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Abstract. In this paper we introduce a new permutation statistic. This statistic counts the
number of bumps that occur during the execution of the Robinson-Schensted procedure when
applied to a given permutation. We provide several interpretations of this bump statistic that
include the tableaux shape and also as an extremal problem concerning permutations and
increasing subsequences. Several aspects of this bump statistic are investigated from both
structural and enumerative viewpoints.

1. Introduction

The Robinson-Schensted correspondence [7] is a bijection from permutations to pairs of
similarly-shaped standard Young tableaux. This correspondence and its generalization, the
Robinson-Schensted-Knuth correspondence, have become centrepieces of enumerative and alge-
braic combinatorics due to their many remarkable properties. In this paper we introduce and
investigate a statistic on permutations that is motivated by an aspect of the Robinson-Schensted
(RS) correspondence.

Let Sn be the set of all permutations of the set {1, . . . , n}. A standard Young tableau is
a filling of the cells of a Young diagram λ with integers {1, 2, . . . , n} such that each of those
integers is used exactly once and the entries are increasing across rows and down columns, e.g.

1 3 4 5

2 6 8

7 9

In order to define the RS correspondence we must first define the insertion of an entry into an
existing standard Young tableau. Let P be a standard Young tableau and k a positive integer.
Let P ← k be the outcome of the following procedure that inserts k into P . Starting with the
top row of P :

(I1) If k ≥ the rightmost entry in the current row, then append k to that row. Should the
current row be empty then k becomes the solitary entry in that row.

(I2) Otherwise, determine the rightmost entry y in the current row such that k < y. Insert
k into the position occupied by y. Set k to be y, move down one row and goto step (I1).
We say k has bumped y down a row.

The Robinson-Schensted correspondence is now easily defined in terms of the above insertion
operation: let π = π1 · · ·πn ∈ Sn and set (P0, Q0) = (ε, ε) to be the pair of empty standard
Young tableaux.

• Given the current pair (Pi, Qi) we create the next pair (Pi+1, Qi+1) by setting Pi+1 =
Pi ← πi+1 and forming Qi+1 from Qi by inserting i+1 into the cell that is the difference
Pi+1\Pi.
• The outcome of repeatedly applying the procedure for i = 0, . . . , n−1 will be (Pn, Qn) =:

(P,Q).

We will write RS(π) = (P,Q). Notice that, by construction, both P and Q will have the same
Young tableau shape that we will call shape(π).
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Example 1. Consider the permutation π = 475382691 ∈ S9. The above procedure applied to
π produces:

(ε, ε) →
(

4 , 1
)
→

(
4 7 , 1 2

)
→

(
4 5
7

, 1 2
3

)
→

 3 5
4
7

,
1 2
3
4


↓ 2 5 6

3 8
4
7

,

1 2 5
3 7
4
6

 ←

 2 5 8
3
4
7

,

1 2 5
3
4
6

 ←

 3 5 8
4
7

,
1 2 5
3
4


↓

 2 5 6 9
3 8
4
7

,

1 2 5 8
3 7
4
6

 →


1 5 6 9
2 8
3
4
7

,

1 2 5 8
3 7
4
6
9

 = (P,Q).

Here we have shape(π) = (4, 2, 1, 1, 1).

The RS correspondence is typically presented in the above form and the result of each
(Pi, Qi) 7→ (Pi+1, Qi+1) step shown. It is less common to present and consider how the tableaux
are changing in terms of bumps, or indeed keep a count of their number. Considering what
happens in Example 1, we see that the insertion of π3 = 5 into the tableau 4 7 causes 7 to
be bumped down one row, so the insertion of π3 = 5 causes one bump. Following this, the

insertion of π4 = 3 into 4 5
7

causes 4 to be bumped down one row. As a result of this, 7 in turn

is bumped. So the insertion of π4 = 3 causes two bumps. Do this for all nine entries of π to
find the sequence of the number of bumps for π1, π2, . . . , π9 is (0, 0, 1, 2, 0, 3, 1, 0, 4).

Definition 2. Given π ∈ Sn, let bump(π) be the number of bumps that occur in the application
of the RS correspondence to π.

In Example 1 above we have bump(π) = 11. In the remainder of this paper we will make use
of two well-known results that we now recall.

Theorem 3 (Greene’s theorem [9, A1.1.1]). Suppose π ∈ Sn with shape(π) = λ = (λ1, λ2, . . .)
and let λ′ be the conjugate partition to λ. Let Ik(π) (resp. Dk(π)) denote the maximal number
of elements in a union of k increasing (resp. decreasing) subsequences of π. Then

Ik(π) = λ1 + . . .+ λk, and (1)

Dk(π) = λ′1 + . . .+ λ′k. (2)

Theorem 4 (Hook length formula [9, Cor. 7.21.6]). For a Young diagram λ ` n, let fλ be the
number of distinct SYT of shape λ and let h(c) be the hook length of cell c of λ. Then:

fλ =
n!∏

c∈λ h(c)
.

In this paper we will look at some properties and interpretations of this new bump statistic. In
Section 2, we provide three different interpretations of bump(π). The first of these is a function
of the tableau shape shape(π) while the second is in terms of Viennot’s geometric construction
of the Robinson-Schensted correspondence. The third is in terms of a permutation property,
and we see that bump(π) is intimately related to an extremal problem for permutations.

In Section 3 we define bump sequences that encode the number of bumps that result from
the insertion of each permutation element. We show that the entries of this sequence can also
be related to an extremal problem for permutations and also relate this bump sequence to the
descent set of the permutation. In addition to this, we introduce bump diagrams that are
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an alternative method to determining the bump sequence (and consequently the bump) of a
permutation. These diagrams were motived by growth diagrams.

In Section 4 we introduce the weakbump sequence of a permutation. This weakbump sequence
is essentially an indicator function on each component of the bump sequence of a permutation.
We show the weakbump statistic, which is defined as the sum of the entries in the weakbump
sequence, has several nice properties: it admits a simple expression in terms of shape(π); it
coincides with the bump statistic for permutations that are 321-avoiding; it also equals the run
statistic that appeared in the recent paper of Gunawan, Pan, Russell, and Tenner [4].

In Section 5 we examine the generating function of the bump statistic over both the sets of
permutations and the set of Young tableaux and prove several results for these polynomials.
When we restrict the generating function to be over the set of 321-avoiding permutations we
can give a precise formula for the polynomials and also prove log-concavity of their coefficients.

2. The bump statistic from three different viewpoints

In this section we will give characterisations of the bump statistic of a permutation in three
different ways. The first of these is, upon consideration, a straightforward proof that the bump
of a permutation is a weighted sum of the partition lengths of shape(π).

2.1. Bump in terms of tableau shape.

Theorem 5 (Bump in terms of tableau shape). Given π ∈ Sn, let (P,Q) = RS(π) and suppose
that shape(π) = λ = (λ1, . . . , λk) ` n. Then

bump(π) =
∑
i

(i− 1)λi.

Proof. Let π, P,Q, and λ be as stated in the theorem. According to rules (I1) and (I2) of the
RS correspondence, each value in P was first inserted into the first row and then potentially
bumped one row at a time further down the tableau. We count the total number of bumps by
summing the number of values that were bumped from each row. Consider row i of P . The
number of values that were bumped from this row is precisely the number of cells in P beneath
row i. Letting bump(π, i) denote this number, i.e. bump(π, i) = λi+1 + λi+2 + . . .+ λk, we have
that

bump(π) =
k−1∑
i=1

bump(π, i) =
k−1∑
i=1

(λi+1 + λi+2 + . . .+ λk) =
∑
i

(i− 1)λi.

�

After discovering this formula for bump(π), we noticed that this quantity
∑

(i− 1)λi appears
in several places in the algebraic combinatorics literature (see e.g. Stanley [9, Theorem 7.21.2]
and Bergeron [1, Eqn 4.29]). Unfortunately for us, it only does so since it represents the smallest
possible weight of a semi-standard Young tableau whose i+ 1th row consists of all i’s. In each
appearance it essentially tells us the first exponent in some power series that has a non-zero
coefficient.

As bump(π) is only a function of the shape λ of the associated tableaux RS(π), we will later
in the paper sometimes abuse notation where it does not cause confusion and write bump(λ)
for that same value.

2.2. Bump in terms of Viennot’s shadows. Viennot [10] gave a beautiful geometric de-
scription of the RS correspondence in terms of shadows. Let us first explain this construc-
tion and then show what aspect of the construction represents the bump statistic. Suppose
π = π1 . . . πn ∈ Sn. Consider the collection of points in the plane Graph(π) = {(i, πi) : i ∈ [n]}.
Let us place a solid dot at each of these points. From each solid dot, extend lines north and east
until these lines encounter other lines, or just pass outside of the n×n grid. We call these lines
the 1st shadows. Let the first row of P (resp. first row of Q) be the y-index (resp. x-index) of
where the 1st shadow lines leave the right hand side (resp. top) of the n× n grid.
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Figure 1. The construction of Viennot’s shadows for Example 6.

Next, we insert circles on the intermediate points of the 1st shadows where these intermediate
points are those corners that did not have solid dots to begin with. We repeat the same process
for these circles to yield a collection of lines that we call the 2nd shadow. The second rows of
P and Q are now read in the same manner by observing where the 2nd shadows exit the n× n
grid. Repeat this process until it is not possible to form any more shadows. The pair (P,Q)
constructed in this way is equal to RS(π). A benefit of this geometric construction is that it
makes it easy to observe the classic result RS(π−1) = (Q,P ).

Example 6. Figure 1 illustrates Viennot’s construction for the permutation π = 475382691 (of
Example 1). We can read off the pair (P,Q) by listing the pairs of (vertical labels,horizontal
labels) at each step. In this example, for the 1st shadows of π, the vertical labels are (1,5,6,9)
while the horizontal labels are (1,2,5,8). These correspond to the first rows of P and Q given
in Example 1.

Theorem 7 (Bump in terms of Viennot’s shadows). Let π ∈ Sn. Consider the construction
of the pair (P,Q) using Viennot’s method of shadows. The statistic bump(π) then equals the
number of intermediate points that appear in all of the shadows.

Proof. In the second part of Bergeron [1, Section 2.5], he notes that “the intermediate points
[...] correspond to values that have been bumped to [lower] rows”. These correspond to our
bump(π, i) from before and so, summing these across all shadow lines we get bump(π). Note
that it is clear from the construction that if λ has k rows then Viennot’s construction concludes
precisely with the kth shadow. �

We know from Theorem 5 that bump(π) depends only on the shape of the tableaux in RS(π).
Therefore the observation that RS(π−1) = (Q,P ) leads to the conclusion that bump(π) =
bump(π−1).

2.3. Bump in terms of a permutation property.
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Theorem 8 (Bump in terms of a permutation property). Let π ∈ Sn. Let αi(π) be the minimal
number of elements that one could remove from π and it be the case that what remains is the
disjoint union of i increasing subsequences. Then:

bump(π) =
∑
i≥1

αi(π) (3)

Proof. Recall from Equation 1 that Ik(π) denotes the maximal number of elements in a union
of k increasing subsequences of π ∈ Sn. Then, by Equation 1,

Ik(π) = λ1 + · · ·+ λk

As π has n elements, by definition of αi(π) we therefore have that:

αi(π) = n− Ik(π) =
∑
j≥i+1

λj

Recalling that bump(π) =
∑
j≥2

(j − 1)λj gives:

bump(π) =
∑
i≥2

∑
j≥i

λj =
∑
i≥2

αi−1 =
∑
i≥1

αi.

�

Example 9. Consider π = 475382691 (of Example 1). We have that α1(π) is the the minimal
number of elements that one could remove from π and it be the case that what remains is
an increasing subsequence. There is no increasing subsequence of length 5 in π, but there are
several of length 4. One example is the removal of the elements 7,3,2,6, and 1. Thus α1(π) = 5.

Next, α2(π) is the the minimal number of elements that one could remove from π and it be
the case that what remains is a union to two increasing subsequences. There is no single element
we can remove from π and for what remains to be the union of two increasing subsequences.
Likewise, by inspection there is no pair of elements we can remove from π that will result in a
union of two increasing subsequence. However, there are quite a few triples we can remove from
π and what will be left will be the union of a length-4 with a length-2 increasing subsequence,
or the union of two disjoint length-3 increasing subsequences. One example is the removal of
the elements 7,3, and 1. This gives α2(π) = 3.

By the same reasoning, we find α3(π) = 2 and α4(π) = 1, and α5(π) = 0 since it is already
the union of 5 increasing subsequences. Therefore bump(π) = 5 + 3 + 2 + 1 + 0 = 11.

Finally, αi(π) can be tied back to Viennot’s shadow construction by observing that αi(π) is
the number of intermediate points in the ith shadow of π.

3. Bump sequences and bump diagrams

3.1. Bump sequences. Suppose π = π1 . . . πn ∈ Sn and let (Pj , Qj) correspond to the the
jth tableaux pair in the construction of RS(π). When we construct (Pi, Qi) from (Pi−1, Qi−1)
by inserting Pi−1 ← πi, what is the number of bumps caused by this insertion in terms of a
permutation property of π1 . . . πi?

Definition 10. Let bumpi(π) be the number of bumps that occur during Pi−1 ← πi.

Notice that the sum bump1(π) + . . .+ bumpn(π) = bump(π). First we observe that bumpi(π)
is equal to one less than the row number of i in Qi and hence also in Q := Qn. This means that
bumpi(π) can be read from Q after the RS process has been run, if desired.

Theorem 11. bumpi(π) is one less than the smallest value of j such that the maximal size of
the union of j increasing subsequences in π1 . . . πi−1πi is greater than that of π1 . . . πi−1.
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Proof. Consider now α = π1 . . . πi−1 and β = π1 . . . πi−1πi. Let (Pα, Qα) (resp. (Pβ, Qβ)) be the
pair of tableaux that correspond to α (resp. β). Since β is α with a single value appended, we
find that the shape of Pα differs to the shape of Pβ only in that the latter has a cell appended
to an inner corner. Suppose λ and µ are the partitions (i.e. weakly descending sequences of row
lengths) corresponding to these shapes, which are almost the same except for one entry. Then

bumpi(π) = inf{j : λj < µj} − 1

= inf{j : λ1 + . . .+ λj < µ1 + . . .+ µj} − 1.

By Equation 1, the quantity λ1 + . . . + λj is the maximal size of the union of j increasing
subsequences in α, and µ1+. . .+µj is the maximal size of the union of j increasing subsequences
in β. Thus the quantity inf{j : λ1 + . . .+λj < µ1 + . . .+µj} is the smallest value of j such that
the maximal size of the union of j increasing subsequences in β is greater than that of α. �

In particular, if bumpi(π) = 0 then any longest increasing subsequence of π1 . . . πi is longer
than any longest increasing subsequence of π1 . . . πi−1, and moreover they all end with πi.

Theorem 12. i is a descent of π iff bumpi(π) < bumpi+1(π).

Proof. Let π ∈ Sn and suppose (P,Q) = RS(π). It is a well established fact that an element i
is a descent of a permutation π iff i is in a row above i+ 1 in the tableau Q. (See e.g. Bona [2,
Theorem 7.15].) From the proof of Theorem 11 above, we noted that the row index of Q that
contains i is bumpi(π) while the row index of Q that contains i+ 1 is bumpi+1(π). �

Corollary 13. Let π ∈ Sn and (P,Q) = RS(π). The sequence (bump1(π), bump2(π), . . . , bumpn(π))
is the sequence of row indices (less one) of where the numbers 1, 2, . . . , n appear in the tableau
Q.

For example, since the Q tableau for the permutation π = 475382691 is

1 2 5 8
3 7
4
6
9

we have
(bump1(π), bump2(π), . . . , bump9(π)) = (0, 0, 1, 2, 0, 3, 1, 0, 4).

3.2. Bump diagrams. Inspired by growth diagrams [3, 6], in this subsection we present bump
diagrams, from which one can read the sequence (bumpi(π))ni=1, and hence also bump(π). For
π ∈ Sn, begin by constructing an n×n grid and fill the cells (i, πi)i=1,...,n with 0s. Next consider
each cell in the first column, moving from bottom to top. For each cell, execute the four rules
(in order) that are given in Figure 2.

Repeat these steps for the first row of the diagram (moving from left to right). Then repeat
with the second column and row. And so on. Once complete, the edges along the top of the
diagram will contain the values (bumpi(π))ni=1.

Example 14. For σ = 51324 we obtain the diagram in Figure 3a. Reading across the top
of the diagram from left to right, we see that the bump sequence for σ is (0, 1, 0, 2, 0) and by
summing these values we have bump(σ) = 3.

Example 15. For π = 475382691, the permutation from Example 1, we obtain the bump
diagram in Figure 3b. From this we see that the bump sequence for π is (0, 0, 1, 2, 0, 3, 1, 0, 4)
and that bump(π) = 11.

The bump sequence for π−1 can also be obtained by reading the right hand side of the
diagram, from bottom to top. This is a consequence of the observation that to plot the diagram
of π−1, one can simply plot π and then reflect the points through the south-west, north-east
diagonal.
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Rule 1: If the bottom and left edges of a cell
are labelled with the same value x, then fill
the cell with x+ 1.

x

x

x

x

x+ 1x+ 1

Rule 2: If a cell is filled with the value y,
then label the top and right edges with that
value y.

yy y

y

yy

Rule 3a: If a cell is not filled, then copy any
label on the left edge to the right edge.

z zz

Rule 3b: If a cell is not filled, then copy any
label on the bottom edge to the top edge.

z

z

z

Figure 2. Bump diagram rules
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(b) Bump diagram for π = 475382691

Figure 3. The bump diagrams for the permutations in Examples 14 and 15

4. The weakbump and run permutation statistics

We turn our attention from counting the number of bumps that occur during the application
of RS and focus now on whether or not any bumps occur during a given insertion step. We find
that we can relate this modified statistic to recent research on the RS correspondence.

Definition 16. Let π ∈ Sn. Define weakbumpi(π) to be 1 if bumpi(π) is positive, and 0
otherwise. Let

weakbump(π) :=

n∑
i=1

weakbumpi(π).

Proposition 17. Let λ = shape(π). Then weakbump(π) = n− λ1.
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Proof. We recall steps (I1) and (I2) of the insertion procedure of the RS correspondence. A cell is
appended to the first row of the tableau P if and only if no bump occurs. Therefore the length of
the first row, λ1, is equal to |{i : weakbumpi(π) = 0}|. It follows that weakbump(π) = n−λ1. �

Recalling Equation 1, we can furthermore say that weakbump(π) is therefore equal to the
minimum number of terms of π that can be thrown away such that what remains is a strictly
increasing sequence.

Proposition 18. For 321-avoiding permutations, weakbump(π) = bump(π).

Proof. We know from Equation 2 that 321-avoiding permutations correspond to tableaux having
at most two rows. From the definition of bumpi(π) (Defn. 10) we can see that, in the 321-avoiding
case, bumpi(π) is 1 if it is positive, and 0 otherwise. Therefore weakbump(π) = bumpi(π) for all
i and so bump(π) = weakbump(π). �

Returning now to the general case of π ∈ Sn, there is another nice way to think about
weakbump(π). Imagine that the values of {1, . . . , n} have been written on playing cards and
that we hold the cards in our hand in the same order as they appear in π. What is the fewest
number, k, of cards we must rearrange in order to sort them into the identity permutation?
The answer is n− λ1, i.e. weakbump(π). To see why this is so, consider any longest ascending
subsequence of π. Fix the corresponding λ1 cards and rearrange the other cards to get the
identity permutation. This took at most n − λ1 moves and so k is at most n − λ1. On the
other hand, suppose that k is the smallest number of cards that must be rearranged to give the
identity permutation. When doing this n − k cards were not moved and so, as they form an
ascending subsequence of π, these must number at most λ1. In other words, k must be at least
n− λ1.

Donald Knuth considers this problem in his book [5, Q 5.1.4;41 Disorder in a library ], where
he calls this sorting method a “deletion-insertion operation”.

There is a striking correspondence between the statistic weakbump and run, a permutation
statistic developed in a recent paper by Gunawan et al. [4], that we would now like to explain.
Let si ∈ Sn denote the permutation that transposes the quantities at positions i and i + 1.
This is known as an adjacent transposition and every permutation π ∈ Sn may be written as a
product of adjacent transpositions si1 . . . sik .

Writing `(π) to denote the minimum number of adjacent transpositions required to express
π, known as the Coxeter length of π, a reduced word for π is defined to be any minimal length
decomposition into adjacent transpositions si1 . . . si`(π) . A run is now defined to be an increasing

or decreasing sequence of consecutive integers and run(π) to be the fewest number of runs needed
for a reduced word for π.

In [4] the example σ = 314569278 is used. This has reduced words [21873456] and [87213456].
These both consist of three runs, as can be seen by inserting periods for emphasis: [21.87.3456],
[87.21.3456]. It turns out that there is no reduced word of σ with fewer runs and so run(σ) = 3.

For our example π = 475382691 (from Example 1), we find an example of a reduced word is
[67.5.345.23456.12345678] and in fact run(π) = 5. In [4] it is shown that: run(π) = n−λ1. Each
run in a reduced word corresponds to the rearrangement of one card in the discussion above
and so we have:

Proposition 19. Let π ∈ Sn. Then weakbump(π) = run(π).

Proof. As weakbump(π) and run(π) are both equal to n− λ1, the result is immediate. �

5. Bump polynomials

In this section we will look at two polynomials associated with the bump statistic.

5.1. The permutation-bump polynomial. The first is the generating function of the bump
statistic over permutations. Let bn,i be the number of π ∈ Sn with bump(π) = i.
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Definition 20 (The permutation-bump polynomial). Define

Bn(q) =
∑
π∈Sn

qbump(π) =
∑
i

bn,iq
i. (4)

The first few polynomials are listed in Table 1.

B1(q) = 1 T1(q) = 1
B2(q) = 1 + q T2(q) = 1 + q
B3(q) = 1 + 4q + q3 T3(q) = 1 + q + q3

B4(q) = 1 + 9q + 4q2 + 9q3 + q6 T4(q) = 1 + q + q2 + q3 + q6

B5(q) = 1 + 16q + 25q2 + 36q3 + 25q4 + 16q6 + q10 T5(q) = 1 + q + q2 + q3 + q4 + q6 + q10

Table 1

Theorem 5 shows that the bump statistic depends only on the shape of the tableaux via RS.

Corollary 21. Bn(q) =
∑
λ`n

(fλ)2qλ2+2λ3+3λ4+....

The coefficients for Bn(q) do not enjoy those properties of unimodality/log-concavity that
are satisfied by other permutation statistics. For example, in

B8(q) =1 + 49q + 400q2 + 1225q3 + 4292q4 + 4900q5 + 4361q6 + 9864q7 + 3136q8

+ 4900q9 + 1225q10 + 4096q11 + 196q12 + 784q13 + 441q15 + 400q16 + 49q21 + q28.

we can see the polynomial is not symmetric, not unimodal, and there are many ‘internal’ co-
efficients that are zero. The reason for this is that for there to be a non-zero coefficient of an
exponent of q, there is a satisfiability problem to be solved for that exponent. For example, the
coefficient of q25 must be zero since it is not possible to find a partition λ = (λ1, λ2, . . .) ` 8
such that the equation λ2 + 2λ3 + 3λ4 + . . . = 25 has a solution.

While it is not possible to say much about Bn(q) given its dependence upon SYT(λ), we
can say something about the closed form for a special case. Consider restricting the sum over
all permutations to a sum over all permutations avoiding the pattern 321. Let B321

n (q) be the
generating function for this case, then:

Theorem 22. B321
n (q) = 1 +

∑
1≤k≤n/2

(
n

k,k,n−2k
)2(

n−k+1
k

)2 qk.
Proof. Consider a shape λ corresponding to a 321-avoiding permutation of length n. It can
have at most two rows. If it has one row then the contribution to B321

n (q) will be 1 since the
only such π is the identity permutation, which has bump value zero.

If λ has two rows, assume the second row has k ≥ 1 cells and the first row n− k cells. Since
the second row can be no longer than the first we must have k ≤ n − k, i.e. k ≤ n/2. The
number of standard Young tableaux with shape λ = (n − k, k) is given by the hook-length
formula (Theorem 4):

f (n−k,k) =
n!

k!(n− 2k)!(n− 2k + 2)(n− 2k + 1) · · · (n− k + 1)

=

(
n

k

)(
n− k
k

)
/

(
n− k + 1

k

)
=

(
n

k, k, n− 2k

)
/

(
n− k + 1

k

)
.

As B321
n (q) = 1 +

∑
1≤k≤n/2(f

(n−k,k))2qk, we have the stated expression. �

Theorem 23. The sequence of coefficients of the polynomial B321
n (q) is log-concave.
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Proof. Fix n and let ak = [qk]B321
n (q) =

(
n

k,k,n−2k
)2
/
(
n−k+1

k

)2
for all 1 ≤ k ≤ n/2. Then

a2k ≥ ak−1ak+1 iff (
n

k,k,n−2k
)4(

n−k+1
k

)4 ≥
(

n
k−1,k−1,n−2k+2

)2(
n−k+2
k−1

)2
(

n
k+1,k+1,n−2k−2

)2(
n−k
k+1

)2 .

Since all quantities are strictly positive we see that the above inequality holds true iff it is also
true once one takes the positive square roots of both sides:(

n
k,k,n−2k

)2(
n−k+1

k

)2 ≥
(

n
k−1,k−1,n−2k+2

)(
n−k+2
k−1

) (
n

k+1,k+1,n−2k−2
)(

n−k
k+1

) .

On cancelling the many common terms on both sides, this inequality is equivalent to:

(k + 1)(n− k + 2)(n− 2k + 1)2 ≥ k(n− k + 1)(n− 2k + 3)(n− 2k − 1).

Compare terms on both sides from left to right: k + 1 ≥ k; n − k + 2 ≥ n − k + 1; and
(n− 2k+ 1)2 ≥ (n− 2k+ 1)2− 4 = (n− 2k+ 1 + 2)(n− 2k+ 1− 2) = (n− 2k+ 3)(n− 2k− 1).
The sequence (ak) is therefore log-concave. �

Let us now consider a bivariate permutation bump polynomial. Let r(π) be π written in
reverse one-line order (for example, if π = 25134 then r(π) = 43152). Clearly this reverse
operator r is a bijection. Define

Bn(q, t) :=
∑
π∈Sn

qbump(π)tbump(r(π)).

Proposition 24. Bn(q, t) = Bn(t, q).

Proof. Suppose π ∈ Sn with bump(π) = a and bump(r(π)) = b. Then the permutation π′ = r(π)
is such that bump(π′) = b and bump(r(π′)) = bump(π) = a. This means to every term qatb in
Bn(q, t) there is a corresponding term qbta, and so Bn(q, t) = Bn(t, q). �

We also have the diagonal of this bivariate polynomial:

Proposition 25. Bn(q, q) =
1

qn

∑
λ`n

(fλ)2
∏
c∈λ

qh(c).

Proof. Let π ∈ Sn and suppose (P,Q) = RS(π). Then the reverse of π corresponds to
(P t, evac(Q)t); see Stanley [8, Corollary A1.2.11] for a discussion of evac(Q). This means the
shape of the reverse of π will be the conjugate of shape(π). Thus

Bn(q, q) =
∑
π∈Sn

qbump(shape(π))+bump((shape(π))′)

=
∑
λ`n

(fλ)2qbump(λ)+bump(λ′).

Bergeron [1, p. 33], for example, notes that
∑

c∈λ h(c) = bump(λ) + bump(λ′) + |λ|. So we can
rewrite the above sum as:

Bn(q, q) =
∑
λ`n

(fλ)2q−n+
∑
c∈λ h(c)

=
1

qn

∑
λ`n

(fλ)2
∏
c∈λ

qh(c).

�
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5.2. The partition-bump polynomial. There is more we can say about the generating func-
tion of the bump statistic over partitions rather than permutations. This generating function
is

Tn(q) =
∑
λ`n

qbump(λ) =
∑
i

tn,iq
i, (5)

where tn,i is the number of partitions λ ` n with bump(λ) = i. The first few polynomials are
listed in Table 1.

Theorem 26. Tn(q) = [tn]
n∏
i=1

1

1− q(
i
2)ti

.

Proof. Let Part be the set of all integer partitions λ and let Parta be those partitions λ whose
largest part λ1 = a. Define the generating function

f(q, t, z) :=
∑
λ∈Part

λ=(λ1,λ2,...)

qbump(λ)t|λ|zλ1 .

Notice that every λ ∈ Part` can be written uniquely as a pair 〈`, µ〉 where µ ∈ Partk for some
k ≤ `. This decomposition allows us to write bump(λ) = (|λ| − `) + bump(µ) = |µ| + bump(µ)
and |λ| = `+ |µ|. Using this we have

f(q, t, z) =
∑
`≥0

z`
∑

λ∈Part`

qbump(λ)t|λ|

=
∑
`≥0

z`
∑

λ=〈`,µ〉
µ∈Partk : k≤`

qbump(λ)t|λ|

=
∑
`≥0

z`
∑̀
k=0

∑
µ∈Partk

qbump(〈`,µ〉)t|〈`,µ〉|

=
∑
`≥0

z`
∑̀
k=0

∑
µ∈Partk

q|µ|+bump(µ)t`+|µ|

=
∑
k≥0

∑
`≥k

z`
∑

µ∈Partk

q|µ|+bump(µ)t`+|µ|

=
∑
k≥0

∑
µ∈Partk

qbump(µ)(qt)|µ|
∑
`≥k

(tz)`

The inner sum is (tz)k/(1− tz), and so

f(q, t, z) =
1

1− tz
∑
k≥0

(tz)k
∑

µ∈Partk

qbump(µ)(qt)|µ|

=
1

1− tz
f(q, qt, tz).

Pumping this equation gives

f(q, t, z) =
1

1− tz
1

1− qt2z
f(q, q2t, qt2z) =

1

1− tz
1

1− qt2z
1

1− q3t3z
f(q, q3t, q3t3z).

We can do this n times to find:

f(q, t, z) =

 n∏
i=1

1(
1− q(

i
2)tiz

)
 f(q, qnt, q(

n
2)tnz).
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Setting z = 1 gives us the following expression for Tn(q):

Tn(q) = [tn]
n∏
i=1

1

1− q(
i
2)ti

.

�

When one looks at the first dozen polynomials Tn(q), it will become apparent that the head
of each of these polynomials begins to remain constant as n increases. This convergence of the
head of the polynomial is made precise in the following theorem.

Theorem 27. For all n, j ≥ 0, tn+j,n ≤ tn+j+1,n. Also, for i ∈ {0, 1, . . . , bn/2c},

tn,i = [zi]
1∏

k≥2

(
1− z(

k
2)
) .

Note that the coefficients of the first bn/2c powers are independent of n.

Proof. Recall that for a shape λ, we have bump(λ) =
∑

i≥2(i − 1)λi and the entries of λ are

weakly decreasing. For a given n, suppose there exists a solution λ = (λ1 = x1, λ2 = x2, λ3 =
x3, . . .) ` n to the equation

∑
i≥2(i−1)λi = k. Then, for m > n, we have (λ1 = x1+m−n, λ2 =

x2, . . .) ` m is also a solution. Hence tn,k ≤ tm,k and we have proven the first claim in the
theorem.

Secondly, if
∑

i≥2(i− 1)λi = k then
∑

i≥2 λi ≤ k while
∑

i≥2 λi = k iff λ2 = k (and λi = 0 for

all i > 2). This shows that as n increases we will find a new, and final, solution to bump(λ) = k
precisely when n = 2k because with n = 2k we have λ = (k, k, 0, 0, . . . ) ` n.

To complete the proof, we note that bump(λ) can be thought of as the sum of the number
of times that each value in the cells of the final tableau was bumped during the RS process.
For any column, λ′j , the contribution to bump(λ) from the values in the cells of the column is,

reading down the column, 0 + 1 + 2 + · · ·+ (|λ′j | − 1) =
(|λ′j |

2

)
, i.e. a triangular number. So each

solution to bump(λ) = k is a sum of triangular numbers. And vice versa, if a sum of triangular
numbers is equal to k, then in ordering those numbers to be weakly descending they correspond
to a shape λ that is a solution. �
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[2] M. Bóna. Combinatorics of Permutations. Discrete Mathematics and its Applications, CRC Press, 2012.
[3] S. Fomin. Generalized Robinson-Schensted-Knuth correspondence. Zapiski Nauchn. Sem. LOMI 155 (1986),

156–175.
[4] E. Gunawan, J. Pan, H.M. Russell, and B.E. Tenner. Runs and RSK tableaux of boolean permutations.

arXiv:2207.05119, July 2022.
[5] D.E. Knuth. The Art of Computer Programming, Vol. 3. Addison-Wesley, 2nd edition, 1998.
[6] C. Krattenthaler. Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes. Adv.

Appl. Math. 37 (2006), 404–431.
[7] C. Schensted. Longest increasing and decreasing subsequences. Canad. J. Math. 13 (1961), 179–191.
[8] R.P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge Studies in Advanced Mathematics, 49. Cam-

bridge University Press, 2nd edition, 2012.
[9] R.P. Stanley. Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics, 62. Cam-

bridge University Press, 1st edition, 1999.
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