
Combinatorial diversity metrics for the analysis of policy processes

Mark Dukesa, Anthony A. Caseyb

aSchool of Mathematics and Statistics, University College Dublin, Ireland.
bUCD School of Politics and International Relations, University College Dublin, Ireland.

Abstract

We present several completely general diversity metrics to quantify the problem-solving capacity of any public policy
decision making process. This is performed by modelling the policy process using a declarative process paradigm in
conjunction with constraints modelled by expressions in linear temporal logic. We introduce a class of traces, called
first-passage traces, to represent the different executions of the declarative processes. Heuristics of what properties a
diversity measure of such processes ought to satisfy are used to derive two different metrics for these processes in terms
of the set of first-passage traces. These metrics turn out to have formulations in terms of the entropies of two different
random variables on the set of traces of the processes. In addition, we introduce a measure of ‘goodness’ whereby a
trace is termed good if it satisfies some prescribed linear temporal logic expression. This allows for comparisons of
policy processes with respect to the prescribed notion of ‘goodness’.

Keywords: Policy process analysis, Declarative process, Diversity metric, Permutation pattern, Shannon entropy

1. Introduction

We present several completely general diversity met-
rics to quantify the problem-solving capacity of any
public policy decision making process. We do this by
modelling the public policy process using the declara-
tive process paradigm originally developed in the the
fields of information science and business process man-
agement (BPM). Our approach differs markedly from
current approaches to the modelling of the public policy
process (cf. [15]).

Although diagrammatic notions of the public policy
process as a ‘policy cycle’ emerged as long ago as the
1950s [5], this conceptualisation never converged with
the BPM graphical notations that evolved elsewhere in
the business process re-engineering literature [2]. One
consequence is that public policy process research has
become detached from the results of the large body of
process analysis research in the information science and
business administration literatures. A notable excep-
tion is the ‘garbage can’ theory of organizational choice
where there have been periodic attempts to model it
more formally as a Petri net [4]. Another consequence is
that much of the current business process research does

Email addresses: mark.dukes@ucd.ie (Mark Dukes),
tony.casey@ucdconnect.ie (Anthony A. Casey)

not address the concerns of public administration and
public policy process research.

For example, a large literature has arisen around
the process mining of computer log files generated by
highly automated business processes (cf. [13]). In con-
trast, the public policy decision making process, al-
though certainly computer assisted, is a highly complex,
largely manual process that generates few, or no, com-
puter log files that it would be possible to mine.

Similarly, there is now an active, predominantly im-
perative, business process metrics literature that orig-
inated in software maintenance and social network
analysis (SNA) metrics research. This strand of re-
search has found applications in the analysis of pub-
lic service delivery processes but not in the analysis of
the generally much more complex public policy mak-
ing processes. Comprehensive reviews of the litera-
ture surrounding the predominantly imperative business
process metric research can be found in González et
al. [10], Mendling [7, pp. 114–117] and Melcher [6,
pp. 27–56].

In this paper we will take as our starting point the
paradigm of a declarative process. This declarative ap-
proach involves declaring relations between activities
in the policy process that may (or may not) happen,
and then studying the possible ways (termed traces) in
which a policy process may be executed. A natural set-

June 27, 2020

ting for studying such declarative models is linear tem-
poral logic (LTL), an extension to propositional logic
that includes temporal operators. A useful tool in BPM
is the Declare language [14] which was developed for
modelling LTL expressions. The semantics of Declare
is clearer than the corresponding LTL expressions and
we adopt the Declare expressions and operators. A com-
mon feature of the use of LTL is the appearance of in-
finite traces. Research in the area has looked at a finite
counterparts to LTL that deal with finite traces where
this has been needed at an application level for tasks
such as specification and verification [3, 8].

In order to overcome the issue of infinite traces, in
this paper we will look at first-passage traces (defined
in Section 2). These traces capture two aspects of the
processes which we deem to be important for our con-
siderations: the order in which activities first happen
and whether an activity eventually happens.

If, instead, we were to truncate the traces at some fi-
nite length and analyse those initial segments then we
will be losing information regarding how an activity that
has not yet been seen is related to those that have ap-
peared. Indeed it may not have appeared at all in the
possibly infinite trace, or it may have been waiting for
another event to trigger it.

In choosing first-passage traces to be our represen-
tatives we could potentially be discarding information
related to the medium-term temporal dynamics of the
policy process. However, on balance with other consid-
erations for potential trace representatives, these first-
passage traces are the most important for our current
purposes.

Our modelling code (written in the SageMath com-
puter algebra system) used a combination of reduction
techniques in being able to compute the valid traces of a
given declarative process. A discussion of these would
be somewhat out of place in the current paper, but one
overarching fact is that there is a combinatorial explo-
sion with every extra activity introduced into a declara-
tive process. The main reason for this is that once there
is one more degree of freedom in when activities may
occur for the first time with respect to one another, this
will allow for a significant increase in the number of
traces that will satisfy the constraint(s).

This paper is a first study of diversity measures in
policy process analysis via the declarative paradigm.
As such, while some of our measures might appear
crude at first glance, their derivation and introduction
are strongly motivated as solutions to the heuristics we
deem important to their existence.

In Section 2 we will introduce declarative processes
and concepts to be used. In Section 3 we use the first-

passage traces of declarative processes along with sev-
eral heuristics to derive a metric for comparing declar-
ative processes and, in turn, the policies they model.
In Section 4 we introduce two metrics to measure the
‘goodness’ of a declarative process with respect to some
LTL formula that serves as an indicator function for
‘goodness’. In Section 5 we discuss entropy in relation
to the combinatorial diversity metric of Section 3 and
see how the more general combinatorial diversity metric
is in fact the entropy of a simple random variable on the
space of first-passage traces. In Section 6 we introduce
a metric that is motivated by the distribution of permuta-
tion patterns in the traces of a declarative process. This
is another entropy measure and is invariant under the la-
belling of the set of activities. It provides a measure of
how free the collection of traces of a declarative process
is in terms a specified resolution parameter.

2. Declarative processes

First let us introduce some standard notions related
to process theory [12]. Let Σ be a set of activities and
let Σ∗ be the set of all sequences over Σ. A trace is a
sequence of activities σ = (e1, . . . , en) ∈ Σ∗ and we use
ε to denote the empty trace. An event is an occurrence
of an activity in a trace. A log is a multiset consisting of
traces.

A declarative constraint is a constraint on activities in
a process. By way of an example, given two activities a
and b in Σ, we may wish to specify that event b must
happen as a response to event a. In LTL one would
represent our example preference by the LTL formula
G(a⇒ Fb), which can be read as ‘it is globally true that
(a occurs implies b occurs at some point after a)”. The
syntax for Declare is easier to deal with in this respect
and uses Resp(a, b) for G(a ⇒ Fb). A list of some
popular Declare expressions is given in Figure 2.

We say that a trace σ satisfies the constraint
Resp(a, b) if any occurrence of a in the trace will fea-
ture an occurrence of b to its right. To represent this we
write σ |= Resp(a, b). It may be the case that a and b
are not events in σ, in which case σ certainly satisfies
the constraint Resp(a, b).

As a further example consider the trace σ =

(3, 3, 2, 4, 1, 4) with Σ = {1, 2, 3, 4, 5}. The trace σ sat-
isfies the declarative constraint Resp(2, 1), i.e. σ |=
Resp(2, 1) since event 1 happens after event 2 in σ.
However, both σ |= Resp(2, 3) and σ |= Resp(2, 5) are
false.

Definition 1. A declarative process is a process on a set
of activities Σ that satisfies all conditions in a set Const

2

Constraint Explanation
Participation(a) a occurs at least once
Initial(a) event a is first to occur
End(a) event a is last to occur
Resp(a, b) If a occurs, then b occurs after a
ChainResp(a, b) If a occurs, then b occurs

immediately after a
Prec(a, b) b occurs only if preceded by a
Succ(a, b) a occurs iff it is followed by b
NotSucc(a, b) a can never occur before b
WeakResp(a, b) If a occurs, then b might occur

after it

Figure 1: Some typical Declare constraints

of declarative constraints. We will represent this as a
pair D = (Σ,Const). The set of traces of the process is

Traces(D) = {σ ∈ Σ∗ : σ |= c for all c ∈ Const}.

Restrictions on the beginning and ending of these
processes may be incorporated into the constraint set us-
ing declarative constraints.

As mentioned in the introduction, the traces that we
will consider are different. For general declarative pro-
cesses, traces of infinite length may occur. Infinite
traces are inconvenient when it comes to analysing the
systems that a declarative processes is modelling, par-
ticularly if that system is known to be finite to be begin
with.

We have given some reasons in the introduction for
choosing a new type of trace (called a first-passage
trace) that is different in spirit to those seen in finite
versions of LTL. In essence, the nature of what we are
modelling (policies) is such that once an event occurs
in a trace then we may continue to think of what it rep-
resents as being active throughout the remainder of the
process. Combining this with a desire to study the va-
riety of ways in which events may occur in a declara-
tive process, we settled upon first-passage traces as rea-
sonable representatives of the systems we are analyzing.
This idea of first-passage events is not new and has its
motivation in models in applied probability where one is
interested in the first time that a particular event occurs,
the so called first-passage phenomena [9].

The assumption that first-passage traces are good rep-
resentatives is, of course, open to criticism. An argu-
ment could be made for considering traces of a more
general type. However, in this first paper on the topic we
will restrict our attention to these first-passage traces.
An advantage of this this assumption is that the length
of traces is bounded by the size of the activity set. This

has allowed us to perform an analysis of systems con-
sisting of up to 15 activities that have many relations
between them. The number of traces one finds in these
systems is typically very large and their derivation re-
quires significant computational effort.

To add some perspective to this: the number of first-
passage traces of a constraint-free declarative process
consisting of 10 activities will be 9,864,102 traces. If
we were to consider the traces of this system and make
them finite by truncating the first 10 entries, then there
will be (1011 − 1)/9 ∼ 11, 111, 111, 111 traces.

In a first-passage trace we only record the first occur-
rence of an event.

Definition 2. Given a (possibly infinite) sequence x =

(x1, x2, . . .) ∈ Σ∗, let fp(x) be the sequence that records
the order in which the elements of Σ first appear in x.

Example 3. For the infinite sequence x =

(1, 1, 2, 1, 2, 1, 1, 1, 1, . . .) we have fp(x) = (1, 2).
For x = (1, 1, 1, . . .) we have fp(x) = (1). Similarly, for
the sequence fp(2, 9, 5, 3, 8, 2, 6, 2, 7, 9, 1, 6, 7, 1, 6) =

(2, 9, 5, 3, 8, 6, 7, 1).

A declarative process gives rise to a finite set of first-
passage traces that we will herein simply call traces.

Definition 4. Let D = (Σ,Const) be a declarative pro-
cess. We denote by Valid(D) the set of first-passage
traces of the process D:

Valid(D) = {fp(σ) : σ ∈ Traces(D)}.

We will use the notation Validk(D) to represent those
length-k traces in Valid(D). We also define valid(D) :=
|Valid(D)|.

Example 5. Suppose D = ({1, 2}, {Resp(2, 1)}). Then
we have Valid(D) = {ε, (1), (2, 1)}.

If there are no declarative constraints, then the activ-
ities in the process are not restricted in any way and are
free to happen in any order. There is of course no re-
quirement that an activity has to happen. We will use
the notation Permsk for the set of permutations of the
set {1, . . . , k}.

Example 6. Suppose Σ = {1, . . . , n} and consider the
declarative process D = (Σ, ∅). The set of valid traces of
D is the set of permutations of all subsets of Σ:

Valid(D) = {
(
xπ(1), . . . , xπ(k)

)
:

X = {x1, . . . , xk} ⊆ Σ and π ∈ Permsk}.

3

The number of these traces is

valid(D) =

n∑
k=0

(
n
k

)
k! = n!

n∑
k=0

1
k!
≈ n!e,

when n is large and e ≈ 2.718. For the case n = 3, we
have valid(({1, 2, 3}, ∅)) = 16 and

Valid(({1, 2, 3}, ∅)) = {ε, (1), (2), (3), (1, 2), (2, 1),
(1, 3), (3, 1), (2, 3), (3, 2), (1, 2, 3), (1, 3, 2),
(2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

Note that the number of traces of length k for general n
is

(
n
k

)
k! = n(n − 1) · · · (n − k + 1).

Example 7. Consider the declarative process D =

(Σ,Const) where

Const = { Succ(1, 2),Prec(1, 3),Resp(3, 4),
RespondExist(2, 5),NotSucc(4, 5)}.

The set of valid traces is

Valid(D) = {ε, (5), (1, 2, 5), (1, 5, 2), (5, 1, 2),
(1, 2, 3, 5, 4), (1, 2, 5, 3, 4), (1, 3, 2, 5, 4), (1, 5, 2, 3, 4),
(1, 3, 5, 2, 4), (1, 5, 3, 2, 4), (1, 3, 5, 4, 2), (1, 5, 3, 4, 2),
(5, 1, 2, 3, 4), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2)}.

Example 8. As an illustrative example let us start with
a plain text description of the policy making style of
the 12 gods of the ancient Greek Olympian pantheon.
Much of this plain text description of the Olympian’s
decision-making approach would be easily recognisable
by modern day public administration and public policy
practitioners.

“The council of the Olympian gods and god-
desses made collective decisions with input
from an expert panel, which consisted of Zeus
(the president of the gods), Athena (the god-
dess of wisdom), Hermes (the god of infor-
mation and commerce), and any other god
whose area of expertise would be pertinent to
the subject in question. These meetings were
problem-oriented participatory sessions, char-
acterized by intense discussions and searches
for best solution. The gods’ decisions were
persuasively communicated to mortals and
powerfully implemented with follow-up re-
ports.” (Zanakis et al. [16])

This Olympian policy making process can be re-
formulated as the declarative process graph of activities

and constraints in Fig. 8. Briefly, the numbered activi-
ties encoding the possible decision paths in Fig. 8 can
be summarized as follows.

(1) Identify the problem or thematic policy domain re-
quiring attention and (2) convene the Olympian
pantheon of 12 gods.

(3) Consult the databank maintained by Hermes, the
god of informatics, collecting all relevant informa-
tion (5), and search for solutions through an intense
dialogue of the gods (6) whilst consulting all stake-
holder gods in the policy decision (4).

(7) Propose alternative solution options and select the
best solution and plan of action.

(8) Announce the decision of the gods through the Or-
acle and send Peitho, the goddess of persuasion to
get (9) buy-in to the decision from the mortals.

(10) Implement the decision of the gods via thunder-
bolts and lightening under the supervision of Her-
mes who follows up with a report of the outcome
and (11) updates his databank.

1. problem
identified

2. convene
Olympian pantheon

3. consult Hermes
databank

4. consult
stakeholder gods

5. collect relevant
information

6. intense dialogue
of the gods

7. identify best
solution

8. Oracle
announces decision

9. get mortal buyin10. issue thunder-
bolts and lightening

11. update Hermes
databank

PrecPrec Prec

Succ

Succ Prec

Succ Prec

Succ

NotSuccResp

Figure 2: The declarative workflow for Example 8

With these activities now assigned labels in the
set {1, 2, . . . , 11}, we may now model this process as
the declarative process D = (Σ,Const) where Σ =

{1, 2, . . . , 11} and

Const = {Succ(1, 2),Prec(2, 3),Prec(2, 4),Prec(2, 5),
Prec(2, 6),Succ(2, 7),Succ(7, 8),Prec(8, 9),
Succ(8, 10),NotSucc(10, 9),Resp(10, 11)}.

The declarative workflow process diagram is illustrated
in Figure 8. The trace (1, 2, 3, 7, 8, 4, 10, 11) is in
Valid(D), and Valid(D) has size 7367.

4

3. Measuring declarative process diversity

Given two declarative processes D1 = (Σ1,Const1)
and D2 = (Σ2,Const2), how is it possible to compare
these two processes in a way so as to measure the di-
versity of the processes? This is a very general question
and to approach it we must be more specific about the
properties of any such measure.

Consider a general declarative process D =

(Σ,Const). If only one sequence of activities of Σ may
occur that satisfies Const, then this is not very diverse
in the sense that every activity can hold up comple-
tion of the process. However, if any sequence of ac-
tivities may occur that result in Const being satisfied,
then since these can be accomplished in any order, all
activities that can happen will happen independently of
one-another. In this sense the constraints Const are sat-
isfied at the earliest opportunity. This leads us to the
following heuristic that claims a measure of diversity of
such a process should be an increasing function of the
number of valid traces for that process.

Heuristic 1. If D1 = (Σ,Const(1)) and D2 =

(Σ,Const(2)) are two declarative processes on the same
set Σ, then D1 is at least as efficient as D2 if valid(D1) ≥
valid(D2). We thus have

comb diversity(D) ∝ f (valid(D))

for some weakly increasing function f .

In attempting to compare two declarative processes
the issue of scalability arises. If one process com-
prises two activities, and another comprises 100 activi-
ties, then it makes little sense to simply compare some
weakly increasing function of the number of valid traces
of each of these processes. The declarative process that
gives the largest number of valid traces on an activity
set Σ is D′ = (Σ, ∅) given in Example 6. It may be
the case that certain constraints must always hold in any
consideration, for example that some activity a is in a
trace, or that a trace is non-empty, and so forth. With
this in mind, we imagine that there is some subset of
minimal constraints, MinConst ⊆ Const, against which
we will be comparing our process D. The process D′

corresponds to MinConst = ∅.
Let us adopt the following piece of notation: given

a declarative process D = (Σ,Const) and a minimal
constraint set MinConst ⊆ Const, let DMinConst =

(Σ,MinConst).
Thus given a general declarative process D =

(Σ,Const) with minimal constraint set MinConst, the

largest that valid(D) may be is valid(DMinConst). It there-
fore makes sense to scale the diversity by some func-
tion of the largest number of valid traces that may ap-
pear with respect to the processes that satisfies the set
of minimal constraints MinConst. It is too restrictive
to set f (valid(D)) = g(valid(D)/valid(DMinConst)) as this
restricts further heuristic properties for these processes
to be incorporated. While this is the simplest possible
scaling and making models as simple as possible is a de-
sirable goal, there is no reason for it to be a priori better
that other scaling functionals.

Thus we assume the more general form for the scal-
ing

f (valid(D)) =
g(valid(D))

g(valid(DMinConst))

for some function g. As f is a weakly increasing func-
tion, g too must be a weakly increasing function. This
assumption means that 1 is the maximum value f can
achieve over all declarative processes.

Heuristic 2. Suppose that D = (Σ,Const) is a declar-
ative process with minimal constraint set MinConst.
Then the diversity of D should satisfy the relation

comb diversity(D) ∝
g(valid(D))

g(valid(DMinConst))

for some weakly increasing function g.

It would be difficult to use this heuristic in some prac-
tical manner without knowing further properties of g.
The function g is not a direct measure of diversity, but
represents the weight attached to the number of valid
traces of a process. Let us briefly consider processes
that have 1, 10, 100, and 1000 valid traces. A process
having 1 trace is necessary for this process to realisti-
cally model some policy process, and a process having
2 traces is certainly better than a process that only has
one trace. However, we would consider a process that
has 101 traces to be better, but only marginally, to a pro-
cess that has 100 traces.

The simplest function that represents this situation is
the function g whose rate of change is inversely pro-
portional to its argument, i.e. satisfies the differential
equation g′(x) ≈ k/x. In order for the general solution
to this, g(x) = k ln(x) + c for constants k, c, to repre-
sent our situation we must have k > 0. If there is a
single valid trace for some process D, then we will have
g(1) = c. In comparing this to the free process D∅ which
will have more valid traces than D, the diversity is thus

c
k ln(valid(D∅)) + c

. In order to choose a sensible value

of c to represent this scenario, we set c = 0 so that the

5

diversity in this very restrictive case is 0, compared to 1
in the case that valid(D) = valid(D∅). Thus

Heuristic 3. Let D = (Σ,Const) be a declarative pro-
cess with minimal constraint set MinConst. Then a sen-
sible choice of the function g that models the reducing
benefit of more valid traces as the number of these valid
traces increases is g(x) = k ln(x) for some positive con-
stant k.

These heuristics, when taken together, suggest the
following as a measure of the diversity of a declarative
process:

Definition 9. Let D = (Σ,Const) be a declarative pro-
cess with minimal constraint set MinConst. Then a
measure of the diversity of D is

comb diversity(D) =
ln(valid(D))

ln(valid(DMinConst))
.

It may be the case that the relative preferences for
an increase in number of valid traces is proportional to
some other weakly decreasing function of x. However,
we have not found any compelling motivation from the
examples we have been considering for this to be the
case.

An example of a minimal constraint set one might see
in a declarative process that models some policy process
is

MinConst = {Participation(a10), Initial(a3),End(a40)}.

In the event that the minimal constraint set is empty,
then Definition 9 can be written more explicitly:

Definition 10. Let D = (Σ,Const) be a declarative pro-
cess with MinConst = ∅. Then a measure of the diver-
sity of D is

comb diversity(D) =
ln(valid(D))
1 + ln(|Σ|!)

.

Figure 3 illustrates the measure comb diversity for
several different values of valid(DMinConst) (these are the
values beside the coloured lines), and the value of x is
the proportion valid(D)/valid(DMinConst).

Example 11. In each of the following we assume the
minimal constraint set is empty.

(a) For the free declarative process D in Example 6,
we have comb diversity(D) = 1.

(b) For the declarative process D in Example 7, we
have comb diversity(D) = 0.479065690.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

10

100

1000

10000

x

Figure 3: Illustration of comb diversity for several valid(DMinConst)
values (the line labels) with the quantity x representing the propor-
tion valid(D)/valid(DMinConst). For example, if D is a declarative pro-
cess having |Σ| = 7, 8, and 9 activities, respectively, then valid(D∅) is
13700, 109601, and 986410, respectively.

(c) For the declarative process D in Example 8, we
have comb diversity(D) = 0.481278656.

Let D be a declarative process. If Valid(D) is non-
empty, i.e. there is at least one valid trace (which could
be the empty trace), then metric comb diversity(D)
takes values in the closed interval [0, 1].

In the event that Valid(D) is empty then
comb diversity(D) is not defined. There is no is-
sue with this as it is assumed that D is a process that
models a policy that is realizable. If a policy process
exists that has no valid traces, then this is a sign that the
constraints defining the process are inconsistent with
one another.

If there is only one activity in the set Σ, then the de-
nominator of comb diversity(D) will be zero and it will
not be defined. Again, this is not an interesting case or
one to cause alarm as the model of a policy process that
consists of one activity is essentially trivial. (Any con-
straints of such a model would be unitary constraints
such as ‘activity 1 happens’ or ‘activity 1 does not hap-
pen’.)

The primary use of this metric is for comparing
combinatorial diversity of two (of many) declarative
processes that can be on completely different activity
sets. Let us explicitly mention that there is no rea-
son for the number of activities in each of the pro-
cesses to be the same. We can conclude the process
D1 is more combinatorial diverse that process D2 if
comb diversity(D1) > comb diversity(D2).

Can we attribute a meaning to a particular

6

value of comb diversity(D)? For example, if
comb diversity(D) ≈ k then what can we infer about
the process? From the definition of comb diversity,
this means that is satisfies the power-law relation:
valid(D)) = valid(DMinConst)k. So, for example, if
comb diversity(D) = 0.5 then this corresponds to those
declarative processes for which the number of valid
traces is the square root of the number of traces of the
associated minimal (or free) process.

4. Measuring a specified ‘goodness’ in valid traces

Given a declarative process D = (Σ,Const), the set
Valid(D) is the set of those valid traces illustrating how
the activities of the process happen in relation to one an-
other. It may be the case that some activities are deemed
desirable or good. In order to attribute a meaning to
these notions that can be used in some quantification, we
must be able to specify whether each trace in Valid(D)
is ’good’ or ’not-good’, and we will do this by speci-
fying a collection of declarative constrains GoodConst.
A trace will be called good if it satisfies all those con-
straints in GoodConst.

Definition 12. Let D = (Σ,Const) be a declarative
process. Let GoodConst be a collection of declara-
tive constraints. A trace σ ∈ Valid(D) will be called
good if σ |= GoodConst. Let GoodValid(D) =

{σ ∈ Valid(D) : σ |= GoodConst} and gvalid :=
|GoodValid|.

Example 13. Consider the declarative process of Ex-
ample 7. Let us suppose that our notion of goodness is
that activity 4 occurs and that activity 3 occurs before 2
(should they happen at all). We thus have GoodConst =

{Participation(4),Succ(3, 2)}. In this case we have

GoodValid(D) = {(1, 3, 2, 5, 4), (1, 3, 5, 2, 4),
(1, 5, 3, 2, 4), (1, 3, 5, 4, 2), (1, 5, 3, 4, 2),
(5, 1, 3, 2, 4), (5, 1, 3, 4, 2)}.

Definition 14. Let D = (Σ,Const) be a declarative pro-
cess. Let GoodConst be a collection of declarative con-
straints. Let us define two goodness metrics of the pro-
cess D with respect to GoodConst:

goodness(D,GoodConst) =
gvalid
valid

, and

log goodness(D,GoodConst) =
ln gvalid
ln valid

.

Example 15. Applying the previous definition to
Example 13 we have goodness(D,GoodConst) =

7/16 = 0.4375 and log goodness(D,GoodConst) =

ln(7)/ ln(16) = 0.70183.

Just as with the comb diversity metric, both of these
metrics can be used to compare a collection of differ-
ent declarative processes each with their own respective
goodness constraints.

In using these two goodness metrics, we envisage
a declarative process D that models some policy pro-
cess and some constraint GoodConst against which ev-
ery trace σ ∈ Valid(D) can be classified as ‘good’ or
‘not good’. The metric goodness takes values in the
closed interval [0, 1] and gives the proportion of valid
traces that are good amongst all valid traces. The met-
ric log goodness also takes values in the closed interval
[0, 1] and produces a number k that relates the two quan-
tities in terms of a power law: number of good traces ∼
(number of traces)k.

The question of which metric to choose is of course
a subjective one. If we are simply interested in the pro-
portion of good traces to valid traces then the metric
goodness is, by definition, the best choice. However, if
the doubling of the number of good traces should repre-
sent something strictly less than a two-fold increase in
the levels of goodness, then the log goodness metric is
the better choice.

The second metric log goodness is not defined for
two different degenerate cases: when there are no good
traces in the list of valid traces (this would imply the
numerator contains the undefined term ln(0)), and when
there is only one valid trace (this could cause a denom-
inator of 0).

5. The entropy of random traces

Consider the declarative process D = (Σ,Const) with
minimal constraint set MinConst. Let us consider the
set of valid traces for this process, Valid(D). Recall
that as we are dealing with first-passage traces, the set
Valid(D) contains no duplicate sequences, and we have
Valid(D) ⊆ Valid(D∅).

The outcome of a declarative process D is a trace.
Let X1 := X1(D) be the random variable that represents
the outcome of the process D. In the absence of further
information, all valid traces are equally likely and we
have

P(X1 = σ) =

1

valid(D)
if σ ∈ Valid(D)

0 if σ < Valid(D).

Let us observe that the entropy of this random vari-
able X1 is simply calculated as

H(X1) = −
∑
σ

P(X1 = σ) ln(P(X1 = σ)) = ln(valid(D)).

7

This quantity, known both as the ‘max-entropy’ and as
the Hartley function, is the largest value that any prob-
ability measure on a set of size valid(D) may achieve.
This fact grows in importance once we realise that it
is the same quantity that appears in the numerator of
comb diversity in Definition 9. Indeed, we can re-write
the measure in terms of the entropy as

comb diversity(D) =
H(X1(D))

H(X1(DMinConst))
.

6. A metric motived by pattern distribution in logs

The set of valid traces of a declarative process will al-
low for many permutations of particular actions at par-
ticular positions. It will also be the case that there are
certain subsequences (or patterns) of events that sim-
ply cannot happen due to the constraints. We require a
metric that reflects the level of ‘freeness’ with respect
to patterns that may or may not happen, and this met-
ric must take into account the permutive aspect of our
considerations.

More formally, consider a general declarative process
D = (Σ,Const) with L = Valid(D). Let us fix a pat-
tern length n that we will think of as the ‘resolution’
of our pattern analysis. We wish to derive a measure
of the pattern complexity of L, and will refer to it as
pattern divn = pattern divn(L,Σ). The traces in L are
sequences of unique entries from the set Σ, The metric
pattern divn should be independent of the labels of Σ.

Heuristic 4. If π(Σ) is a permutation of the set Σ, then
we require

pattern divn(L,Σ) = pattern divn(Lπ,Σ)

where Lπ is the log L with every entry xi in each trace x
replaced with π(xi).

In order to introduce the notion of a (permutation)
pattern, we must assume some total order (�) on Σ. Let
x = (x1, . . . , xt) be a sequence where xi ∈ Σ and there
are no duplicate entries, i.e. all entries of x are unique.
A subsequence x′ = (xi1 , . . . , xik) of x is an occurrence
of the pattern p = (p1, . . . , pk) ∈ Permsk if they are
order isomorphic: i.e. the smallest (with respect to the
order �) entry of x′ is in the same position as the small-
est (with respect to the order ≤) entry of p, the second
smallest entry of x′ is in the same position as the second
smallest entry of p, and so on.

Given any subsequence x′ of x having length k, it will
the order isomorphic to precisely one permutation p ∈
Permsk. In such a case we say that x′ is an occurrence

of the pattern p in x and or that x contains the pattern
p. Given a pattern p ∈ Permsk, let p(x) be the number
of occurrences of the pattern p in x.

Example 16. Let x = (5, 9, 2, 6, 20, 3, 12, 18). Then
x′ = (9, 6, 20, 3, 18) is an occurrence of the pattern
p = (3, 2, 5, 1, 4) in x. Similarly, x′′ = (2, 18) is an
occurrence of the pattern q = (1, 2) in x. Also p(x) = 1
and q(x) = 19.

Definition 17. Given a log L and integer n, let Y be
the pattern that results from choosing a random trace of
L and selecting a random length-n subsequence of that
trace.

Let (P(i))n!
i=1 be a listing of the elements of Permsn in

lexicographic order. We have

pα := P(Y = α) = N(π)(L)/N(n)(L)

where N(π)(L) be the number of occurrences of a pattern
π ∈ Permsn in the set L and let N(n)(L) be their sum:

N(π)(L) =
∑
x∈L

π(x) and N(n)(L) =
∑

π∈Permsn

N(π)(L). (1)

Our measure of pattern diversity, pattern divn(L),
will depend on these probabilities pα. It must also be
such that any permutation of the values will not change
the metric due to Heuristic 4. Thus we have

Heuristic 5. For any permutation π ∈ Permsn, the n-
pattern diversity should be invariant of the action of π
on the distribution of pattern occurrences:

pattern divn(L) = f (pP(1), . . . , pP(n!))
= f (pπ(P(1)), . . . , pπ(P(n!))).

Reasoning further about how this pattern diversity
metric should behave, the extreme values are straight-
forward to characterize:

Heuristic 6. The function f should attain a maximum
when pP(1) = pP(2) = . . . = pP(n!) since this would indi-
cate that the n-patterns in the log traces are as evenly
distributed (and therefore permutationally diverse) as
they can be. If all n-patterns in L are the same pattern,
then this means the n-patterns in the log traces are as
undiverse as is possible, and the function f should take
the value 0 in this case. Note that this will mean exactly
on of the pα = 1 and all others are 0.

These heuristics provide a compelling argument for
choosing the entropy of the random variable Y to be
the function f (on which pattern divn is based). They
form a subset of the axioms proposed by Shannon in
[11] and for which he showed the Shannon entropy was
the unique solution.

8

Definition 18. Let L be a set of sequences where ev-
ery sequence contains only distinct entries, and let n be
an integer representing pattern length. Let N(π)(L) be
the number of occurrences of a pattern π ∈ Permsn in
the set L and let N(n)(L) be their sum (see Eqn. 1). Set
pπ := pπ(L) = N(π)(L)/N(n)(L) and define the n-pattern
diversity of L to be

pattern divn(L,Σ) := −
∑

π∈Permsn

pπ ln(pπ).

The n-permutation entropy has 0 and ln(n!) as its mini-
mum and maximum value, respectively. To scale these
entropies we introduce the normalized n-permutation
entropy

norm pattern divn(L,Σ) :=
pattern divn(L,Σ)

ln(n!)
.

Example 19.
(i) For the free declarative process D of Example 6 on

n activities, all permutations of all subsets of the
activity set are valid traces. Thus all of the proba-
bilities pα = 1/n! and pattern divn(Valid(D),Σ) =

ln(n!) and norm pattern divn(Valid(D),Σ) = 1.
(ii) For the declarative process D in Example 7:

n pattern divn norm pattern divn

3 1.506127592 0.840585814
4 2.335683250 0.734941374
5 2.397895273 0.500866717

(iii) For the declarative process D in Example 8:

n pattern divn norm pattern divn

3 1.360117844 0.759096222
4 2.304788489 0.725220091
5 3.277594190 0.684616155

The normalised metric allows us to compare the di-
versity seen between completely different processes and
is invariant under a relabelling of the activities. The
higher the value the more diverse they are in terms of
the n-patterns.

The metrics are well-defined for values of n between
1 and the length of the longest trace in Valid(D). It
would be extremely unusual to find a declarative pro-
cess that models a policy that has a pattern diversity of
0 or 1. Such instances should be scrutinized to ensure
that the list of valid traces is not something trivial (such
as a single trace). We have strong reasons to suspect
that length 3, 4 and 5 patterns will produce the most
interesting metrics for comparative purposes.

A related concept, in spirit, is ‘permutation en-
tropy’ [1]. Permutation entropy is an analytical tool for
studying patterns in time series data in statistics that uti-
lizes the more restrictive notion of ‘consecutive pattern’.

Interestingly, it has been applied to a wide variety of
time series data to detect temporal changes with a view
to predicting stock market behavior, detecting obstruc-
tive sleep apnea, and predicting epilepsy.

7. Conclusion

We have used heuristic reasoning to derive metrics
that can be used to compare policy processes through
combinatorial considerations. This provides a theoret-
ically justifiable method that does not rely on a priori
quantitative information.

References

[1] C. Brandt & B. Pompe. Permutation entropy – a natural com-
plexity measure for time series. Phys. Rev. Lett. 88, 174102,
2002.

[2] T.H. Davenport. Process Innovation: Reeingineering Work
through Information Technology. Boston, MA: Harvard Busi-
ness School Press, 1993.

[3] V. Fionda and G. Greco. LTL on Finite and Process Traces:
Complexity Results and a Practical Reasoner. J. Artificial In-
telligence Res. 63:557–623, 2018.

[4] S. Heitsch, D. Hinck & M. Martens. A New Look into Garbage
Cans – Petri Nets and Organisational Choice. Proceedings of the
AISB’00 Symposium on Starting from Society – the Application
of Social Analogies to Computational Systems 51–60, 2000.

[5] H.D. Lasswell. The Decision Process: Seven Categories of
Functional Analysis. College Park, MD, University of Maryland
Press, 1956.

[6] J. Melcher. Process Measurement in Business Process Manage-
ment: Theoretical Framework and Analysis of Several Aspects.
KIT Scientific Publishing, 2012.

[7] J. Mendling. Metrics for Process Models: Empirical Founda-
tions of Verification, Error Prediction, and Guidelines for Cor-
rectness. Heidelberg, Germany: Springer, 2008.

[8] M. Pesic, D. Bosnacki & W. van der Aalst. Enacting Declarative
Languages Using LTL: Avoiding Errors and Improving Perfor-
mance. Proc. of SPIN, 146–161, 2010.

[9] S. Redner. A Guide to First-Passage Processes. Cambridge:
Cambridge University Press, 2001.

[10] L. Sánchez González, F. Garcı́a Rubio, F. Ruiz González & M.
Piattini Velthuis. Measurement in business processes: a system-
atic review. Bus. Process Manag. J. 16:114–134, 2010.

[11] C.E. Shannon. A Mathematical Theory of Communication. The
Bell System Technical Journal 27(3):379–423, 1948.

[12] W. van der Aalst. Process Mining: Data Science in Action. Sec-
ond edition. Springer, 2016.

[13] W. van der Aalst. Process mining: discovery, conformance
and enhancement of business processes. Berlin, Heidelberg:
Springer, 2014.

[14] W. van der Aalst, M. Pesic & H. Schonenberg. Declarative
Workflows: Balancing Between Flexibility and Support. Com-
puter Science – Research and Development 23(2), 99–113,
2009.

[15] C.M. Weible & P.A. Sabatier. Theories of the Policy Process.
Fourth edition. Boulder, CO: Westview Press, 2017.

[16] S.H. Zanakis, S. Theofanides, A.N. Kontaratos & T.P. Tassios.
Ancient Greeks’ Practices and Contributions in Public and En-
trepreneurship Decision Making. Interfaces 33:72–88, 2003.

9

	Introduction
	Declarative processes
	Measuring declarative process diversity
	Measuring a specified `goodness' in valid traces
	The entropy of random traces
	A metric motived by pattern distribution in logs
	Conclusion

