also holds. The in-
tegral over the interval (−x/y, 1] now transforms into minus the integral
over [−1,−x/y) so that the two contributions cancel and the derivative is
zero. �

Lemma A.2. Let B be the symmetric matrix with entries:

Bii := 1 for 1 ≤ i ≤ p
B1,i = Bi,1 := bi−1 for 2 ≤ i ≤ p
Bi,j = Bj,i := bi−1 − bj−1 + 1, for 1 ≤ i < j ≤ p.

Then det B = 2p−2(1 + b1)(b2 − b1) . . . (bp−1 − bp−2)(1 − bp−1). Define
b0 := −1, bp := 1 and wi := (2(bi+1 − bi))−1 for all i = 0, . . . , p. Then the
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inverse B−1 is given by:

B−1
1,1 = wp−1 + w0

B−1
i,i = wi−2 + wi−1 for 2 ≤ i ≤ p

B−1
1,2 = B−1

2,1 = w0

B−1
i,i+1 = B−1

i+1,i = −wi−1 for 2 ≤ i ≤ p− 1
B−1

1,p = B−1
p,1 = −wp−1.

Proof. The determinant is obtained by elementary row and column opera-
tions: subtract row 1 from all other rows; then add column 2 to column 1;
finally successively subtract column i + 1 from column i for i = 2, . . . , p− 1.
The resulting matrix is upper triangular and the product of diagonal ele-
ments is the said value.

To prove the statement about the inverse of B−1, we multiply row x
of B and column y of B−1 and consider various cases. If x = y = 1 we
have (BB−1)11 = bp−1(−wp−1 + (w0 + wp−1) + b1w0 = 1. If x = y = 2
we have (BB−1)22 = b1w0 + (w0 + w1) + (b1 − b2 + 1)(−w1) = 1, and if
x = y > 1, (BB−1)yy = (by−2− by−1 +1)(−wy−2)+ (wy−2 +wy−1)+ (by−1−
by + 1)(−wy−1) = 1.

The (1,2)- and (2,1) elements are: (BB−1)12 = w0 + b1(w0 + w1) +
b2(−w1) = 0 and (BB−1)21 = (b1−bp−1+1)(−wp−1)+b1(w0+wp−1)+w0 =
0. For y > 2 we get (BB−1)1y = by−2(−wy−2) + by−1(wy−2 + wy−1) +
by(−wy−1) = 0 and (BB−1)y1 = (by−1 − bp−1 + 1)(−wp−1) + by−1(wp−1 +
w0) + (b1 − by−1 + 1)w0 = 0.

For the cases |x− y| ≥ 2, first assume, 1 < x < y < p. Then (BB−1)xy =
(bx−1 − by−2 + 1)(−wy−2) + (bx−1 − by−1 + 1)(wy−2 + wy−1) + (bx−1 − by +
1)(−wy−1) = 0. If y = p we have (BB−1)xp = (bx−1 − bp−2 + 1)(−wp−2) +
(bx−1 − bp−1 + 1)(wp−2 + wp−1) + bx−1(−wp−1) = 0. If 1 < y < x < p,
(BB−1)xy = (by−2−bx−1+1)(−wy−2)+(by−1−bx−1+1)(wy−2+wy−1)+(by−
bx−1 + 1)(−wy−1) = 0. Finally, if 2 < y < p− 1, (BB−1)py = (by−2 − bp−1 +
1)(−wy−2)+(by−1−bp−1+1)(wy−2+wy−2)+(by−bp−1+1)(−wy−1) = 0 and
(BB−1)p2 = bp−1w0+(b1−bp−1+1)(w0+w1)+(b2−bp−1+1)(−w1) = 0. �

Lemma A.3. The density ρp(x1, . . . , xp) may be expressed as

ρp(x0, x1, . . . , xp−1) =
1

2p−1(2π)p/2

∑
σ1,...,σp−1∈±1

π∈Perm[1,p−1]

g(x0, x1, . . . , xp−1;~σ, π)
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where the sum is over all permutations π of {1, . . . , p− 1} and

g(x0, x1, . . . , xp−1;σ, π) =
∫

v2
1+···+v2

p−2≤4

vi≥0, ∀i

dv1 . . . dvp−2

∫ π/2

−π/2
dα

exp

{
−1

2

(
(x0 + σπ(1)xπ(1))2

v2
1

+
(x0 − σπ(p−1)xπ(p−1))2

1
2(4−

∑p−2
i=1 v2

i )(1− sinα)

+
p−2∑
i=1

(
σπ(i)xπ(i) − σπ(i+1)xπ(i+1)

)2
v2
i+1

+

(
σπ(p−2)xπ(p−2) − σπ(p−1)xπ(p−1)

)2
1
2(4−

∑p−2
1 v2

i )(1 + sinα)

)}
.

Proof. Because of periodicity of the function s(α) the p-fold integral in (3.14)
can be transformed into the following p−1-fold integral over ui = αi+1−α1.
Since s is an even function of u, we have that 2p−1 regions are similar and
we obtain

ρp(x1, . . . , xp) =
2p−1

(2π)p/2

∫
[0,1]p−1

du1 . . . dup−1√
det S(u1, . . . , up−1)

× exp
{
−1

2
〈~x, S(~u)−1~x〉

}
Next, we perform a change of variables to ~s. By (3.23) we have dsi/dui =
4σi, and the above integral may be written as

ρp(x1, . . . , xp) =
2−p+1

(2π)p/2

∑
~σ,π

∫
−1≤σπ(1)sπ(1)≤···≤σπ(p−1)sπ(p−1)≤1

ds1 . . . dsp−1√
det S(~s, ~σ, π)

× exp
{
−1

2
〈~x, S(~s, ~σ, π)−1~x〉

}
.

Now change variables to ~b. This yields

ρp(x1, . . . , xp) =
1

2p−1(2π)p/2

∑
~σ,π

∫
−1≤b1≤···≤bp−1≤1

db1 . . . dbp−1√
det S(~b, ~σ, π)

exp
{
−1

2
〈~x, S(~b, ~σ, π)−1~x〉

}
We now recall that det S(~b, ~σ, π) = 2p−2(1+ b1)(b2− b1) . . . (bp−1− bp−2)(1−
bp−1). Moreover, the scalar product 〈~x, S(~b, ~σ, π)−1~x〉 simplifies by reorder-
ing the vector ~x according to the permutation π, multiplying each entry by
it’s corresponding σ value and then using the matrix B rather than S. Thus
we have

〈(x0, x1, . . . , xp−1), S(~b, ~σ, π)−1 (x0, x1, . . . , xp−1)〉
= 〈(x0, σπ(1)xπ(1), . . . , σπ(p−1)xσ(p−1)), B (x0, σπ(1)xπ(1), . . . , σπ(p−1)xσ(p−1))〉

A brief calculation shows that this value is indeed

(x0 + σπ(1)xπ(1))2

2(1 + b1)
+

(x0 − σπ(p−1)xπ(p−1))2

2(1− bp−1)
+

p−2∑
i=1

(σπ(i)xπ(i) − σπ(i+1)xπ(i+1))2

2(bi+1 − bi)
.
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and so

g(x0, x1, . . . , xp−1;σ, π) =
∫
−1≤b1≤···≤bp−1≤1

db1 . . . dbp−1

exp

−1
2

 (x0 + σπ(1)xπ(1))2/(2(1 + b1))
+(x0 − σπ(p−1)xπ(p−1))2/(2(1− bp−1))

+
∑p−2

i=1 (σπ(i)xπ(i) − σπ(i+1)xπ(i+1))2/(2(bi+1 − bi))

√
2p−2(1 + b1)(b2 − b1) . . . (bp−1 − bp−2)(1− bp−1)

.

Finally, we perform the following change of variables. For shorthand in this
proof, let V := v2

1 + . . .+v2
p−2. For 1 ≤ i ≤ p−2, let bi = (v2

1 + · · ·+v2
i )/2−1

and bp−1 = 1
4(V + (4 − V ) sinα). Then the Jacobian is

∣∣∣ ∂(b1,...,bp−1)
∂(v1,...,vp−2,α)

∣∣∣ =
1
4v1v2 . . . vp−2(4 − V ) cos α. This is also the value of the denominator in
the integral when expressed in the new variables. Thus the two cancel to
leave only an exponential term. Under this change of variables, the region
{~b ∈ Rp−1 | − 1 ≤ b1 ≤ · · · ≤ bp−1 ≤ 1} is equivalent to the region
{~v ∈ Rp−2

+ , α | ‖~v‖ ≤ 2,−π/2 ≤ α ≤ π/2}. The resulting integral is just the
one stated in the lemma, which is also (3.30).

�
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