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ABSTRACT

This review deals primarily with the bifurcation, stability, and evolution of gravity
and capillary-gravity waves. Recent results on the bifurcation of various types
of capillary-gravity waves, including two-dimensional solitary waves at the min-
imum of the dispersion curve, are reviewed. A survey of various mechanisms
(including the most recent ones) to explain the frequency downshift phenomenon
is provided. Recent significant results are given on “horseshoe” patterns, which
are three-dimensional structures observable on the sea surface under the action
of wind or in wave tank experiments. The so-called short-crested waves are then
discussed. Finally, the importance of surface tension effects on steep waves is
studied.

1. INTRODUCTION

This review deals primarily with the bifurcation, stability, and evolution of
gravity and capillary-gravity waves. The most recent reviews on water waves
in theAnnual Review of Fluid Mechanicsare those of Hammack & Henderson
(1993) on resonant interactions among surface water waves, Banner & Peregrine
(1993) on wave breaking in deep water, Akylas (1994) on three-dimensional
long water-wave phenomena, Melville (1996) on the role of surface-wave break-
ing in air-sea interaction, and Tsai & Yue (1996) on the numerical computation
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of free-surface flows. The present review is more in the spirit of the reviews by
Yuen & Lake (1980, 1982) on instabilities of waves on deep water and Schwartz
& Fenton (1982) on strongly nonlinear waves. Although the emphasis is on
capillary-gravity waves, some results on gravity waves will be recalled as well.

In Section 2, some results are recalled on the water-wave problem, which
will be discussed in later sections of this review. In particular, the stability and
evolutionary properties of a weakly nonlinear wave train are considered, based
on the Dysthe (1979) modulation equation, which is an equation describing the
wave envelope in deep water. The main steps leading to the Dysthe equation
are recalled, both by using the method of multiple scales and by starting from
Zakharov’s integral equation.

Section 3 is devoted to recent results on the bifurcation of capillary-gravity
waves near the minimum of the dispersion curve, including the bifurcation of
a new type of solitary wave. This discovery was made possible by using a
spatial approach to study the water-wave problem. The wave evolution is then
considered as a dynamical system in space. The application of this approach
to the water-wave problem goes back to Kirchgässner (1988) and has been the
subject of several papers since. For example, it can shed some light on the
waves generated by a fishing-rod perturbing a stream flowing down at a speed
close to the minimum of the dispersion curve. Another interesting application
is the deformation of a sheet of ice under a load (for example when a vehicle
moves on top of the ice). From a pedagogical point of view, a good starting
point to explain the new results is the nonlinear Schrödinger (NLS) equation.
Indeed, there are two speeds involved in the solutions of the NLS equation: the
phase velocity of the oscillations of the carrier, and the group velocity at which
the envelope propagates. Near the minimum of the dispersion curve, these two
speeds are almost equal, and one can find steady solutions. The application of
the spatial approach has also allowed the discovery of other types of waves,
such as generalized solitary waves, which are solitary waves with ripples of
small constant amplitude in their tails. The physical relevance of these new
solutions will be discussed as well.

Section 4 is devoted to the frequency downshift phenomenon. The nonlinear
evolution of water waves has been studied for several decades. The frequency
downshift in the evolution of a uniformly traveling train of Stokes waves, re-
ported initially by Lake et al (1977), remained a challenging problem for a long
time. This phenomenon concerns the four-wave interaction of pure gravity
waves as well as short gravity waves influenced by the effects of both viscosity
and surface tension. In the framework of two-dimensional (2D) motion, modu-
lational instability and dissipation were found to be the fundamental ingredients
in the permanent subharmonic transition of the wave field. However, Trulsen
& Dysthe (1997) showed that dissipation may not be necessary to produce a
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permanent downshift in three-dimensional (3D) wave trains in deep water. A
review of various mechanisms (including the most recent ones) to explain the
downshift is provided.

Recent results on “horseshoe” patterns are described in Section 5. These
horseshoe patterns are quite common 3D structures, which are often observed
on the sea surface under the action of wind or in wave tank experiments. Despite
their common character and ease of observation, experimental information as
well as theoretical explanations of their formation and persistence are almost
nonexistent. The presence of these coherent structures in the wave field sheds
some doubt on the assumption of gaussian probability distribution of sea surface
for the systems under consideration. Another important feature of these 3D wave
patterns is their role in sea roughness and consequently in air-sea momentum
transfer. We report on recent significant results dealing with horseshoe patterns.

Section 6 is devoted to the bifurcation of 3D waves from a state of rest.
These 3D waves are commonly called short-crested waves. Surprisingly, the
literature indicates that these waves have not been studied much. A review of
the existing results is provided, including some new results on the bifurcation
of short-crested waves and on their stability. A few words are said on the
connection between short-crested waves and the 3D waves studied by Saffman
and his collaborators in the early 1980s. Their 3D waves appear through a
dimension-breaking bifurcation in the water-wave problem. Such bifurcations
were first pointed out by McLean et al (1981), who studied 3D instabilities of
finite-amplitude water waves.

The importance of surface tension effects on gravity waves is discussed in
Section 7. In particular, we review recent results on limiting profiles, crest
instabilities, and wave breaking.

2. GENERALITIES ON THE WATER-WAVE
PROBLEM

The notations used in this section and in later sections are summarized in Tables
1 and 2.

The classical water-wave problem consists of solving the Euler equations in
the presence of a free surface. These equations allow for rotational motions,
but usually one makes the assumption that the flow is irrotational (potential
flow). Besides analytical reasons (the irrotational equations are easier to handle
than the rotational equations), this fact may be explained by the following
property. The linearization of the rotational Euler equations around the state of
rest shows that the rotational component of the perturbation is steady. One can
split the perturbation into two parts: a rotational one and a potential one. The
potential one satisfies the linear equation obtained by linearizing the potential
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Table 1 Physical parameters and their dimensions.m, mass;l, length;t, time

Symbol Physical quantity Dimension

c Wave velocity [l][ t]−1

T Coefficient of surface tension [l]3[t]−2

divided by density
g Acceleration due to gravity [l][ t]−2

h Mean water depth [l]
ρ Water density [m][ l]−3

ρ1 Density of the heavier fluid [m][ l]−3

ρ2 Density of the lighter fluid [m][ l]−3

ν Kinematic viscosity [l]2[t]−1

k Wave number vector [l]−1

ko Wave number of the carrier [l]−1

L Wave length [l]
a or A Wave amplitude [l]

ω Frequency [t]−1

ωo Frequency of the carrier [t]−1

x = (x, y) Horizontal physical coordinates [l]
z Vertical physical coordinate [l]
t Time [t]

φ(x, y, z, t) Velocity potential [l]2[t]−1

η(x, y, t) Elevation of the free surface [l]

Euler equations. Stability or instability is then decided independently of the
rotational or the irrotational perturbation, but since the rotational perturbation
does not evolve in time, one must deal only with the potential perturbation.
This investigation is precisely the problem of stability of the state of rest in the
context of potential flows. Concerning the modulational stability of a nonlinear
wave, Colin et al (1995, 1996) showed that in the rotational case, one ends up
with the same amplitude equation as in the potential case. Therefore stability
does not depend on the irrotationality assumption.

Table 2 Dimensionless quantities. Note that the Bond number is of-
ten defined as the inverse ofB in the literature

Symbol Definition Dimensionless quantity

B Tk2/g Bond number

R g1/2/νk3/2 Reynolds number

ǫ ka Dimensionless amplitude

F2 c2/gh Square of Froude number

α gT/c4 Weber number divided byF2

r (ρ1− ρ2)/(ρ1+ ρ2) Density ratio
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From now on, it will be assumed that the flow is irrotational. The bottom
is described byz = −h(x, y). We summarize the governing equations and
boundary conditions and state the classical surface wave problem: solve for
η(x, y, t) andφ(x, y, z, t) the set of equations

∇2φ ≡ φxx + φyy + φzz = 0 in the flow domain,

ηt + φxηx + φyηy − φz = 0 at z = η(x, y, t),

φt +
1

2

(

φ2
x + φ2

y + φ2
z

)

+ gη − T(w1x + w2y) = 0 at z = η(x, y, t),

φxhx + φyhy + φz = 0 at z = −h(x, y).

The expressions for the curvaturesw1 andw2 are

w1 =





ηx
√

1 + η2
x + η2

y



, w2 =





ηy
√

1 + η2
x + η2

y



. (2.1)

The equation for conservation of momentum is not stated; it is used to find the
pressureponceη andφ have been found. In water of infinite depth, the kinematic
boundary condition on the bottom is replaced by|∇φ| → 0 asz → −∞.

It is well known that the above problem admits 2D periodic solutions in the
form of traveling gravity waves (T= 0), the so-called Stokes waves (Stokes
1847). It also admits 2D periodic solutions in the form of standing gravity
waves. A rigorous mathematical proof of the existence of standing waves is still
absent but some progress has been made (Amick & Toland 1987, Iooss 1997b).
The water-wave problem also has solitary gravity wave solutions. When surface
tension is added, there are more types of solutions (see for example Sect. 3). Of
course, there are also 3D periodic solutions, the so-called short-crested waves.
The proof of their existence was first given by Reeder & Shinbrot (1981) but
only in some region of parameter space that does not include the case of pure
gravity waves. The dispersion relation for linear periodic waves is given by

ω2 = (g|k| + T |k|3) tanh(|k|h).

An essential part in the study of Stokes waves is their stability. There are
two important dates: the late 1960s, when it was discovered that Stokes waves
in deep water are unstable with respect to long wave perturbations, and the
early 1980s, when the stability with respect to all kinds of 3D perturbations
was studied numerically.

The so-called long wave instability (or Benjamin-Feir instability, or instabil-
ity to side-band perturbations) dominates for small-amplitude waves. Lighthill
(1965) provided a geometric condition for wave instability, which is valid when
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mean flow effects can be neglected, such as in deep water, and essentially ob-
tained what is now called the Benjamin-Feir instability. Benjamin & Feir (1967)
showed the result analytically. Whitham (1967) obtained the same result inde-
pendently by using an average Lagrangian approach, which is explained in his
book (1974). At the same time, Zakharov (1968), using a Hamiltonian formula-
tion of the water-wave problem, obtained the same instability result and derived
the cubic NLS equation in the context of the modulational stability of water
waves. The extension to finite depth was provided by Benney & Roskes (1969),
who obtained the equations that are now called the Davey-Stewartson equa-
tions. Both Zakharov (1968) for infinite depth and Benney & Roskes (1969) for
finite depth considered the stability with respect to 3D disturbances. Hasimoto
& Ono (1972) used the method of multiple scales in time and in space to red-
erive the cubic NLS equation. Later, Davey & Stewartson (1974) extended the
results of Hasimoto & Ono (1972) to 3D perturbations. Recently, Bridges &
Mielke (1995) formulated rigorously the existence and linear stability problem
for the Stokes periodic wave train in finite depth in terms of the spatial and
temporal Hamiltonian structure of the water-wave problem.

The cubic NLS equation does not involve the wave-induced mean flow. Dys-
the (1979) pursued the perturbation analysis one step further, to fourth order
in wave steepness. One of the main effects at this order in infinite depth is
precisely the influence of the wave-induced mean flow.

Later, numerical computations were used to analyze the stability of wa-
ter waves. The main advantage is that there exists in principle no restriction
concerning the length of disturbances and the steepness of the wave. Early
numerical work was limited to 2D instability (Longuet-Higgins 1978a,b). This
author reported a new type of instability for finite-amplitude gravity waves,
resulting from a quintet resonance (see below).

McLean et al (1981) and McLean (1982) studied 3D instabilities of finite-
amplitude water waves. McLean et al (1981) consider the stability of a 2D
periodic Stokes wave of the form

η(x, t) =
∞

∑

n=0

An cos[nko(x − ct)].

Let η(x, y, t) = η(x, t) + Z(x, y, t). The water-wave equations are linearized
aboutη(x, t) and nontrivial solutions of the linearized problem are sought in
the form

Z(x, y, t) = exp{i[ pko(x − ct) + qkoy] + st}

×
∞

∑

n=−∞
an exp[inko(x − ct)] + c.c.,
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wherep andq are arbitrary real numbers and c.c. denotes the complex conju-
gate. The eigenvalues of the linearized problem are the values ofssuch that there
is a nontrivial solution with time-dependence exp(st). Instability corresponds
to Res 6= 0. The spectrum is easy to compute whenη(x, t) = 0. One finds that
the eigenvalues are all imaginary:

s = −i[±ω(κ) − cko(p + n)],

where

ω(κ) =
√

gκ and κ = ko

√

(p + n)2 + q2.

As the amplitude of the Stokes wave increases, the eigenvalues move. MacKay
& Saffman (1986) showed that a necessary condition for a Stokes wave to lose
spectral stability is that, for the linearized problem about it, there is a collision
of eigenvalues of opposite Krein signature (Krein 1955) or a collision of eigen-
values at zero. The signature is related to the sign of the second derivative of
the energy. The loci of collision at zero amplitude can be easily obtained. The
curves are separated into two classes: class I when the collisions occur between
modes withn= mandn= −m, and class II when the collisions occur between
modes withn= m andn= −m− 1. The corresponding instabilities are called
class I and class II instabilities. Form= 1, the instability I band lies near the
curve in the (p, q) plane defined by

p − 1 + [q2 + (p − 1)2]1/4 = p + 1 − [q2 + (p + 1)2]1/4, (2.2)

while the instability II band lies near the curve defined by

p − 2 + [q2 + (p − 2)2]1/4 = p + 1 − [q2 + (p + 1)2]1/4. (2.3)

This band is symmetrical aboutq= 0 andp= 1
2. In fact, class I instabilities

correspond to quartet interactions between the carrierko = ko(1, 0) counted
twice and the satellitesk1 = ko(1+ p, q) andk2 = ko(1− p, −q), while class
II instabilities correspond to quintet interactions between the carrierko(1, 0)

counted three times and the satellitesko(1+ p, q) andko(2− p, −q). Another
way to interpret these instabilities is in terms of resonance conditions. Equations
(2.2) and (2.3) can be expressed as

nko = k1 + k2, (2.4)

nωo = ω(k1) + ω(k2), n = 2, 3, . . . , (2.5)

whereωo = ω(ko). n= 2 corresponds to quartet resonant interactions,n= 3
to quintet resonant interactions, etc. The class II instability for finite-amplitude
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gravity waves, which results from a quintet resonance, was in fact conjectured
by Zakharov (1968).

McLean et al (1981) found that forp = 1
2 the instability is copropagating

with the unperturbed wave (i.e. Ims= 0). This implies that steady 3D waves
bifurcate from 2D waves at the point of stability exchange withp = 1

2. This
phenomenon was first exhibited within the framework of the Zakharov equa-
tion (Saffman & Yuen 1980) and then of the full Euler equations (Meiron et
al 1982). The bifurcated 3D waves are of two types: symmetric or asymmet-
ric (another terminology is skew-symmetric). As pointed out by Meiron et al
(1982), bifurcation can occur for any value ofp and can be identified with
the stationary states of the instability. There are, however, good physical rea-
sons why onlyp= 1

2 should occur, namely that only for this value is the state
with stationary disturbances also a state of stability exchange. Forp 6= 1

2, all
stability-exchange disturbances propagate with respect to the wave. Note the
analogy with resonant triads in shear flows [Craik 1985 (Sect. 17)].

The extension of the long-wave instability to capillary-gravity waves was
given independently by Kawahara (1975) (2D perturbations) and Djordjevic &
Redekopp (1977) in finite depth, and by Hogan (1985) in infinite depth. The
numerical computations were extended to capillary waves by Chen & Saffman
(1985) and to capillary-gravity waves by Zhang & Melville (1987). They studied
numerically the stability of gravity-capillary waves of finite amplitude includ-
ing, besides quartet instabilities, triad and quintet instabilities.

In the next subsections, we review the main steps of the derivation of the
modulation equations, first by using the method of multiple scales, then by
starting from the Zakharov equations. We refer to the paper by Das (1997) for
a similar description.

2.1 Method of Multiple Scales
Consider gravity-capillary waves on the surface of deep water. Accounting for
nonlinear and dispersive effects correct to third order in the wave steepness,
the envelope of a weakly nonlinear gravity-capillary wavepacket in deep water
is governed by the NLS equation. A more accurate envelope equation, which
includes effects up to fourth order in the wave steepness, was derived by Dysthe
(1979) for pure gravity wavepackets. He used the method of multiple scales.
Later, Stiassnie (1984) showed that the Dysthe equation is merely a particular
case of the more general Zakharov equation that is free of the narrow spectral-
width assumption. Hogan (1985) extended Stiassnie’s results to deep-water
gravity-capillary wavepackets. Apart from the leading-order nonlinear and dis-
persive terms present in the NLS equation, the fourth-order equation of Hogan
features certain nonlinear modulation terms and a nonlocal term that describes
the coupling of the envelope with the induced mean flow. In addition to playing
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a significant part in the stability of a uniform wavetrain, this mean flow turns
out to be important at the tails of gravity-capillary solitary waves in deep water
(Akylas et al 1998).

The common ansatz used in the derivation of the NLS equation (or of the
Dysthe equation if one goes to higher order) is that the velocity potentialφ

and the free-surface elevationη have uniformly valid asymptotic expansions in
terms of a small parameterǫ (the dimensionless amplitude of the wave,koA,
for example). One writes

η =
3

∑

n=1

ǫnηn(x0, x1, x2, y1, y2; t0, t1, t2) + O(ǫ4), (2.6)

φ =
3

∑

n=1

ǫnφn(x0, x1, x2, y1, y2, z; t0, t1, t2) + O(ǫ4), (2.7)

where

x0 = x, x1 = ǫx, x2 = ǫ2x, y1 = ǫy, y2 = ǫ2y, t0 = t, t1 = ǫt, t2 = ǫ2t.

(2.8)

The order one component ofη is

η1 = Aei (kox−ωot) + c.c. (2.9)

Applying the method of multiple scales leads to a generalization of the Dysthe
equation for the evolution of the complex amplitudeA of the wave,

2i
∂ A

∂t2
+ p

∂2A

∂ X2
+ q

∂2A

∂y2
1

+ γ A|A|2 = − iǫ
(

s AX y1y1 + r AX X X + u A2A∗
X

− v|A|2AX
)

+ ǫ AφX

∣

∣

z1=0.

(2.10)

The evolution equation has been written in dimensionless form, with all
lengths nondimensionalized byko, time byωo, and potential by 2k2

o/ωo. Here
X = (x1 − cgt1), z1 = ǫz, are scaled variables that describe the wavepacket
modulations in a frame of reference moving with the group velocitycg. As
expected, to leading order in the wave steepnessǫ ≪ 1, Equation 2.10 reduces
to the familiar NLS equation, while the coupling with the induced mean flow
mentioned earlier is reflected in the last term of Equation 2.10.
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Specifically, the mean-flow velocity potentialǫ2φ(X, z1, t2) satisfies the bound-
ary-value problem

φX X + φz1z1
= 0 (−∞ < z1 < 0, −∞ < X < ∞),

φz1
= (|A|2)X (z1 = 0),

φ → 0 (z1 → −∞),

from which it follows that

φX|z1=0 = −
∫ ∞

−∞
|s|eisX

F(|A|2) ds, (2.11)

where

F(·) =
1

2π

∫ ∞

−∞
e−isX(·) dX

denotes the Fourier transform. Hence, the coupling of the envelope with the
induced mean flow enters via a nonlocal term in the fourth-order envelope
equation. The coefficients of the rest of the terms in Equation 2.10 are given
by the following expressions:

p =
k2

o

ωo

d2ωo

dk2
o

=
3B2 + 6B − 1

4(1 + B)2
, (2.12)

q =
ko

ωo

dωo

dko
=

1 + 3B

2(1 + B)
, (2.13)

γ = −
2B2 + B + 8

8(1 − 2B)(1 + B)
, (2.14)

r = −
(1 − B)(B2 + 6B + 1)

8(1 + B)3
, (2.15)

s =
3 + 2B + 3B2

4(1 + B)2
, (2.16)

u =
(1 − B)(2B2 + B + 8)

16(1 − 2B)(1 + B)2
, (2.17)

v =
3(4B4 + 4B3 − 9B2 + B − 8)

8(1 − 2B)2(1 + B)2
. (2.18)
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2.2 Derivation From Zakharov’s Integral Equation
This derivation was first considered by Stiassnie (1984) for gravity waves and
by Hogan (1985) for capillary-gravity waves.

Zakharov’s integral equation forB(k, t), which is related toη(x, t) through
Equation 2.22, is

i
∂ B

∂t
(k, t) =

∫∫∫ +∞

−∞
U (k, k1, k2, k3)

× B∗(k1, t)B(k2, t)B(k3, t)δ(k + k1 − k2 − k3)

× exp{i[ω(k) + ω(k1) − ω(k2) − ω(k3)]t} dk1 dk2 dk3,

(2.19)

where the wave vectork and the frequencyω are related through the linear
dispersion relation

ω(k) = (g|k| + T |k|3)
1
2 .

U (k, k1, k2, k3) is a lengthy scalar function given for example in Krasitskii
(1990, 1994). Of course this integral equation was derived earlier by Zakharov
(1968), but we refer to the work of Krasitskii because he explains well why the
so-called Zakharov’s equation, which is commonly used, is not Hamiltonian
despite the Hamiltonian structure of the exact water-wave equations. This is
due to shortcomings of its derivation. In particular, the kernelU (k, k1, k2, k3)

must satisfy certain symmetries. Apart from the resonance surface, determined
from the equations

k + k1 = k2 + k3, (2.20)

ω(k) + ω(k1) = ω(k2) + ω(k3), (2.21)

the kernel can be changed in an arbitrary way. On the resonant surface, the
kernel satisfies

U (k, k1, k2, k3) = U (k1, k, k2, k3) = U (k, k1, k3, k2) = U (k2, k3, k, k1),

which follows from the requirement that the equation is Hamiltonian. There
are many ways to make a continuation of these symmetry conditions onto the
whole eight-dimensional space(k, k1, k2, k3), the most natural of them being
the canonical transformation, which leads automatically to reduced equations
with Hamiltonian structure. The “new” equations have been used recently for
computational purposes. The key properties of the Zakharov equation are sum-
marized in Krasitskii (1994) and Badulin et al (1995). Concerning the Hamil-
tonian structure of the water-wave problem, it is worth pointing out the recent
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work of Craig & Worfolk (1995), who considered the Birkhoff normal form for
the water-wave problem. They verified that in the fourth-order normal form, the
coefficients vanish for all nongeneric resonant terms, and showed that the result-
ing truncated system is completely integrable. In contrast they showed that there
are resonant fifth-order terms with nonvanishing coefficients, answering to the
negative the conjecture of Dyachenko & Zakharov (1994) on the integrability
of free-surface hydrodynamics. The same answer was provided independently
by Dyachenko et al (1995). Although the present review does not deal with the
statistical description of waves, it is worth noting that it was shown recently by
Dyachenko & Lvov (1995) that the two approaches describing wave turbulence
introduced by Hasselmann (1962, 1963) and by Zakharov (1968), respectively,
result in the same kinetic equation for the second-order correlator.

As pointed out by Zakharov (1968), there are difficulties in applying Equation
2.19 to capillary-gravity waves. This is because, unlike gravity waves, these
waves can satisfy triad resonances. The condition for triad resonance will give
a zero denominator in one of the terms ofU (k, k1, k2, k3) corresponding to
the second-order interaction. But if the wave packet is sufficiently narrow, then
the resonance condition cannot be satisfied.

B(k, t) is related to the free-surface elevationη(x, t) through the relation

η(x, t) =
1

2π

∫ +∞

−∞

(

|k|
2ω(k)

)
1
2

{B(k, t) exp{i[k · x − ω(k)t ]} + c.c.} dk,

(2.22)

where c.c. denotes the complex conjugate.
Letk = ko+χ whereko = (ko, 0) andχ = (p, q). Letǫ denote the order of

the spectral width|χ |/ko. Let alsoω(ko) = ωo andχi = (pi , qi ), i = 1, 2, 3.

Introducing a new variable,A(χ, t), given by

A(χ, t) = B(k, t) exp{−i[ω(k) − ω(ko)]t}, (2.23)

in Equations 2.19 and 2.22 we get

i
∂ A

∂t
(χ, t) − [ω(k) − ωo] A(χ, t)

=
∫∫∫ +∞

−∞
U (ko + χ, ko + χ1, ko + χ2, ko + χ3)

× δ(χ + χ1 − χ2 − χ3)A∗(χ1)A(χ2)A(χ3) dχ1 dχ2 dχ3, (2.24)

and

η(x, t) = exp{i(kox − ωot)}
1

2π

∫ +∞

−∞

(

|k|
2ω(k)

)
1
2

A(χ, t)ei χ ·x dχ + c.c.

(2.25)



NONLINEAR WATER WAVES 313

The Taylor expansion of|ko + χ |/2ω(ko + χ) in powers of|χ |/ko is
(

|ko + χ |
2ω(ko + χ)

)
1
2

=
(

ωo

2g(1 + B)

)
1
2
(

1 +
p

4ko

(1 − B)

(1 + B)

)

, (2.26)

in which terms up to orderǫ have been retained.
Substituting Equation 2.26 into Equation 2.25,η(x, t) can be expressed as

η(x, t) = Re{a(x, t)ei (kox−ωot)}, (2.27)

where

a(x, t) =
1

2π

(

2ωo

g(1 + B)

)
1
2
∫ +∞

−∞

(

1 +
p

4ko

(1 − B)

(1 + B)

)

A(χ, t)ei χ ·xdχ.

(2.28)

By Taylor expandingω(k) − ωo in powers of|χ |/ko and keeping terms up
to orderǫ, we get

ω(k) − ωo =
1

2

(

g

ko(1 + B)

)
1
2

×
{

p(1 + 3B) +
p2

4ko

(

−1 + 6B + 3B2

1 + B

)

+
q2

2ko
(1 + 3B)

+
p3

8k2
o

[

(1 − B)(1 + 6B + B2)

(1 + B)2

]

−
pq2

4k2
o

(

3 + 2B + 3B2

1 + B

)}

.

(2.29)

In Equation 2.24, we substitute the expression 2.29 forω(k) − ωo. By re-
placingA(χ, t) by a (x, t) and taking the inverse Fourier transform, one finds

i at +
1

2

(

g

ko(1 + B)

)
1
2

×
{

i(1 + 3B)ax +
(

−1 + 6B + 3B2

4ko(1 + B)

)

axx +
(1 + 3B)

2ko
ayy

− i
(1 − B)(1 + 6B + B2)

8k2
o(1 + B)2

axxx + i
3 + 2B + 3B2

4k2
o(1 + B)

axyy

}

=
1

2π

(

2ωo

g(1 + B)

)
1
2
∫∫∫ +∞

−∞

[

1 +
(p2 + p3 − p1)

4ko

(1 − B)

(1 + B)

]

× U (ko + χ2 + χ3 − χ1, ko + χ1, ko + χ2, ko + χ3)

× A∗(χ1)A(χ2)A(χ3) exp{i(χ2 + χ3 − χ1) · x} dχ1 dχ2 dχ3.

(2.30)
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Now it can be shown that the Taylor expansion ofU keeping terms up to
orderǫ becomes

U (ko + χ2 + χ3 − χ1, ko + χ1, ko + χ2, ko + χ3) =
k3

o

8π2

×
[

(8 + B + 2B2)

4(1 + B)(1 − 2B)
+

3(p2 + p3)

8ko

(8 − B + 9B2 − 4B3 − 4B4)

(1 + B)2(1 − 2B)2

−
(p3 − p1)

2

ko|χ1 − χ3|
−

(p2 − p1)
2

ko|χ1 − χ2|

]

. (2.31)

By using this form ofU, we find by using Equation 2.28 that the right side
of Equation 2.30 becomes on integration

g

16ωo

[

k3
o(8 + B + 2B2)

(1 − 2B)
a|a|2 −

1

2
i k2

o

(1 − B)(8 + B + 2B2)

(1 + B)(1 − 2B)
a2a∗

x

− 3i k2
o

(8 − B + 9B2 − 4B3 − 4B4)

(1 + B)(1 − 2B)2
|a|2ax

]

−
k2

o

4π2
aI, (2.32)

where

I =
∫∫ +∞

−∞

(p1 − p2)
2

|χ1 − χ2|
A∗(χ1)A(χ2)e

i (χ2−χ1)·x dχ1dχ2. (2.33)

It can be shown that

I =
[

g(1 + B)

2ωo

]

2π

∫ +∞

−∞

∂

∂ξ
(|a|2)

(x − ξ)

|x − ξ |3
dξ. (2.34)

The integralI can be related to the mean-flow velocity potentialφ (2.11).
Collecting the results from Equations 2.30 and 2.34, together with those from
the expression 2.32, and making the same scaling transformation as in the
previous subsection leads to Equation 2.10.

3. BIFURCATIONS OF WATER WAVES
WHEN THE PHASE AND GROUP
VELOCITIES ARE NEARLY EQUAL

The dispersion relation for capillary-gravity waves on the surface of a deep
layer of water is given by

c2 =
g

k
+ T k, (3.1)
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Figure 1 Local bifurcation of periodic traveling waves near the critical point (ko, co): (a) dispersion
curve for the linear problem, (b) global loop in the nonlinear problem whenr < ro=

√
5/4 and

c> co, (c) branches of nonlinear traveling waves whenr > ro andc > co (from Bridges et al 1995).

and is plotted in Figure 1a. A trivial property of this dispersion relation is that
it exhibits a minimumco. For water this minimum is reached atk= 3.63 cm−1

(or L = 1.73 cm). The corresponding speed and frequency arec= 23.2 cm/s
and f = 13.4 Hz. Of course the presence of this minimum is obvious, but
surprisingly it was only quite recently that some of its consequences were
discovered. In the classic textbooks (Lamb 1932, pp. 462–68; Lighthill 1978,
pp. 260–69; Whitham 1974, pp. 407–08, pp. 446–54; Milne-Thomson 1968,
pp. 447–49; Stoker 1957), the presence of this minimum is of course mentioned.
It represents a real difficulty for linearized versions of the water-wave problem
because it leads to small denominators. For example, consider the fishing-rod
problem, in which a uniform current is perturbed by an obstacle. Rayleigh
(1883) investigated this problem. He assumed a distribution of pressure of
small magnitude and linearized the equations around a uniform stream with
constant velocityc. He solved the resulting linear equations in closed form.
For c = c1(> co), the solutions are characterized by trains of waves in the far
field of wavenumbersk2 andk1< k2. The waves corresponding tok1 andk2
appear behind and ahead of the obstacle, respectively. The asymptotic wave
trains are given by

η ∼ −
2P

(k2 − k1)T
sin(k1x), x > 0,

η ∼ −
2P

(k2 − k1)T
sin(k2x), x < 0,
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whereP is the integral of pressure. Forc< co, Rayleigh’s solutions do not
predict waves in the far field, and the flow approaches a uniform stream with
constant velocityc at infinity. This is consistent with the fact that Equation
3.1 does not have real roots fork whenc< co. Rayleigh’s solution is accurate
for c 6= co in the limit as the magnitude of the pressure distribution approaches
zero. However, it is not uniform asc → co. It is clear that the linearized
theory fails as one approachesco: The two wavenumbersk1 andk2 merge, the
denominators approach zero, and the displacement of the free surface becomes
unbounded. Therefore there was a clear need for a better understanding of the
limiting process, but for several decades this problem was left untouched. In
the late 1980s and early 1990s, several researchers worked on the nonlinear ver-
sion of this problem independently. Longuet-Higgins (1989) indirectly touched
on this problem with numerical computations. Iooss & Kirchgässner (1990)
tackled the problem mathematically and realized that it was a 1:1 resonance
problem. Vanden-Broeck & Dias (1992) made the link between the numer-
ical computations of Longuet-Higgins (1989) and the mathematical analysis
of Iooss & Kirchgässner (1990). Benjamin (1992, 1996) considered the same
resonance for interfacial waves. One can say that the mathematical results shed
some light on the difficulty: There is a difference between a temporal approach
and a spatial approach. Roughly speaking, in temporal bifurcation theory the
wavenumberk is treated as a given real parameter, whereas in spatial bifurcation
theory the wavespeedc is treated as a given real parameter. Look at Figure 1,
where the effect of stratification has been added to make our point clearer: It
is not the same point of view if one fixesk or if one fixesc. Consider periodic
waves. Cut at a fixed value ofc (sayc1) aboveco. For water waves or for inter-
facial waves withr > ro=

√
5/4, the branching behavior for periodic solutions

is shown in Figure 1c. As r decreases (and in particular in the Boussinesq limit,
where both densities are close to each other), the branching behavior becomes
quite different and is shown in Figure 1b.

Now letcvary through the critical valueco. In the caser > ro, which includes
water waves, one gets the sequence of branching behaviors shown at the bottom
of Figure 2. In the caser < ro, which includes the Boussinesq limit, one gets
the sequence of branching behaviors shown at the top of Figure 2.

If one repeats the analysis at a fixed value ofk, one will not be able to
see any difference between interfacial and surface waves! In particular, the
temporal approach does not allow one to find the detached branch of waves for
r > ro, c< co. Therefore, it may be useful to consider the water-wave problem
as a dynamical system with space as the evolution variable (as opposed to
time). Of course, one can work directly with the full water-wave equations,
but the best way to understand what happens is to consider a model equation.
The appropriate model equation is the nonlinear Schrödinger equation for the
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Figure 2 Bifurcation of periodic traveling waves near the critical point (ko, co) whenr 6= ro. The
casec> co was explained in Figure 1. Forr < ro, there are no periodic solutions withc< co. For
r > ro, the branches of periodic solutions coalesce atc = co and become a detached branch for
c< co. These new periodic solutions exist only at finite amplitude.

amplitudeA of a modulated wave train (see left-hand side of Equation 2.10):

2i
∂ A

∂t2
+ p

∂2A

∂ X2
+ q

∂2A

∂y2
1

+ γ A|A|2 = 0. (3.2)

Akylas (1993) and Longuet-Higgins (1993) showed that, for values ofc less
thanco, Equation 3.2 admits particular envelope-soliton solutions, such that the
wave crests are stationary in the reference frame of the wave envelope. These
solitary waves, which bifurcate from linear periodic waves at the minimum value
of the phase speed, have decaying oscillatory tails and are sometimes called
“bright” solitary waves. More generally, one can look for stationary solutions
of Equation 3.2. Now usingT/c2 as unit length andT/c3 as unit time, allowing
for interfacial waves, considering waves withouty1-variations and evaluating
the coefficientsp andγ at c= co, one can show that these stationary solutions
satisfy the equation

−
2r

1 + r
µA + AX X +

16r 2 − 5

2(1 + r )2
A|A|2 = 0, (3.3)

where the bifurcation parameterµ is defined byµ = α − αo. The parameter
α was introduced in Table 2. Atc= co, it is equal toαo = 1/2r (1 + r ). The
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corresponding profile for the modulated wave is given by

η(X) = 2(1 + r )Re[A(X) exp(iX/(1 + r ))].

Introduce the scaling|µ| 1
2 Ã = A, X̃ = |µ| 1

2 (2r/(1+ r ))
1
2 X, and the coeffi-

cient

γ̃ =
16r 2 − 5

4r (1 + r )
.

The resulting equation is

sgn(µ)Ã − ÃX̃ X̃ − γ̃ Ã|Ã|2 = 0. (3.4)

Writing Ã = s(X̃)ei θ(X̃) leads to

sX̃ X̃ − sgn(µ)s + γ̃ s3 − s(θX̃)2 = 0, (3.5)

2θX̃sX̃ + sθX̃ X̃ = 0. (3.6)

The system has two first integrals,I1 andI2, defined as follows:

uθX̃ = I1, (3.7)

1

4
(uX̃)2 = sgn(µ)u2 −

1

2
γ̃ u3 − I 2

1 + I2u, (3.8)

whereu≡ s2. These two integrals are related to the energy flux and flow force,
respectively, as shown by Bridges et al (1995).

For a full description of all the bounded solutions of Equation 3.4, one can
refer to Iooss & Pérouème (1993) and Dias & Iooss (1993, 1996). There are
four cases to consider:

• r < ro, c> co: there are periodic solutions (see Figure 2), quasiperiodic
solutions and solitary waves, homoclinic to the same periodic wave with
a phase shift at+∞ and−∞ (these homoclinic solutions are sometimes
called dark solitary waves if the amplitude vanishes at the origin and grey
solitary waves if it does not). A dark solitary wave is plotted in Figure 4.

• r < ro, c< co: there are no bounded solutions.

• r > ro, c> co: there are periodic solutions (see Figure 2) and quasiperiodic
solutions.

• r > ro, c< co: there are periodic solutions (of finite amplitude only), quasi-
periodic solutions and solitary waves, homoclinic to the rest state (such a
solitary wave is plotted in Figure 3).



NONLINEAR WATER WAVES 319

Figure 3 Profile of a solitary wave in deep water. The horizontal axis isX and the vertical axis is
η.

When r > ro, c< co (µ > 0), there are bright solitary waves, the envelope of
which is given by

Ã = ±
√

2
√

γ̃ coshX̃
.

This case includes water waves. The elevation of the solitary wave for water
waves is given by

η(X) = ±
16

√
µ

√
11

cos(X/2)

cosh
√

µX
. (3.9)

Whenr < ro, c> co (µ < 0), there is a one-parameter family of grey solitary
waves (Dias & Iooss 1996, Laget & Dias 1997). The “darkest” one, which is
such that the amplitude vanishes at the origin, has an envelope given by

s = |γ̃ |−
1
2 tanh

(

|X̃|
√

2

)

.
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Figure 4 Profile of a dark solitary interfacial wave. The horizontal axis isX and the vertical axis
is η.

The elevation of the dark solitary wave is given by

η(X) = ±4

√

r (1 + r )3

5 − 16r 2
tanh

(√

r

1 + r
|µ|

1
2 X

)

sin

(

1

1 + r
X

)

. (3.10)

The results obtained on the NLS equation also apply to the full interfacial
wave problem. In particular, envelope-soliton solutions have been studied in
detail by Longuet-Higgins (1989), Vanden-Broeck & Dias (1992), Dias et al
(1996), and Dias & Iooss (1993).

Supporting the asymptotic and numerical studies cited above, Iooss &
Kirchgässner (1990) provided a rigorous proof, based on center-manifold re-
duction, for the existence of small-amplitude symmetric solitary waves near the
minimum phase speed in water of finite depth. The proof could not be extended
to the infinite-depth case, however. Later, Iooss & Kirrmann (1996) managed to
handle this difficulty by following a different reduction procedure, which also
brought out the fact that the solitary-wave tails behave differently in water of
infinite depth, their decay being slower than exponential, although the precise
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decay rate could not be determined. By assuming the presence of an algebraic
decay, Sun (1997) was able to show that the profiles of interfacial solitary waves
in deep fluids must decay like 1/x2 at the tails. Earlier, Longuet-Higgins (1989)
had inferred such a decay on physical grounds for deep-water solitary waves.
Akylas et al (1998) showed that the profile of these gravity-capillary solitary
waves actually decays algebraically (like 1/x2) at infinity, owing to the induced
mean flow that is not accounted for in the NLS equation. Moreover, the same
behavior was found at the tails of solitary-wave solutions of the model equa-
tion proposed by Benjamin (1992) for interfacial waves in a two-fluid system.
Another property of these waves in infinite depth is that the net mass is equal
to zero (Longuet-Higgins 1989).

There are a few experiments available, showing that some of these waves
can be observed in laboratory experiments (Zhang 1995, Longuet-Higgins &
Zhang 1997). Note that experiments can be performed in ferromagnetic fluids
as well (Browaeys et al, submitted).

One fact of importance is that these solitary waves can be found even where
one does not expect them. Dias & Iooss (1996) performed the unfolding of
the singularity ˜γ = 0 (or r = ro) and obtained a modified NLS equation similar
to the equation obtained by Johnson (1977) for gravity waves near the critical
depth where the Benjamin-Feir instability disappears. This modified equation
admits nontrivial solitary-wave solutions, with algebraic decay at infinity (Iooss
1997a), in the regionr < ro. Laget & Dias (1997) computed numerically bright
solitary waves in the regionr < ro on the full Euler equations.

The NLS equation also admits asymmetric solitary waves, obtained by shift-
ing the carrier oscillations relative to the envelope of a symmetric solitary wave.
Yang & Akylas (1997) examined the fifth-order Korteweg–de Vries equation, a
model equation for gravity-capillary waves on water of finite depth, and showed
by using techniques of exponential asymptotics beyond all orders that asym-
metric solitary waves of the form suggested by Equation 3.3 are not possible.
On the other hand, an infinity of symmetric and asymmetric solitary waves, in
the form of two or more NLS solitary wavepackets, exist at finite amplitude
(see also Buffoni et al 1996).

The spatial approach described in this section has been used to study the
water-wave problem in other parameter regimes. In particular, it was found
that the well-known gravity solitary waves that exist when the Froude number
is slightly larger than 1 become generalized as soon as surface tension is added
(Iooss & Kirchgässner 1992, Sun 1991, Beale 1991, Vanden-Broeck 1991, Sun
& Shen 1993, Yang & Akylas 1996, Lombardi 1997, 1998). Generalized means
that ripples of small constant amplitude are superimposed on the solitary waves
in their tails. When surface tension is large enough, the solitary waves exist
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when the Froude is slightly smaller than 1 and become classical again. Another
interesting application of the spatial approach is the study of waves that are
quasiperiodic in space (Bridges & Dias 1996).

The implications of the study of the 1:1 resonance in the context of water
waves have gone far beyond the field of surface waves. Applications have been
given to all sorts of problems in physics, mechanics, thermodynamics, and
optics since these studies on water waves.

Near the minimum, there is also an interesting behavior for wave resistance:
This time the linearized theory does not blow up asc→ co, but a jump occurs
(Webster 1966, Raphaël & de Gennes 1996). To our knowledge, the effects of
nonlinearity on the jump in wave resistance have not been studied yet.

In this section, the importance of a spatial approach was emphasized. Ideally,
one would like to work on a formulation of the problem in which a temporal
approach and a spatial approach are present simultaneously. This was accom-
plished recently by Bridges (1996, 1997), who introduced a multisymplectic
formulation for the water-wave problem. This topic is outside the scope of the
present review.

4. THE FREQUENCY DOWNSHIFT PHENOMENON

The Benjamin-Feir instability results from a quartet resonance, that is, a res-
onant interaction between four components of the wave field. According to
the classification of McLean (1982), this instability belongs to class I (m= 1)
interactions that are predominantly 2D. It is well known that the Benjamin-Feir
instability is at the origin of the frequency downshift phenomenon observed by
Lake et al (1977).

Their experimental and theoretical investigation showed that the evolution of
a 2D nonlinear wave train on deep water, in the absence of dissipative effects, ex-
hibits the Fermi-Pasta-Ulam (FPU) recurrence phenomenon. This phenomenon
is characterized by a series of modulation-demodulation cycles in which ini-
tially uniform wave trains become modulated and then demodulated until they
are again uniform. Modulation is caused by the growth of the two dominant
sidebands of the Benjamin-Feir instability at the expense of the carrier. During
the demodulation, the energy returns to the components of the original wave
train (carrier, sidebands, harmonics). However, when the initial steepness is
large enough, the long-time evolution of the wave train is different. The evolv-
ing wave trains experience strong modulations followed by demodulations, but
a careful inspection of the new nearly uniform wave trains reveals that the dom-
inant component is the component at the frequency of the lower sideband of
the original carrierko (1, 0). This is the frequency downshift phenomenon.
While the FPU recurrence process is well described by the classical NLS
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equation, the frequency downshift phenomenon is not predicted by solutions
of this equation. Lake et al (1977) suggested that the shift to lower carrier fre-
quencies they observed in their experiments might be attributed to the effects of
dissipation. They mentioned two candidates: formation of capillary waves and
breaking waves (spilling breaker) when wave trains become so strongly modu-
lated that individual waves become steep enough to generate these violent but
localized activities. Later on, Melville (1982), Su et al (1982), and Huang et al
(1996) observed, in a wave tank, frequency downshift in the wave field evolu-
tion. The asymmetrical behavior of the two sidebands lies beyond the realm
of applicability of the NLS equation. The Dysthe equation, which is Equation
2.10 withB= 0, exhibits an asymmetrical evolution of the sidebands when the
modulation is the greatest and a symmetrical evolution during the demodulation
of the wave train. The greatest difference between the two satellites occurs when
both attain their maxima; the lower sideband is the dominant component of the
wave train, and a temporary downshift is then observed. The time histories
of the normalized amplitude of the carrier (solid line), lower sideband (dashed
line), and upper sideband (dashed-dotted line) are plotted in Figure 5. The ini-
tial condition is a Stokes wave disturbed by its most unstable perturbation. The
fundamental wavenumber of the Stokes wave isko(1, 0), and the dominant

Figure 5 Time histories of the amplitude of the fundamental, subharmonic, and superharmonic
modes (p = 2

9 ) for an evolving perturbed Stokes wave of initial steepnessǫ = 0.13 and fundamental
periodT.
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sidebands areko(1−p, 0) andko(1+ p, 0) for the subharmonic and superhar-
monic parts of the perturbation, respectively. There exist higher harmonics
present in the interactions, which are not plotted in Figure 5.

Trulsen & Dysthe (1990) were the first to find numerically a permanent
downshift. They added to the right-hand side of the Dysthe equation a source
term of the form

S =
1

τ
A

[(

|A|
A0

)r

− 1

]

H(|A| − A0), (4.1)

whereH is the Heaviside unit step function andA0 is the critical value of the
steepness at which breaking is first observed. The parametersr andτ define
the relaxation time by which|A| relaxes towardsA0. Dissipation is introduced
heuristically by imposing that all waves exceeding a critical height lose their
excess of energy. They pointed out the tendency toward spatial localization of
the part of the wave train contributing to the upper satellite around the strongest
modulated waves where breaking occurs. The breaking then damps the devel-
oping sidebands selectively, such that the lower satellite comes out of the modu-
lation-breaking process. In the framework of conservative evolution of a train
of Stokes waves, other authors, using either approximate equations (Dysthe
equation or Zakharov equation) or the exact hydrodynamic equations, did not
find permanent downshift. This emphasizes the key role of nonconservative
effects in the subharmonic transition of nonlinear 2D water waves.

A well-known feature in the evolution of spectra of wind waves is that as
the fetch increases, the peak of the spectrum shifts to lower frequencies and
increases in energy, while the form of the spectrum remains quasisimilar. Hara
& Mei (1991) developed a 2D model for the effect of moderate wind on the
long-time evolution of a narrow-banded gravity wave train. Eddy viscosity
models were chosen for turbulence in air and water. The weak nonconservative
effects they introduced (wind input and dissipation caused by eddy viscosity in
water) occur over the same time scale as the asymmetric evolution of the wave
spectrum (fourth order in wave steepness). Using a boundary-layer correction,
they derived a modified Dysthe equation taking into account wind forcing,
wind-induced current, and turbulent dissipation. They found the amplification
of the sidebands to be sensitive to the profile of the steady and horizontally
uniform wind-induced current in water. Their results agreed with the experi-
ments of Bliven et al (1986), when they used a log-linear basic shear flow in
water (linear in height near the interface and logarithmic high above). Note that
the observational conditions (wave steepness and wind stress) were beyond the
domain of applicability of the theory. For different values of the friction ve-
locity and wave steepness, numerical simulations of the nonlinear evolution of
Benjamin-Feir instability of weakly nonlinear wave trains exhibit a permanent
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frequency downshift. To avoid breaking, the theory does not apply to strong
wind. Hara & Mei (1994) extended their model to the nonlinear evolution of
slowly varying gravity-capillary waves. They used the same assumptions ex-
cept that the wave-induced flow in both media was assumed to be laminar. A
fourth-order evolution equation was derived, including wind forcing and dis-
sipation, similar to Equation 2.10 when these two effects are neglected. The
nonlinear development of modulational instability gives rise to persistent fre-
quency downshift for relatively long gravity-capillarity waves and frequency
upshift for very short waves. It would be desirable to extend the model of Hara &
Mei to larger wave steepnesses based on the exact hydrodynamics equations so
that more quantitative comparison can be made with the laboratory experiments
of Bliven et al (1986). More universal models of turbulence than the one used
by Hara & Mei could be applied to turbulence near the interface. Trulsen &
Dysthe (1992) introduced the effects of wind and breaking in an ad hoc manner
by adding two source terms to the right-hand side of the Dysthe equation. For
strong winds, they found the modulational instability to disappear altogether,
as shown experimentally by Bliven et al (1986) and Li et al (1987). The latter
authors observed that the sideband growth was enhanced by a weak wind.

A nonlinear Schrödinger equation with higher-order correction terms, de-
rived in nonlinear optics, was used by Uchiyama & Kawahara (1994) to in-
vestigate the frequency downshift in a uniform wave train. It was found that
the term responsible for the damping of induced mean flow causes the fre-
quency downshift. Kato & Oikawa (1995) added a nonlinear damping term to
the Dysthe equation. This term was not derived from the water-wave equations,
but they believed that such a model equation could help to better understand
the behavior of the spectral components of the modulated wave train, including
water waves. Numerical results suggested that two factors are essential: The
first is the level of nonlinearity of the uniform wave train to produce sufficient
asymmetry in the spectrum, and the second is the nonlinear dissipation that
affects the higher components when strong modulations prevail. A similar ex-
planation was given by Poitevin & Kharif (1991) based on the exact boundary
conditions when surface tension and viscous effects are considered simulta-
neously. Skandrani et al (1996) improved the model of Poitevin & Kharif by
taking into account the vorticity generated by viscosity in the vicinity of the free
surface. For free-surface problems in water, viscous effects are generally weak,
producing a thin rotational layer adjacent to the potential flow. For low viscos-
ity, Ruvinsky et al (1991) derived from the linearized vorticity equation a simple
evolution equation for the vortical component of fluid velocity. The weak vis-
cous effect is incorporated into the two boundary conditions, and the problem
is formulated in a quasipotential approximation. Skandrani et al (1996) applied
the numerical method developed by Dommermuth & Yue (1987) to nonlinear
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gravity waves, in the presence of weak viscous effects and surface tension. This
method is based on the mode-coupling idea but is generalized to include in-
teractions up to an arbitrary order in wave steepness. The long-time evolution
of the wave train depends on three dimensionless parameters, the Reynolds
number, the Bond number, and the initial steepness of the wave train,ǫ = ak.
The parametersR, B, andǫ characterize the effects of viscosity, surface tension,
and nonlinearity, respectively. Forǫ = 0.13, numerical experiments performed
with viscosity or surface tension or both do not exhibit the frequency downshift
phenomenon. Unlike the results in Figure 5, typical of approximate equations,
direct numerical simulations without viscosity and surface tension break down
after a few modulation-demodulation cycles owing to possible local breaking
phenomena. These results agree with those of Dold & Peregrine (1986) and
Banner & Tian (1996). For a relatively large initial steepness of the Stokes
wave, Skandrani et al (1996) observed a downshift when effects of both surface
tension and viscosity are considered. They chose a uniform train of Stokes
waves of initial steepnessǫ = 0.20 and wavelengthL = 10 cm, comparable to
those same parameters in the experiments of Lake et al (1977), disturbed by its
most unstable perturbation. Time histories of the normalized amplitude of the
carrier, subharmonic, and superharmonic sidebands are shown in Figure 6. The

Figure 6 Time histories of the amplitude of the fundamental, subharmonic, and superharmonic
modes (p = 1

3 ) for an evolving perturbed train of Stokes waves of initial steepnessǫ = 0.20,
wavelengthL = 10 cm, and fundamental periodT.
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fundamental wavenumber of the initial Stokes wave isko(1, 0) (solid line), and
the dominant sidebands areko(1− p, 0) (dashed line) andko(1+ p, 0) (dashed-
dotted line). The shift to the lower sideband component occurs after the first
modulation-demodulation cycle and persists during the evolution of the train.
A strong nonlinear damping is observed during the first and second modulation,
owing to the generation of high harmonics on the steepest parts of the train by
interaction between the fundamental and the upper sideband. The nonlinear
damping of the energy is lower when capillarity is neglected. Generation of
these small scales, which are strongly damped by viscosity, is enhanced by
capillarity and prevents breaking of the waves.

In conclusion, all the previous analyses show that the frequency downshift
of 2D trains of Stokes waves is mainly caused by the presence of nonconser-
vative effects, namely damping effects. Surface tension and viscous effects
are found to play a significant role in the frequency downshift of short gravity
waves, whereas breaking appears to be the main mechanism responsible for
the subharmonic transition of longer waves. Using a boundary-integral method
for solving the exact hydrodynamics equations, Okamura (1996) confirmed this
result for the long-time evolution of nonlinear 2D standing waves in deep water.
However, the recent work of Trulsen & Dysthe (1997) on 3D wave trains seems
to prove that such an effect is not necessary to produce the downshift. From
the Dysthe equation modified for broader bandwidth, they observed the fre-
quency downshift for conservative evolutions of 3D wave trains in deep basin.
The study concerns confined motions in the transverse direction and raises the
following question: Is the downshift observable for full 3D wave fields in the
absence of dissipation? However, in their conclusion, Trulsen & Dysthe em-
phasize that the explanation of the downshift probably involves effects of both
3D nonlinear modulation and damping (wave breaking and dissipation). Before
the study of Trulsen & Dysthe (1997), the NLS equation was extended to the
evolution of 3D wave fields. Martin & Yuen (1980) found that leakage to high-
frequency modes makes the 2D NLS equation inadequate for the description
of the evolution of weakly nonlinear 3D deep-water waves. Unlike the cubic
NLS equation, Dysthe’s fourth-order equation was found by Lo & Mei (1987)
to suppress leakage of energy even in the nonlinear stage. However, they did
not observe any frequency downshift.

Melville (1983) pointed out experimentally that the crest-pairing pheno-
menon described by Ramamonjiarisoa & Mollo-Christensen (1979) corres-
ponds to a phase reversal or phase jump. He emphasized the possible role of
these phase jumps in the shift to lower frequency after wave breaking. Based on
experimental observations, Huang et al (1996) found that the frequency down-
shift of mechanically generated 2D gravity waves was an accumulation of wave
fusion events similar to the crest-pairing phenomenon. Based on the work of
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Hara & Mei (1991), who excluded breaking to obtain frequency downshift,
Huang et al suggested that breaking was not necessary for frequency down-
shifting. Nevertheless, Hara & Mei needed damping by dissipation to simulate
permanent frequency downshift. Dold & Peregrine (1986) found numerically
that at maximum modulation there is normally one wave crest lost. However,
they did not observe a permanent downshift, and their computations support
the hypothesis that breaking is essential for 2D frequency downshift. Very re-
cently, Trulsen (1998) emphasized that crest pairing could happen without a
concomitant frequency shift.

5. WATER-WAVE HORSESHOE PATTERNS

For sufficiently steep Stokes waves, it was shown by McLean et al (1981) and
McLean (1982) that the dominant instability becomes a 3D perturbation of
class II (m= 1). This instability results from a resonant interaction between
five components of the wave field and was first discovered by Longuet-Higgins
(1978b) for purely 2D perturbations. Su et al (1982) and Su (1982) performed
a series of experiments on instabilities of gravity-wave trains of large steepness
in deep water in a long tow tank and a wide basin. They observed 3D structures
corresponding to the nonlinear evolution of the dominant instability discovered
by McLean et al (1981). The initial 2D wave train of large steepness evolves
into a series of 3D spilling breakers, followed by a transition to a more or less
2D wave train. These 3D patterns take the form of crescent-shaped perturba-
tions riding on the basic waves. In the wide basin, obliquely propagating wave
groups were generated during the transition from 3D breakers to 2D wave forms.
These oblique wave groups were not seen in the tank. Further experimental
investigations were described by Melville (1982). Shemer & Stiassnie (1985)
used the modified Zakharov equation to study the long-time evolution of class
II (m = 1) instability of surface gravity waves in deep water. They derived
from this equation the long-time history of the amplitudes of the components
of the wave field composed of a Stokes wave (carrier) and its most unstable,
initially infinitesimal disturbance. They found that a kind of FPU recurrence
phenomenon, similar to that reported for class I instability in the previous sec-
tion, also exists for class II instability and speculated that the growth of the
crescent-shaped waves and their disappearance were one cycle of the recur-
ring phenomenon observed in experiments (Su et al 1982). A 3D perspective
plot of the crescent structures obtained from direct numerical simulation of the
exact hydrodynamics equations for inviscid deep-water waves is displayed in
Figure 7 and gives an idea of how these patterns look. The contour plot of the 3D
structures riding on the crests of the waves exhibits the front-back asymmetry.
In the case of a conservative system, it is worth noting that the crescent-shaped
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Figure 7 3D wave pattern that has evolved from a uniform Stokes wave train (ǫ = 0.23) by
instability of class II (m= 1) with p= 1

2 andq= 3
2 . The waves are propagating from right to left.

The horseshoe patterns are in their phase of growth and have their wave fronts oriented forward.
Drawing by C Skandrani (1997).

patterns do not present permanently forward-oriented wave fronts during their
time evolution.

Later, Stiassnie & Shemer (1987) examined the coupled evolution of class I
and class II instabilities and found, in contrast to single class (I or II) evolution,
that the coupled behavior was nonperiodic. In addition they observed, except
for the very steep waves, a dominance of the class I interactions over those of
the class II. The horseshoe or crescent-shaped patterns may also be produced
in wave tank experiments in the presence of wind (Kusuba & Mitsuyasu 1986).
They are 3D structures quite commonly observable on the sea surface under
the effect of wind. Despite their common character and ease of observation,
there are only a few experimental and theoretical studies of their formation and
persistence. The horseshoe patterns present the following features: (a) they can
be observed at an early stage of wave development when a fresh wind blows
over the sea surface, (b) they occur in the range of short gravity waves and are
relatively long-lived, i.e. their characteristic time is much greater than the wave
period, (c) they are rather steep with sharpened crests and flattened troughs,
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(d ) they have front-back asymmetry, i.e. the front slopes are steeper than the
rear ones. The most notable feature is the specific horseshoe shape of the wave
fronts, always oriented forward. Shrira et al (1996) developed a model that
explains the persistent character of the patterns and their specific front-back
asymmetry. The model was derived from the integro-differential formulation
of water-wave equations, i.e. Zakharov’s equation, modified by taking into
account small, nonconservative effects. They showed that the main physical
processes that participate in the generation and persistence of the 3D structures
often seen on the sea surface are quintet resonant interactions, wind input, and
dissipation, balancing each other. They demonstrated that the persistence of
these patterns was due to the processes of dissipation and generation.

Using Zakharov’s equation, Saffman & Yuen (1980) found a new class of 3D
deep-water gravity waves of permanent form. The solutions were obtained as
bifurcations from plane Stokes waves. It was pointed out that the bifurcation
is degenerate since there are two families of 3D waves, one symmetric about
the direction of propagation and the other skewed. The first type of bifurcation
gives rise to a steady symmetric wave pattern propagating in the same direction
as the Stokes waves, whereas the second type gives rise to the steady skew wave
patterns that propagate obliquely from the direction of the Stokes waves. Later,
Meiron et al (1982) computed steady 3D symmetric wave patterns from the
full water-wave equations as well as from the approximate Zakharov equation.
These 3D waves always have symmetric fronts for both weakly nonlinear and
exact equations.

Su (1982) observed the formation of the bifurcated 3D symmetric waves
when the wave steepness,ǫ, was in the range 0.25–0.33. It seems plausible
to assume that the 3D patterns most likely to emerge are those that are closely
connected with the most unstable perturbations of plane waves, i.e. transverse
disturbances. These most unstable perturbations, which are phase-locked with
the plane wave, ensure the possibility of permanent 3D forms.

There is some confusion related to the termskew pattern. Su also observed
unsteady skew wave patterns in the range 0.16–0.18, while Bryant (1985) com-
puted doubly periodic progressive permanent skew waves in deep water, in the
framework of the exact inviscid equations. Despite a certain similarity in ap-
pearance between his wave patterns and those of Su, it should be emphasized
that the skew wave patterns generated experimentally by Su were part of an
evolving wave field, rather than the steady wave patterns he calculated. This
point was also discussed in the detailed review of Saffman & Yuen (1985).

In this section, attention is drawn to steady 3D patterns that are symmetric
about the direction of propagation with the front-back asymmetry, in contrast to
the solutions of Meiron et al (1982). The main steps of the theory of water-wave
horseshoe patterns set up by Shrira et al (1996) are briefly presented below.
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Figure 8 Selection of the dominant triad. Instability region for the Stokes wave of steepness
ǫ = 0.3 (the dot labels the point of maximum instability) and the dominant symmetric resonant
triad in k-space.

SELECTION OF THE DOMINANT RESONANT TRIAD To get a low-dimensional
system, only the basic wave (ka, ωa) and the two modes corresponding to grow-
ing transversal perturbations (kb, ωb) and (kc, ωc) were considered. In Figure 8
are plotted the stability boundaries in thep – q plane for the class II (m= 1) and
the dominant resonant triad corresponding to the most unstable perturbation,
phase-locked with the basic wave. Performing the transformation to real ampli-
tudes and phases,a = Ae−i α, b = Be−iβ, c = Ce−i γ , the Zakharov equation
was reduced to a set of ordinary differential equations for the amplitudesA, B,
C, and the phase8 = 3α − β − γ .

WEAKLY NONCONSERVATIVE SYSTEM The dynamics of wind waves is not en-
tirely Hamiltonian: The nonconservative effects caused by wind generation,
viscous and turbulent dissipation, can strongly affect wave field evolution. Be-
cause of the complexity of the mechanisms of wave generation and wave dissi-
pation, energy input and sink were introduced heuristically and assumed to be
of the order of the quartic nonlinear terms, i.e. of orderǫ4. For a transversally
symmetric triad(B = C, β = γ ), Shrira et al (1996) considered a system of
first-order differential equations that describes the simplest model for nonlinear
coupling of three waves in a gravity wave field when the main processes are the
quintet resonant interactions, input, and dissipation caused by wind.

CONSERVATIVE 3D STRUCTURES Besides the trivial stationary solutions cor-
responding to the well-known short-crested waves (A0 = 0, B0 6= 0) and
plane Stokes wave (A0 6= 0, B0 = 0), Shrira et al (1996) found nontrivial 3D
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stationary states: the in-phase states (80 = ±2mπ, m is an arbitrary integer)
and the out-of-phase states (80 = ±(2m+ 1)π). The in-phase equilibria were
identical to those calculated numerically by Meiron et al (1982) within the ex-
act equations, whereas the out-of-phase equilibria were new. The existence of
these new steady 3D patterns in deep water, within the exact equations, has not
yet been proved.

NONCONSERVATIVE 3D STRUCTURES OR DISSIPATIVE STRUCTURESMeiron
et al pointed out that it was not possible to observe persistent asymmetric
patterns within the framework of purely Hamiltonian dynamics. For the exis-
tence of a nonconservative equilibrium it is necessary for the system to have a
balance between energy input and dissipation. This means that either energy
input into central harmonics is balanced by the dissipation in the satellites or
vice versa. While the conservative stationary points could have only two fixed
values (0 andπ ) of the phase8, the phases of the nonconservative equilib-
ria fill up the whole interval [0, 2π ]. It was shown how the presence of both
dissipation and generation could promote the existence of attractive equilibria.
Shrira and co-workers examined the most interesting limiting case: that of the
maximal ratio of nonconservative to quartic nonlinear terms (sin80= ±1).
The corresponding equilibria, called saturated states (80 = ±π

2 ), were those
exhibiting the most curved and asymmetric fronts. The minus sign corresponds
to the realistic situation of generation of the central harmonic and dissipation
of satellites, and the opposite sign means the opposite balance. They found
that among the linearly stable patterns, the “most distinguished” were those in
the vicinity of the saturated equilibrium, which display the forward-oriented
crescents. An example of the trajectories in the phase space in the vicinity of a
saturated equilibrium is given in Figure 9. The wave patterns and contour plot
corresponding to the attractor displayed in Figure 9 are depicted in Figure 10.
These patterns exhibit the front-back asymmetry typical of the experimentally
observed horseshoe structures. For waves steeper than a certain threshold (about
0.20), it was shown that the first transition from 2D to 3D waves (i.e. the tran-
sition occurring at minimal amplitude of the plane wave) selects the vicinity of
the saturated states(80 = −π

2 ). This suggests that if a plane wave evolves to an
equilibrium owing to transverse instability and generation-dissipation effects, it
is more likely to reach the vicinity of the saturated steady states. Nevertheless,
extensive numerical simulations are needed to support this hypothesis.

The model of Shrira et al reproduces qualitatively all the main features of
the horseshoe structures observed experimentally. However, it does not ex-
plain the experiments of Su et al (1982) in which there was no wind input.
Note that the patterns observed by Su and co-workers had a relatively short
time existence (of orderǫ−3). A comprehensive theory of nonsteady horseshoe
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Figure 9 A typical scenario of the system evolution in the vicinity of the saturated-state equilib-
rium. The wave steepness is about 0.35. A trajectory is plotted in the 3D phase space.

patterns developed recently by SY Annenkov & VI Shrira (submitted), which
does not require wind input to the basic wave as a prerequisite, explains these
experiments.

The justification for selection of only three modes in Zakharov’s variables and
neglect of the class I instability may be found in the work of Annenkov & Shrira
(submitted), in which a new nonlinear selection mechanism has been identified
and the relatively weak effect of Benjamin-Feir instability was demonstrated.
Additional arguments are provided in the papers of Bliven et al (1986) and
Badulin et al (1995), respectively. The first authors observed experimentally
that wind over regular waves reduced and even suppressed the modulational
instability. For highly nonlinear Stokes waves, the second group of authors
explained the reduction and disappearance of class I (m= 1) instabilities in
terms of interactions between the classes of instabilities, i.e. the four-wave
instability is suppressed by the five-wave processes. However, the removal
of the class I instability remains questionable when class I and class II have
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Figure 10 The saturated-state patterns corresponding to the attractor depicted in Figure 9 (maxima
are white; minima are black). The waves are propagating from left to right.
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comparable strengths. Su & Green (1984, 1985) reported the results of exper-
imental investigations on the coupling of the two classes of instabilities and
came to the conclusion that class I and II instabilities interact strongly during
the evolution of wave trains with moderate initial steepness. They suggested
that modulations produced by the essentially 2D instabilities (class I) were suf-
ficient to trigger the predominantly 3D instabilities (class II) that consequently
limit the growth of the class I. Stiassnie & Shemer (1987) carried out numerical
simulations of the modified Zakharov equation. They found the suppression
of class II instabilities whenever the initial level of class I perturbations was
substantially higher than that of class II, and so they did not observe the trigger
mechanism. However, they pointed out that significant class II intensity could
accompany high levels of class I instabilities and stressed the importance of the
phase shift between the central harmonic and the satellites in the behavior of
the 3D instabilities. These conclusions have been confirmed by Annenkov &
Shrira (submitted), where the analysis was carried out within the framework of
the more general multimodal Zakharov equation with nonconservative effects
also taken into account.

Wind action on regular waves leads eventually to external randomness in
the system, transforming the equations into stochastic evolution equations. The
survival of the attractors will depend on the relative strength of attraction and
random forcing caused by all the other interactions neglected in the model.
Shrira et al (1996) speculated that the system, under forcing, will evolve to the
old equilibria provided that the domain of attraction is large enough.

6. SHORT-CRESTED WAVES

The simplest 3D waves one can consider are the so-called short-crested waves.
These waves, which come from the superposition of two oblique traveling waves
with the same amplitude, are symmetric doubly periodic waves. A special case
of course occurs when the two waves travel in opposite directions, and the
resulting wave is a standing wave. Short-crested waves are relevant from a
physical point of view in important maritime situations, for example when a
traveling wave is reflected by a seawall or in the open ocean (remote sensing).
The study of 3D wave fields is essential to get a more realistic description of
the sea surface: In particular, M Ioualalen et al (submitted) showed how three-
dimensionality could play a crucial role in altimetry by introducing a substantial
bias on the sea-level and wind modulus measurements. Quite different in nature
are the spontaneous (here we use the terminology of Saffman & Yuen 1985)
3D waves, which result from the bifurcation of a 2D Stokes wave of finite
amplitude and were discussed in Section 5. Recall that these 3D waves, first
mentioned by McLean et al (1981), were computed numerically by Meiron
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et al (1982) and compared favorably with the waves observed by Su (1982).
Quite surprisingly, the early 1980s saw a sequence of papers on these two
types of 3D waves, which are periodic in two horizontal directions. In addition
to the papers already quoted, there is the first paper to our knowledge with
rigorous results on 3D waves: Reeder & Shinbrot (1981) proved the existence of
small-amplitude short-crested waves in a certain region of parameter space. Sun
(1993) provided an alternative construction of short-crested waves. In both
papers, the proof works outside a forbidden set, which is given in Section 7
of Reeder & Shinbrot (1981). Roughly speaking, the forbidden set consists
of the parameters that allow resonances among harmonics. Unfortunately, both
gravity waves and capillary-gravity standing waves fall inside the forbidden set.
Fuchs (1952), Chappelear (1961), Hsu et al (1979), Ioualalen (1993), Menasce
(1994), and Kimmoun (1997) used perturbation expansions to compute from
a formal point of view these small-amplitude 3D waves. Roberts & Peregrine
(1983) described an analytic solution to fourth order in wave steepness, which
matches short-crested waves on one hand and 2D progressive waves on the other.
Numerical methods as well have been developed by Roberts (1983), Roberts
& Schwartz (1983), Bryant (1985), and Marchant & Roberts (1987). Note that
Bryant (1982) worked on a model equation, the Kadomtsev-Petviashvili (1970)
equation. Results on 3D long waves have also been obtained by Segur & Finkel
(1985), Hammack et al (1989), Hammack et al (1995), Dubrovin et al (1997),
and Milewski & Keller (1996). A review on 3D long waves was recently written
by Akylas (1994).

To prove rigorously the existence of short-crested waves is a difficult task,
and so far only capillary-gravity waves with high enough surface tension have
been shown to exist. The difficulties for gravity waves or for capillary-gravity
waves with small surface tension are similar to the difficulties encountered in
proving the existence of standing waves (Amick & Toland 1987, Iooss 1997b).
However, there is numerical evidence that short-crested gravity waves exist (see,
for example, the numerical results of Roberts 1983 and Marchant & Roberts
1987). Letkoh, B, and tanϕ = ky

kx
be the three parameters for the description of

short-crested waves, wherekx is the wave number in the first horizontal direction,
ky the wave number in the second horizontal direction, andko =

√

k2
x + k2

y

the modulus of the wave number. For a given angleϕ, the region where the
proof of existence of short-crested waves has been given lies to the right of the
corresponding curve shown in Figure 11 and given by

B(koh, ϕ) =
2 tanh(koh) − cosϕ tanh(2koh cosϕ)

4 cos3 ϕ tanh(2koh cosϕ) − 2 tanh(koh)
. (6.1)

In this region, linear resonances between modes cannot occur. The curve for
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Figure 11 For a fixed angleϕ, the existence of short-crested waves has been proved to the right of
the curve corresponding to that angle. The curves represented here correspond toϕ = 0 (1 ), ϕ =
π/8 (2), ϕ = π/6 (3), ϕ = π/5 (4), ϕ = 2π/9 (5).

ϕ = 0 corresponds to the curve for Wilton ripples

B =
tanh2(koh)

3 − tanh2(koh)
. (6.2)

If one takes the limit of (6.1) askoh → 0 (resp.koh → ∞), one finds

B(0, ϕ) =
sin2 ϕ

4 cos4 ϕ − 1
, B(∞, ϕ) =

2 − cosϕ

4 cos3 ϕ − 2
.

Regions without linear resonances can be found only for values ofϕ between
0 andπ /4.

It is important to note that the limiting process in which both oblique waves
become parallel is tricky and does not provide pure traveling waves. This is
well explained in Roberts (1983), and this limit was in fact the subject of the
paper by Roberts & Peregrine (1983). See also the work of T Bridges et al
(submitted).

Some work has also been performed on the stability of short-crested waves.
Ioualalen & Kharif (1993, 1994) investigated numerically the linear stability of
short-crested waves on deep water to superharmonic and subharmonic distur-
bances. They showed that for moderate wave steepness, the dominant interac-
tions are sideband-type instabilities. Instabilities associated with the harmonic
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resonances were found to be sporadic “bubbles” of instability caused by the
collision of two superharmonic modes at zero frequency. The strongest super-
harmonic growth rates were at least two orders in wave steepness lower than
the subharmonic ones. This result suggests that the resonances are unlikely to
be significant because they will not have time to develop, as subharmonic in-
stabilities have a much more rapid growth. It was also shown that short-crested
waves are more stable than Stokes waves. Later, Badulin et al (1995) considered
two approaches to study the stability of short-crested waves, one based on both
classical Stokes expansion and Galerkin methods used previously by Ioualalen
& Kharif (1994) and one analytic method based on the Zakharov equation. A
comparison between the two approaches pointed out that the analytical results
hold their validity for rather steep waves (up toǫ = 0.4) for a wide range of
wave patterns. A generalization of the classical Phillips’ concept of weakly
nonlinear wave instabilities was given by describing the interaction between
the elementary classes of instability. Kimmoun (1997) extended to larger am-
plitude the work of Ioualalen & Kharif (1994). Ioualalen et al (1996) carried
out numerical computations of the superharmonic instabilities of short-crested
waves in finite depth. They found that these instabilities can be significant for
some particular geometries in contrast to deep-water waves. They suggested
a critical value of the nondimensional depth parameterkh= 1 for which shal-
lower water motion might become unobservable. However, they concluded that
finite-depth short-crested waves are generally observable because the strong su-
perharmonic instabilities are localized in very narrow bands in the parameter
range. M Ioualalen et al (1998) investigated the stability regimes of finite-depth
weakly nonlinear short-crested water waves and emphasized that these waves
are quasi-observable, as pointed out by Hammack et al (1989).

Recently, a qualitative study was made of the two processes giving rise to
3D waves: the dimension-breaking bifurcation through which a 2D wave of
finite amplitudeu(x) bifurcates into a 3D waveu(x, y), and the bifurcation
from the rest stateu= 0. Hereu(x, y) satisfies a differential equation. These
two processes were described from a mathematical point of view by Hǎrǎguş
& Kirchgässner (1995), who used tools of dynamical systems theory to illus-
trate these processes on two model equations: the Ginzburg-Landau equation
for the dimension-breaking bifurcation and the Kadomtsev-Petviashvili (1970)
equation for the bifurcation from rest. They also mentioned a third process:
the generation of 3D waves through the appearance of turning- or fold-points
along a branch of 2D solutions.

In the future, it would be interesting to deepen the link between the mathemat-
ical analysis of Hǎrǎguş & Kirchgässner (1995) and the work of Saffman & Yuen
(1980) on the dimension-breaking bifurcations. Of interest too is gaining as un-
derstanding of the link between short-crested waves and the other 3D waves.
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7. IMPORTANCE OF SURFACE TENSION EFFECTS

In some cases, small surface tension effects may have important consequences
on steep waves. Debiane & Kharif (1996) considered gravity waves on deep
water that are weakly influenced by surface tension effects (B ≪ 1)—in other
words this means that the dominant restoring force is gravity—and discovered
numerically a new family of limiting profiles of steady gravity waves, which
exhibit two trapped bubbles, one on either side of the crest. This result can be
viewed as an extension to small values ofBof the work of Hogan (1980) on steep
water waves. Debiane & Kharif (1996) showed that the highest wave is steeper
than the highest pure gravity wave. ForB= 0.0003, which corresponds to a
wavelength of 1 m, the steepness of the highest computed wave isǫ = 0.4439.
This value is slightly greater than 0.4432, which corresponds to the steepest pure
gravity wave. The new profile could be computed thanks to the work of Debiane
& Kharif (1997), who extended the method developed by Longuet-Higgins
(1978c) to capillary-gravity waves. Schultz et al (1998) also emphasized the
importance of surface tension on highly nonlinear standing waves. When a
small surface tension (B ≪ 1) is included, the crest form changes significantly.
Surface tension effects increase the limiting wave height for standing waves
and may explain the observation by Taylor (1953) of a limiting wave with a
crest of nearly 90◦.

In previous sections, the instabilities of Stokes wave trains have been divided
into two classes (I and II). There exists another classification that separates in-
stabilities into superharmonic and subharmonic. Superharmonic perturbations
are associated with integer values ofp; otherwise the perturbations are subhar-
monic. The dominant instabilities of Stokes waves are generally subharmonic.
Nevertheless when the steepness becomes very large, near its limiting value,
the difference between the growth rates of the two types of instabilities is weak
(see Kharif & Ramamonjiarisoa 1988). Tanaka (1983) found numerically that
superharmonic disturbances to periodic waves of permanent form become un-
stable at a wave steepnessǫ = 0.4292 corresponding to the first maximum of
the total wave energy. Later Saffman (1985) proved analytically that superhar-
monic perturbations exchange stability when the wave energy is an extremum
as a function of wave height. Longuet-Higgins & Cleaver (1994) and Longuet-
Higgins et al (1994) investigated crest instabilities of steep Stokes waves near
their limiting form calculated from the theory of the almost-highest wave (see
Longuet-Higgins & Fox 1977, 1978). Longuet-Higgins & Tanaka (1997) used
the method of Tanaka (1983) to show that the superharmonic instabilities of
Stokes waves are indeed “crest instabilities.” These instabilities are essentially
localized phenomena near the wave crests and may lead to the overturning of
the waves (Jillians 1989, Longuet-Higgins & Dommermuth 1997). For short
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gravity waves, surface tension effects can have important consequences on the
further evolution of crest instabilities. Longuet-Higgins (1996a) suggested that
the introduction of surface tension in the nonlinear evolution of the crest insta-
bility will not lead to overturning but instead to a locally steep surface gradient
called capillary jump, on the front face of the steep wave, with a few ripples or
parasitic capillaries. This researcher came to the conclusion that the crest in-
stability is a comparatively weak instability at short gravity wavelengths. The
explanation of the formation of the jump can be found in Longuet-Higgins
(1996b). The initial stage of breaking of a short gravity wave, according to the
same author (1992, 1994), involves the formation of parasitic capillary waves,
ahead of a bulge on the forward face of the wave near the crest, followed by
a train of longer capillary waves, above the toe of the bulge, both of which
collapse into turbulence. These two types of waves were observed by Duncan
et al (1994). Lin & Rockwell (1995) investigated experimentally the stages of
the evolution of a quasisteady breaker from the onset of a capillary pattern to a
fully evolved breaking wave. They found the pattern observed by Duncan et al
(1994) and depicted by Longuet-Higgins (1994) to occur over a rather narrow
band of Froude numbers. The formation of capillary waves on the front face
of steep short gravity waves was also investigated by others experimentally
(Cox 1958, Chang et al 1978, Yermakov et al 1986, Ebuchi et al 1987, Perlin
et al 1993, Zhang 1995, etc), theoretically and numerically (Longuet-Higgins
1963, 1995; Crapper 1970; Ruvinsky et al 1991; Watson & Buchsbaum 1996;
Dommermuth 1994; Mui & Dommermuth 1995; Fedorov & Melville 1997;
etc). These waves are known to generate a vorticity field enhancing surface
currents and also to strongly enhance wave damping (Ruvinsky et al 1991,
Fedorov & Melville 1997). One of the motivations for studying such small-
scale structures is their importance for air-sea transfers of gas, momentum, and
heat (Saylor & Handler 1997) and for microwave remote sensing of the ocean
surface (Melville 1996).

8. POSSIBLE FUTURE DIRECTIONS

It is widely admitted that in two dimensions, without any dissipative effects
added, there is no permanent frequency downshift. The situation seems to
be different in three dimensions as reported by Trulsen & Dysthe (1997). It
would be desirable to confirm this result by using other approaches such as the
Zakharov equation or the full water-wave equations. Recent numerical sim-
ulations of the breaking of short gravity waves (including the splash-up phe-
nomenon) were performed by G Chen et al (submitted) using the 2D Navier-
Stokes equation and the volume-of-fluid method. This numerical treatment
should allow a numerical investigation of the frequency downshift phenomenon
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during wave breaking as well as the vortical structures caused by the breaking
of a short gravity wave when surface tension effects are taken into account. It
is well known that coherent vortical structures and cascades to smaller scales
are quite different in two and three dimensions, and for this reason an extension
to 3D simulations is necessary for further research. Another area for further
investigation is the effect of randomness on the 3D structures (horseshoe pat-
terns) generated by wind in the sea. In the field of short-crested waves, future
research includes the stability analysis of gravity-capillary waves on arbitrary
depth. Finally, further developments are expected in the application to the
water-wave problem of the spatial approach as well as of the multisymplectic
approach.
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réversible.C. R. Acad. Sci. Paris, Série I
324:993–97

Iooss G. 1997b. Sur une transformation con-
forme, utile dans le problème des ondes de
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crêtes, PhD thesis. Universit´e de la Méditer-
ranée, Aix-Marseille, II, France
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