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Abstract

Methods for the numerical computation of freely propagating irrotational water waves are reviewed. The emphasis
is on the methods, not on the results. The primary focus is on methods for time-dependent fully nonlinear water waves,
but aspects of steady waves are also discussed. For time-dependent waves, a range of topics from two-dimensional
time-periodic waves over a flat bottom to unsteady three-dimensional waves over an arbitrary topography, including
the statistical description of water waves, are discussed.
© 2006 The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
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1. Introduction

Water waves have long been studied because of their practical importance and because they offer an
ideal setting for a variety of phenomena of nonlinear wave motion.

Compared to the analytical study of the water-wave problem, which was initiated at the beginning of
the nineteenth century, the numerical study of water waves is relatively recent for obvious reasons. The
first numerical computations were performed in the 1970s, with a few exceptions in the 1960s. Since then,
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the steady progress in the power of computers combined with the development of more and more efficient
numerical methods has allowed researchers to tackle problems closer and closer to real-life situations.

One can distinguish four major classes of numerical computations dealing with water waves : (i) com-
putations of progressive waves that propagate without changing form (time dependence can be removed
from the equations by working in a frame of reference moving with the wave), (ii) computations of stand-
ing waves (these waves are periodic in time and in space, but time dependence cannot be removed from
the equations), (iii) computations aimed at a statistical description of water waves (such computations
require integration over a long time), and (iv) numerical wave tanks that are designed to mimic laboratory
wave tanks or even the ocean in the sense that arbitrary wave motion can be described. For each case,
one can make a further distinction between two-dimensional waves and three-dimensional waves.

The emphasis of the review is on the numerical computation of freely propagating time-dependent
waves. This is a rich subject and bias is unavoidable. The mathematical model that is used in the present
review is that of inviscid irrotational flow. The governing equations are the incompressible, irrotational
Euler equations in the presence of a free surface. Among the numerical methods and equations based on
this mathematical model, some are closer to the model than others. In particular, approximate equations
such as the Korteweg–deVries equation, the Boussinesq equation, the nonlinear Schrödinger equation and
their variants represent a further approximation. Although they have been shown to provide very good
results in a variety of applications, they are not considered here.1 Moreover, by restricting ourselves
to freely propagating waves, we do not discuss the interactions of water waves with structures, a topic
of great industrial interest. For earlier reviews on water waves or on the numerical simulation of free-
surface flows, one can refer to Schwartz and Fenton (1982), Tsai andYue (1996), Dias and Kharif (1999),
Scardovelli and Zaleski (1999), and Peregrine (2003).

2. Formulations of the water-wave problem used for numerical computations

A brief description of the common mathematical model used to study water waves is given first. The
three-dimensional flow of an inviscid and incompressible fluid is governed by the conservation of mass

∇ · u = 0 (1)

and by the conservation of momentum

�
Du
Dt

= �g − ∇p, (2)

where

Du
Dt

= �u
�t

+ ∇(1
2 u · u) − � × u.

In (2), �=∇ ×u is the vorticity vector. The horizontal coordinates are denoted by x and y, and the vertical
coordinate by z. The vector u(x, y, z, t)= (u, v, w) is the velocity field, � is the fluid density (assumed to
be constant throughout the fluid domain), g is the acceleration due to gravity and p(x, y, z, t) the pressure
field.

1 In some cases, these approximate equations have been shown to be valuable even outside their range of validity!
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The assumption that the flow is irrotational (� = 0) is commonly made to analyze surface waves.
Then there exists a scalar function �(x, y, z, t) (the velocity potential) such that u = ∇�. The continuity
Eq. (1) becomes

∇2� = �2�

�x2 + �2�

�y2 + �2�

�z2 = 0. (3)

With � = 0, the equation of momentum conservation (2) can be integrated into Bernoulli’s equation

��

�t
+ 1

2
|∇�|2 + gz + p − p0

�
= 0, (4)

which is valid everywhere in the fluid. The constant p0 is a pressure of reference, for example the
atmospheric pressure.

2.1. Classical formulation

The surface wave problem consists in solving Laplace’s equation (3) in a domain �(t) bounded above
by a moving free surface (the interface between air and water) and below by a fixed solid boundary (the
bottom).2 The free surface is represented by F(x, y, z, t) = �(x, y, t) − z = 0. The bottom can have an
arbitrary shape given by z=−h(x, y). The main driving force is gravity, but the effects of surface tension
may be equally important in some physical situations.

The free surface must be found as part of the solution. Two boundary conditions are required. The first
one is the kinematic condition. It can be stated as DF/Dt = 0 (the material derivative of F vanishes),
which leads to

�t + �x�x + �y�y − �z = 0 at z = �(x, y, t), (5)

where subscripts denote the derivatives. The second boundary condition is the dynamic condition which
states that the normal stresses must be in balance at the free surface. The normal stress at the free surface
is given by the difference in pressure and is balanced by the effect of surface tension. If � denotes the
surface tension coefficient and C the curvature of the free surface, p − p0 = −�C. For a clean air/water
interface, � = 0.074 N/m. The expression for C is

C = �

�x

(
�x

(1 + �2
x + �2

y)
1/2

)
+ �

�y

(
�y

(1 + �2
x + �2

y)
1/2

)
. (6)

Bernoulli’s equation (4) evaluated on the free surface z = � gives

�t + 1

2
(�2

x + �2
y + �2

z) + g� − �

�
C = 0 at z = �(x, y, t). (7)

Finally, the boundary condition at the bottom is

�xhx + �yhy + �z = 0 at z = −h(x, y). (8)

2 The surface wave problem can be easily extended to the case of a moving bottom. This extension is needed for example
to model tsunami generation.
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To summarize, one solves the set of equations (3), (5), (7) and (8) for �(x, y, t) and �(x, y, z, t). If
the initial value problem is integrated, then the fields �(x, y, 0) and �(x, y, z, 0) must be specified at
t = 0. The conservation of momentum equation (2) is not required in the solution procedure; it is used a
posteriori to find the pressure p once � and � have been found. In water of infinite depth, the kinematic
boundary condition on the bottom (8) is replaced by

|∇�| → 0 as z → −∞.

The above formulation is the classical formulation of the water-wave problem. Variations of this formu-
lation that are better suited for numerical computations have been proposed.

Before these alternative formulations are presented, some notation is introduced.The potential evaluated
along the free surface is denoted by �(x, y, t) = �(x, y, �, t). The derivatives of the velocity potential
evaluated on the free surface are denoted by �(∗)(x, y, t) = �∗(x, y, �, t), where the star stands for x, y,
z or t. Consequently, �∗ (defined for ∗ �= z) and �(∗) have different meanings. They are however related
since

�∗ = �(∗) + �(z)�∗.

Two-dimensional (2D) waves are waves without y-dependence. The stream function along the free surface
is denoted by �(x, t) = �(x, �, t). When complex notation is introduced for 2D waves, the classical
notation z = x + iy is used. In that case, the vertical coordinate is y while z is the complex coordinate.
The complex potential f (z) = � + i� is also introduced. Permanent waves are waves with shapes that
are invariant with respect to time, in a suitable frame of reference moving with a constant speed.

For 2D spatially periodic waves of permanent form in water of infinite depth, it is worth mentioning the
formulation due to Levi-Civita (1925). Let 	 denote the wavelength and c the wave speed. The independent
variable


 = exp

(
−2�if

c	

)
= r exp(is) with r = exp

(
2��

c	

)
, s = −2��

c	

and the dependent variable

W = i log

(
1

c

df

dz

)
(=� + i, say)

are introduced, and W is considered as a function of 
. The bottom � → −∞ corresponds to 
 = 0 while
the free surface � = 0 corresponds to |
| = 1. Levi-Civita showed that W = � + i satisfies the following
equation on r = 1:

e2 �

�s
− g	

2�c2 e− sin � + 2��

�c2	

�

�s

(
e ��

�s

)
= 0. (9)

2.2. Boundary integral formulation

The notation x = (x, y, z) is introduced. By using Green’s functions, one can reduce the three-
dimensional (3D) water-wave problem to a 2D boundary integral problem. In the case of the 2D water-
wave problem, the problem is reduced to a simple one-dimensional integro-differential equation on the
boundary.
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The moving surface can be described by markers which are treated as Lagrangian points. In other
words, they are moving with the fluid velocity. The velocity at the surface is determined from the velocity
potential field, which can be followed on the surface using Bernoulli’s Eq. (7). From the surface potential
one can determine the tangential velocity, but the normal velocity must be found indirectly, using the fact
that the potential is harmonic in the fluid interior.

The three-dimensional free space Green’s function is defined as

G(x, xl) = 1

4�|r| ,
�G

�n
(x, xl) = − 1

4�

r · n
|r|3 , (10)

where |r| = |x − xl| is the distance from the source point x to the collocation point xl (both are on the
boundary) and n is the normal vector pointing out of the fluid. The notation �G/�n means the normal
derivative, that is �G/�n = ∇G · n. Green’s second identity transforms Laplace’s equation (3) into a
boundary integral equation (BIE) on the boundary � of the fluid domain �

�(xl) �(xl) =
∫

�(t)

{
��

�n
(x)G(x, xl) − �(x)

�G

�n
(x, xl)

}
d�, (11)

where �(xl) is proportional to the solid exterior angle made by the boundary at the collocation point xl .
The kinematic and dynamic boundary conditions on the free surface (5) and (7) are rewritten in a mixed

Eulerian–Lagrangian form

Dx
Dt

= u = ∇�, (12)

D�

Dt
= −g� + �

�
C + 1

2
∇� · ∇�, (13)

where x is the position vector of a fluid particle on the free surface. Lateral boundaries can be fixed or
moving boundaries (wave-maker for example).

For 2D periodic waves of permanent form, there is another integral formulation, known as Nekrasov’s
integral equation, that has nice properties for numerical computations,

�(s) = − 1

3�

∫ �

−�
log

∣∣∣∣sin
s − t

2

∣∣∣∣ � sin �(t)

1 + �
∫ t

0 sin �()d
dt, s ∈ [−�, �], (14)

where �(s) is the unknown angle between the horizontal and the tangent to the free surface. Eq. (14)
is valid for waves in water of infinite depth and follows directly from Levi-Civita’s equation (9). The
variable s has the same meaning as in equation (9). The parameter � is related to the wave speed and
is greater than 3. The wave of extreme form is characterized by � → ∞. Integrating (14) by parts
yields

� = −1
3 HF(�, �), (15)

where

Hg(s) = 1

2�

∫ �

−�
[g(t) − g(s)] cot[(s − t)/2] dt



808 F. Dias, T.J. Bridges / Fluid Dynamics Research 38 (2006) 803–830

is the Hilbert transform and F is the nonlinear operator defined by

F(g, �)(t) = log

∣∣∣∣1 + �

∫ t

0
sin g() d

∣∣∣∣ .

More details can be found for example in the book by Okamoto and Shōji (2001).

2.3. Formulations based on Cauchy’s theorem

When the flow field is two-dimensional, the powerful methods of complex analysis lead to a range
of useful formulations. In particular, the use of Cauchy’s theorem leads to a special case of a boundary
integral formulation. Let z = x + iy and let f (z) with f = � + i� be the complex potential. Then the use
of Cauchy’s theorem to formulate the equations proceeds as follows. First, details for stationary solitary
waves in water of finite depth in a frame of reference moving at the wave speed c are given. The case of
time-dependent conformal mappings is developed later.

For steady flows, the free surface can be represented by the streamline � = 0 and it is parameterized
by the parameter �. The complex velocity on the free surface is given by

�x − i�y = df

dz
= 1

x′(�) + i�′(�)
.

Bernoulli’s equation (7) becomes

1

2

(
1

x
′2(�) + �

′2(�)
− c2

)
+ g� + �

�

�′(�)x′′(�) − x′(�)�′′(�)

(x
′2(�) + �

′2(�))3/2 = 0. (16)

One looks for f (z), or equivalently df/dz, in the domain −�b ���0, where �b is the value of the stream
function on the bottom. Note that x′(�) + iy′(�) → 1/c as |�| → ∞. Since y′(�) vanishes on the flat
bottom �=−�b, the function x′(�)+ iy′(�)− 1/c can be extended by symmetry with respect to the line
� = −�b as an analytic function in the domain −2�b ���0. One has the property

(x′ + iy′)(� − 2i�b) = (x′ − iy′)(� + i0).

In order to calculate x′(�0) + i�′(�0) − 1/c at a given point �0 of the free surface, one applies Cauchy’s
integral formula on a rectangular contour going counterclockwise along the � = 0 axis from � = �∞
to � = −�∞, down vertically at � = −�∞ to � = −2�b, horizontally along the � = −2�b line from
� = −�∞ to � = �∞, and up vertically at � = �∞ to � = 0. Letting �∞ → ∞ and taking the real part
of the integral yields

x′(�0) − 1

c
= −1

�

∫ ∞

−∞
�′(s)

s − �0
ds + 1

�

∫ ∞

−∞
2�b(x

′(s) − 1) − (s − �0)�
′(s)

(s − �0)
2 + 4�2

b

ds. (17)

Eqs. (16) and (17) define a nonlinear integro-differential system where the unknown is x′(�0) + i�′(�0)

on the free surface. For steady periodic waves, the formulation is similar with the kernels in the integral
terms replaced by cotangent kernels.

Formulations based on Cauchy’s theorem can be easily extended to unsteady waves. The first recorded
instance where Cauchy’s theorem and conformal mapping were used for numerical simulation of unsteady
water waves is the work of Whitney (1971). Tanveer (1991) suggested to use conformal mapping for the
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time dependent problem directly on Bernoulli’s equation. For periodic waves in deep water, he mapped the
fluid region into the unit disk (see also Fornberg, 1980). Recently, the implementation of time-dependent
conformal mapping has been improved by Dyachenko et al. (1996) and Zakharov et al. (2002).

Cauchy’s integral theorem can also be used iteratively to solve Laplace’s equation for successive time
derivatives of the surface motion. Baker et al. (1982) derived the following equations

�(x, t) = 1

�

∫ ∞

−∞
D[�(�) − �′(�)�(�)] − �(�) − �′(�)�(�)

1 + D2

d�

� − x
, (18)

�(x, t) = 1

�

∫ ∞

−∞
�(�) − �′(�)�(�) + D[�(�) + �′(�)�(�)]

1 + D2

d�

� − x
, (19)

which are valid for gravity waves in deep water. The function D = (�(�)− �)/(�− x) decays as 1/|�− x|
as |� − x| → ∞ and D → �′ as � → x. Eqs. (18) and (19) were reformulated by Clamond and Grue
(2001). They applied the Hilbert transform and determined � from (18).

2.4. Hamiltonian formulation

In celestial mechanics and molecular dynamics the systems of equations are Hamiltonian, and this
has led to widespread use of symplectic integrators, which have excellent properties for conservation
of energy over long time scales. The equations of water waves are also Hamiltonian and so one would
expect symplectic integrators to be used. However, the Hamiltonian structure is more complicated in the
partial differential equation setting, and so the use of symplectic integrators is still an open problem. In
this section, we review the Hamiltonian structures of water waves.

The Hamiltonian theory of surface waves goes back to the late 1960s and early 1970s. Zakharov (1968)
first pointed out the Hamiltonian structure for water waves when the free surface is a graph.

For capillary-gravity waves in water of finite depth with a flat bottom at z = −h, the kinetic energy K
and the potential energy V are defined as

K =
∫ ∞

−∞

∫ ∞

−∞

∫ �

−h

1

2
|∇�|2 dz dx dy,

V =
∫ ∞

−∞

∫ ∞

−∞

(
1

2
g�2 + �

�
((1 + �2

x + �2
y)

1/2 − 1)

)
dx dy.

The kinetic energy in the variables �(x, y, t) and �(x, y, t) can be characterized as the minimal energy
for all flows in the given geometry that satisfy the condition �(x, y, z, t) = �(x, y, t) on the free surface

K(�, �) = Min

{∫
1

2
(�2

x + �2
y + �2

z) | �(x, y, z, t) = �(x, y, t) at z = �(x, y, t)

}
.

Indeed, the solution of this minimization problem satisfies

∇2� = 0 in �, �z = 0 at z = −h, �(x, y, z, t) = �(x, y, t) at z = �(x, y, t),

and conversely.
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Following Zakharov (1968), one can show that the surface wave problem can be written as an infinite
dimensional Hamiltonian evolution system in the canonically conjugate variables � and �

��

�t
= −�H

��
,

��

�t
= �H

��
, (20)

where the total energy H =K +V is the Hamiltonian. Eq. (20) is a temporal Hamiltonian system for the
water-wave problem. In Section 5, this Hamiltonian formulation is used to derive Zakharov’s equations,
which are commonly used for numerical computations.

2.5. Hamiltonian formulation for overhanging waves

Zakharov’s formulation (20) has the disadvantage that the free surface must be a single-valued function
of the horizontal position (x, y). It fails for the case of breaking waves and other waves with a multi-valued
free surface. However, Benjamin and Olver (1982) have given a general Hamiltonian formulation valid
for any parametric form of the free surface. For simplicity, attention is restricted to 2D water waves and
surface tension is neglected.

Consider the two-dimensional water-wave problem with the free surface defined parametrically as

�(t) = { (x, z) ∈ R2 : x = X(�, t), z = Z(�, t), � ∈ R}.
The velocity potential at the free surface is defined by �(�, t)=�(X, Z, t). Benjamin and Olver (1982) (see
their equation (A6) in Appendix 1) show that the governing equations for this problem are Hamiltonian,

K(U)Ut = (�H/�X, �H/�Z, �H/��)T, U = (X, Z, �)T. (21)

In (21) the operator K(U) takes the form

K(U) =
[ 0 −�� Z�

�� 0 −X�

−Z� X� 0

]
, (22)

and, with J = (X2
� + Z2

�)
1/2, and

H(U) = 1

2

∫
R

�(n)�J d� + 1

2
g

∫
R

Z2X� d�

is the total energy for the case of a parametrically defined surface. The symplectic structure for this system
is obtained by differentiating the functional

A(U) =
∫ t2

t1

∫
R

�(X�Zt − Z�Xt) d� dt . (23)

The proof that this form generates the symplectic structure is given in Benjamin and Bridges (1997). The
first variation of A(U) recovers the left-hand side of (21),

grad A(U) = K(U)Ut . (24)
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Using (24), a least action principle for (21) can be formulated. The system (21) is generated by the first
variation of the Lagrangian

L(U) = A(U) −
∫ t2

t1

H(U) dt . (25)

Writing out the first variation of L yields the system

−��Zt + Z��t = �H/�X,

��Xt − X��t = �H/�Z,

−Z�Xt + X�Zt = �H/��, (26)

which is equivalent to (21) with

�H/�X = −gZZ� − 1

2
(�2

(x) + �2
(z))Z� − J�(x)�(n),

�H/�Z = gZX� + 1

2
(�2

(x) + �2
(z))Z� − J�(z)�(n),

�H/�� = J�(n), (27)

where �(x) = �x |�, �(z) = �z|� and �(n) = ∇� · n|�.
A special case of this Hamiltonian structure arises when one takes the parameterized surface to be the

boundary value of a conformal mapping. Indeed, Eqs. (26) were discovered independently some fifteen
years after Benjamin and Olver by Dyachenko et al. (1996). However, the conformal mapping formulation
does lead to a numerically efficient algorithm. A short description follows. Using our convention, z is
now x + iy, with y the vertical coordinate. First the fluid domain in the z-plane

(x, y) ∈ R × [−∞, �]
is transformed through a conformal mapping Z(w, t) into the lower half-plane w = u + iv

(u, v) ∈ R × [−∞, 0].
The profile of the free surface is written in the parametric form

y = y(u, t), x = x(u, t) = u + x̃(u, t).

Here x̃(u, t) and y(u, t) are related through the Hilbert transform

y = Hx̃, x̃ = −Hy, H2 = −1 and Hf (u) = PV

(
1

�

∫ ∞

−∞
f (u′) du′

u − u′

)
,

where PV stands for principal value. For periodic boundary conditions, the Hilbert transform is replaced
by

Hf (u) = PV

(
1

2�

∫ �

−�
f (u′) cot[(u − u′)/2] du′

)
.
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The function Z = x + iy and the complex potential F(w, t) given in the lower-half plane are analytic
there. The equations satisfied by F and Z are

Zt = iUZ′, (28)

Ft = iUF ′ − B + ig(Z − w), (29)

where U and B are functions that are also analytic in the lower-half plane and are obtained from Z and F
by using the projection operator P̂ (f ) = 1

2 (1 + iH)f .3

The system (28)–(29) takes the following form if written in terms of R = 1/Z′ and V = iF ′/Z′:

Rt = i(UR′ − U ′R), (30)

Vt = i(UV ′ − RB ′) + g(R − 1). (31)

The system (30)–(31) appears to be particularly well-suited for numerical computations (see Zakharov
et al., 2002), while the system (28)–(29) gives rise to numerical instabilities.

3. Progressive waves

The analytical study as well as the numerical study of progressive waves are far more advanced than
those of other types of waves. The reason is that time can be removed from the equations by studying
progressive waves in a frame of reference moving with the wave. Note that it is not necessarily easier
to compute steady solutions. It is well-known for example that stationary solutions of the compressible
Euler equations are easier to obtain as the limit of time-dependent solutions. Here we review some
aspects of the numerical methods for travelling waves which are relevant to the discussion of methods
for time-dependent waves.

3.1. Two-dimensional progressive waves

Among progressive waves, 2D waves have been particularly well studied. The main reasons are that
all methods work in 2D and that the computing cost is reasonable.

3.1.1. Periodic waves
Let us consider periodic waves of wavenumber k and frequency �. The dispersion relation is �2 =

gk tanh kh. In order to put the equations into non-dimensional form, it is natural to choose 1/k as reference
length (the length of the computational domain is then equal to 2�) and (gk)−1/2 as reference time (the
speed of linearized gravity waves in deep water is then equal to 1). Because of the assumption that the
wave is propagating without change of shape one may then solve for the functions �(X, z) and �(X),
periodic in X with period 2�, where

X = kx − �t . (32)

3 Equations similar to (28) and (29) were obtained by Ovsyannikov (1973). More precisely, he obtained the imaginary part
of Eq. (28) and the real part of Eq. (29). Moreover, Eq. (19) in Whitney (1971) is exactly the same as (4.6) and (4.5) in Dyachenko
et al. (1996).
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Normal practice is to superimpose upon the flow a velocity equal and opposite to the wave speed c=�/k

so that the motion becomes steady. Traditionally the main approach to the nonlinear problem of a train of
waves of constant form propagating steadily over a flat bottom has been based on expansions in a small
parameter. The best known is that of Stokes in which this parameter is the leading coefficient of a Fourier
expansion, appearing in dimensionless form as ka1. This expansion has been taken to very high order
by Schwartz (1974) and Cokelet (1977). Bloor (1978) combined truncated Fourier series with conformal
transformation to compute large amplitude surface waves. Tanaka (1983, 1985) used a method based on
Levi-Civita’s formulation with an additional conformal transformation to compute steep gravity waves as
well as their stability. Rienecker and Fenton (1981) developed a method based on Fourier approximation
techniques, having as its only approximation the truncation of the Fourier series and valid for deep and
shallow water (but not for the solitary wave limit).

Several valuable solutions for maximum waves have been obtained by imposing a crest of the correct
form and building other standard terms around it to account for the remainder of the profile. The maximum
wave means the wave of largest amplitude. The highest point is a stagnation point in a frame of reference
moving with the wave and has a discontinuity in slope. The enclosed crest angle is 120◦.Yamada (1957a)
was probably first to solve the deep-water limiting wave (see the book by Okamoto and Shōji, 2001, for a
detailed description ofYamada’s method). Williams (1981) improved the accuracy of this type of method
and extended it to all ratios between depth and wavelength and to waves of less than maximum height. It
was found that two terms rather than one were needed to describe the crest singularity. The second term was
suggested by the work of Grant (1973).4 The typical number of terms needed to obtain the required accu-
racy ranges from 80 at the shallow-water end of the computing range to 20 at the deep-water end. For exam-
ple, the maximum deep-water wave is characterized by a ratio height over wavelength equal to 0.141063
and a speed c/(g/k)1/2 equal to 1.092282. The wave height is the distance from crest to trough. Williams
(1981) provides an impressive set of Tables for heights, speeds and integral properties of various waves.

The most accurate solutions for large amplitude periodic Stokes waves were obtained by Chandler and
Graham (1993) by solving Nekrasov’s integral equation (15) numerically. The method consists of applying
a simple quadrature rule to that rearranged version of the original equation (14). Strongly graded meshes
are used to resolve a boundary layer in the solution due to Gibbs phenomena. Chandler and Graham were
able to compute waves very close to the limiting periodic Stokes wave.

The equations originally derived by Stokes are cubic in the Stokes coefficients. They have been used by
many authors to study various properties of water waves. Longuet-Higgins (1978) discovered a system
of quadratic equations for the Stokes coefficients which is equivalent to the original Stokes system
of cubic equations. This system is simpler and makes it easier to get higher accuracy in numerical
calculation of Stokes coefficients. New families of steady waves were discovered. Longuet-Higgins’
derivation was somewhat mysterious and Balk (1996) later found a general principle leading directly to
the quadratic system.At the same time, Balk found canonical variables which allow for overturning waves
(the surface elevation is no longer restricted to be a single-valued function of the horizontal coordinates).
The Lagrangian is a fourth-order polynomial in the Stokes coefficients, and their first time derivatives.
For waves of permanent form (when the time derivatives of the Stokes coefficients are given by the speed
of the wave and the Stokes coefficients themselves) this Lagrangian becomes a cubic polynomial and the
equations for the Stokes coefficients (given by the variation of the Lagrangian) turn out to be quadratic,

4 An increased understanding of the almost-highest waves was provided by Longuet-Higgins and Fox (1977, 1978), who
combined the method of matched asymptotics expansions with some numerical approximation.
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equivalent to Longuet-Higgins’ equations. Once the Lagrangian is found, the problem of computing the
evolution of the water surface is reduced to the extremization of a functional of independent generalized
coordinates (the principle of least action). A numerical scheme can be designed to preserve important
properties of the original continuous system.

As said above, the focus of this review is not on steady periodic waves. However, it should be mentioned
that there have been a lot of work on various bifurcations of periodic waves, following the seminal paper
by Chen and Saffman (1980a) stating that gravity waves in water of infinite depth are not unique. Chen and
Saffman used the method of Fourier series truncation. Vanden-Broeck (1983) generalized these results to
finite depth by using an integro-differential formulation of the water-wave problem (see Section 2.3).

Capillary-gravity periodic waves have been studied numerically by various authors. The first paper
is that of Schwartz and Vanden-Broeck (1979). They used an integral formulation based on Cauchy’s
theorem (with the cotangent kernel) and used a finite-difference method for the discretization. Bifurcations
of steady gravity-capillary waves on deep water have been studied by Chen and Saffman (1980b) and
various other authors (see for example the book by Okamoto and Shōji, 2001).

3.1.2. Solitary waves
A review of the most important investigations on solitary waves up to 1980 can be found in Miles

(1980). Yamada (1957b) is the first known author to have solved for the limiting solitary wave numeri-
cally (see again the book by Okamoto and Shōji, 2001, for a detailed description of Yamada’s method).
Lenau (1966) used a series truncation method to compute the same wave. More precisely the complex
velocity potential is expressed in terms of known singularities and an infinite power series with unknown
coefficients. Approximate solutions are obtained by truncating the power series after N terms. Williams
(1981) improved the accuracy. The maximum solitary wave is characterized by a ratio height over undis-
turbed depth equal to 0.8332 and a Froude number c/(gh)1/2 equal to 1.290889.5 It is interesting to note
that Lenau’s value for the Froude number is 1.2793 with only 1 term and 1.2862 with 9 terms! Given the
fact that methods based on truncated power series are easy to implement, they deserve more attention. See
also Hunter and Vanden-Broeck (1983b) for numerical results based on an integral-equation formulation.

Even though the focus is not on solitary waves, it is useful to mention some papers on the numerical
computation of capillary-gravity solitary waves. Most results are based on an integro-differential equa-
tion formulation: Hunter and Vanden-Broeck (1983a), Vanden-Broeck (1991), Vanden-Broeck and Dias
(1992), Dias et al. (1996), Champneys et al. (2002). The stability of solitary waves has been studied
numerically by Tanaka (1986) and by Calvo and Akylas (2002).

3.2. Three-dimensional progressive waves

The simplest 3D waves one can consider are the so-called short-crested waves. These waves, which
come from the superposition of two oblique travelling waves with the same amplitude, are symmetric
doubly-periodic waves. The dispersion relation is given by

�2 = g|k| tanh(|k|h)

(
1 + �|k|2

�g

)
,

where |k| = √
k2 + l2 and k and l are the x- and y-direction wavenumbers, respectively.

5 An increased understanding of the almost-highest solitary waves was provided by Longuet-Higgins and Fox (1996).
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Quite different in nature are the spontaneous (here we use the terminology of Saffman andYuen, 1985)
3D waves that result from the bifurcation of a 2D Stokes wave of finite amplitude. The origin of these
3D waves can be understood theoretically from the results of McLean et al. (1981) on the stability of 3D
perturbations of a 2D progressive wave.

A third type is the general class of 3D progressive waves of which the above two are special cases.
Rigorous and numerical results on these latter waves have been reported by Craig and Nicholls (2002).

The first numerical method to compute short-crested waves was introduced by Roberts and Schwartz
(1983). They used a truncated Fourier-series method based on collocation to compute short-crested waves
in water of arbitrary depth and gave some results for moderately steep waves in deep water. Because of
the assumption that the wave is propagating without change of shape one may then solve for the functions
�(X, Y, z) and �(X, Y ), periodic in X and Y with period 2�, where

X = kx − �t, Y = ly. (33)

Roberts (1983) used high-order perturbation expansions in the spirit of those of Schwartz (1974) and
Cokelet (1977) for 2D progressive waves and those of Schwartz and Whitney (1981) for standing waves
(see below). Double-precision coefficients were calculated up to the 27th order in just over two minutes
of computing time (at the time). Marchant and Roberts (1987) and Okamura et al. (2003) extended the
computations of Roberts (1983) to finite depth. The stability of short-crested waves has been studied
numerically by Ioualalen and Kharif (1993), Badulin et al. (1995), Ioualalen and Okamura (2002) and
others. To our knowledge, the 3D high-order solutions with long crests computed analytically by Roberts
and Peregrine (1983) have not yet been computed by 3D numerical codes based on the full water-wave
equations.

Using Zakharov’s equation (see Section 5), Saffman and Yuen (1980) found a new class of 3D deep-
water gravity waves of permanent form. The solutions were obtained as bifurcations from plane Stokes
waves. It was pointed out that the bifurcation is degenerate since there are two families of 3D waves, one
symmetric about the direction of propagation and the other skewed. The first type of bifurcation gives
rise to a steady symmetric wave pattern propagating in the same direction as the Stokes waves, whereas
the second type gives rise to steady skew wave patterns that propagate obliquely from the direction of
the Stokes waves. Later, Meiron et al. (1982) and Bryant (1985) computed steady 3D symmetric wave
patterns from the full water-wave equations. These 3D waves always have symmetric fronts. The methods
are similar, except that Meiron et al.’s method is based on collocation while Bryant’s method is based on
Fourier transforms.

The dominant instability of steep Stokes waves is due to 3D perturbations. This instability results
from a resonant interaction between five components of the wave field. These 3D patterns take the
form of crescent-shaped perturbations riding on the basic waves. Shemer and Stiassnie (1985) used
the modified Zakharov equation (see Section 5) to study the long-time evolution of 3D instabilities
of surface gravity waves in deep water. They derived from this equation the long-time history of the
amplitudes of the components of the wave field consisting of a Stokes wave (carrier) and its most unstable,
initially infinitesimal, disturbance. The 3D structures riding on the crests of the waves exhibit a front-back
asymmetry. With large-scale simulation, Xue et al. (2001), Fuhrman et al. (2004)6 and Fructus et al.

6 Although Boussinesq-type models are not considered in the present review, an exception is made here because the com-
putational results of Fuhrman et al. (2004) are the first examples of highly nonlinear (to the breaking point) deep-water wave
modelling in two horizontal dimensions with a high-order Boussinesq model.
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(2005) have confirmed the importance of these waves, and shown that they can be generated without
dissipation.

There has been a recent interest in the numerical computation of 3D solitary waves. For example, Părău
and Vanden-Broeck (2002) and Părău et al. (2005) used a numerical BIE method based on the algorithm
of Forbes (1989).

4. Standing waves

The numerical computation of standing waves is much less developed than the computation of progres-
sive waves. In addition to difficulties with numerics, standing waves have inherent analytical difficulties.

4.1. Two-dimensional standing waves

It is usual to introduce dimensionless quantities using the wavenumber k and the wave frequency � of
the standing wave. Then one can treat standing waves with 2� period for space and time without loss of
generality. The wave steepness � is defined as

� = 1
2 [�(0, 0) − �(�, 0)].

Schwartz and Whitney (1981) developed a semi-analytic algorithm for calculating the coefficients in a
formal power series expansion of a standing wave to any order, provided that a resonance does not occur
in executing the N2 step in the algorithm, for any integer N. They obtained the 25th order solution for
very large standing waves by a time-dependent conformal mapping method. Using Domb and Sykes’s
method and Padé approximants, they estimated the maximum wave steepness to be between 0.641 and
0.669. Vanden-Broeck and Schwartz (1981) computed standing waves on water of finite depth. Their
numerical procedure involves series truncation combined with collocation.

Mercer and Roberts (1992) obtained extremely steep standing waves by a method based on the semi-
Lagrangian approach. Their results showed that the standing wave has a maximum wave steepness of
0.6202. Tsai and Jeng (1994) calculated the highest standing waves of finite depth with a truncated
double Fourier series up to 16th order. They estimated the maximum wave steepness to be 0.641 in deep
water. Okamura (2003) used a perturbation series on only the velocity potential up to 30th order in the
wave amplitude to obtain the nearly limiting standing wave. Okamura’s method is an extension of Tsai
and Jeng’s method. However, Okamura used a Galerkin method while Tsai and Jeng used a collocation
method. Okamura’s conclusions are that the enclosed crest angle of the limiting wave is 90◦ and that the
maximum wave steepness is 0.6272 when the limiting wave profile is reached. The discrepancy among
the various estimates of the maximum wave steepness still is an open problem.

Vanden-Broeck (1984) provided numerical results for capillary-gravity standing waves by using the
same numerical method as inVanden-Broeck and Schwartz (1981). Bryant and Stiassnie (1994) computed
standing waves with several dominant modes by using Fourier series expansions.

4.2. Three-dimensional standing waves

The only papers in this direction are those of Bryant and Stiassnie (1995) and of Zhu et al. (2003). The
analysis of Zhu et al. employed the transition matrix approach and a high-order spectral element method.
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The method was used to study the stability of three-dimensional perturbations of a two-dimensional
standing wave.

5. Statistical description of water waves

The statistical description of water waves is an important topic, because of the variety of its practical
applications, including the theory of wind-driven sea waves and the theory of freak waves (cf. Janssen,
2004). The full three-dimensional water-wave equations are a subject of major interest, but the simpler
two-dimensional equations are interesting too. It is well-known from observations that the spectrum of
wind-driven sea waves near the leading frequency is narrow in angle. Thus, the two-dimensional approach
makes sense. The statistical description goes back to the pioneering work of Hasselmann (1962, 1963a,
1963b) who derived the kinetic equation for surface waves. Details on the nonlinear dynamics of water
waves can be found in the monograph by Zakharov et al. (1992) and the reviews byYuen and Lake (1982)
and Zakharov et al. (2004).

Several researchers have used Zakharov’s equation for a statistical description of water waves. For
the description of Zakharov’s equation, we restrict the analysis to gravity waves in deep water. Fourier
transforms are introduced

�k(t) = 1

2�

∫
�(x, t) e−ik·x dx, �k(t) = 1

2�

∫
�(x, t)e−ik·x dx.

One can introduce the normal variables

�k = 1√
2

( |k|
g

)1/4

(ak + a∗−k), �k = i√
2

(
g

|k|
)1/4

(ak − a∗−k), (34)

where (∗) stands for complex conjugation. Using the normal variables (34), the Hamiltonian evolution
system (20) written in Fourier space becomes

�ak

�t
+ i

�H

�a∗
k

= 0. (35)

The expression for the Hamiltonian is

H = H0 + H1 + H2 + · · · , (36)

where

H0 = 1

2

∫
(|k||�k|2 + g|�k|2) dk,

H1 = − 1

4�

∫
(k1k2 + |k1||k2|)�1�2�k�(k1 + k2 + k) dk1 dk2 dk,

H2 = − 1

(4�)2

∫ [
|k1| + |k2| − 1

2
(|k1 + k3| + |k2 + k3| + |k1 + k| + |k2 + k|)

]
× |k1||k2|�1�2�3�k�(k1 + k2 + k3 + k) dk1 dk2 dk3 dk.
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One can perform a canonical transformation that eliminates the cubic terms in the Hamiltonian. This is
a cumbersome transformation, which is described in detail in the article by Krasitskii (1990). In the new
variable, say bk , the equation still has the canonical form

�bk

�t
+ i

�H

�b∗
k

= 0, (37)

where

H = H0 + Hint, (38)

with

H0 =
∫

�k|bk|2 dk, �k =√
g|k|,

Hint = 1

4

∫
T WW

123k b1b2b
∗
3b

∗
k�(k1 + k2 − k3 − k) dk1 dk2 dk3 dk.

In the expression for Hint and consequently in Eq. (38), only the terms corresponding to four-wave
interactions have been kept. Higher-order wave interactions have been neglected. The coupling coefficient
T WW

123k is a complicated homogeneous function of k1, k2, k3 and k:

T WW(�k1, �k2, �k3, �k) = �3T WW(k1, k2, k3, k), � > 0. (39)

The full expression for the interaction coefficient T WW
123k can be found for example in Krasitskii (1990)

(see also the earlier work by Zakharov, 1968).
It seems natural to solve numerically Eq. (37). However, the complexity of the coupling coefficient

T WW
123k does not allow the use of the most efficient spectral codes. It is more economical to solve directly

Eq. (20). The statistical description of 3D water waves is a tremendous task. The first attempt due to
Pushkarev and Zakharov (1996) (see also Pushkarev and Zakharov, 2000, and Dyachenko et al., 2003a)
was devoted to pure capillary waves. Ensembles of capillary waves are less difficult to compute because
the dominant wave interactions are the three-wave interactions. Recently, several groups have tried to
solve Eq. (20) on the computer: Onorato et al. (2002), Dyachenko et al. (2003b, 2004), and also Janssen
(2003) for computations on the Zakharov equations. Onorato et al. (2002) and Dyachenko et al. (2003b)
used a wave field contained in a square domain with a 256 × 256 resolution, while Dyachenko et al.
(2004) used a 512 × 512 resolution. They achieved some success but found that the whole business is
tricky, and the computations easily become unstable. All these numerical experiments are consistent with
weak-turbulence theory.

The verification of Hasselman’s energy transfer among surface gravity waves was performed by direct
numerical simulation by Tanaka (2001). Tanaka andYokoyama (2004) studied the effects of discretization
of the spectrum on the evolution of weak turbulence of surface gravity waves, again by direct numerical
simulation. In both papers, the high-order spectral method developed independently by West et al. (1987)
and Dommermuth andYue (1987) was used. The technique uses a slope expansion of the velocity potential
at the free surface. More precisely, the formal expansion about the free surface of Bernoulli’s equation
and the kinetic boundary condition are retained to arbitrary order. The numerical integration of these latter
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equations is done by taking products of field quantities in configuration space (the surface displacement,
velocity potential, and gradients of these terms), fast Fourier transforming the configuration equations and
time incrementing the transformed equations to obtain the components of the appropriate field variables,
then transforming back to configuration space to again evaluate the nonlinear products and start the
process again.

6. Numerical wave tanks

The idea behind numerical wave tanks is to reproduce (or even replace) laboratory experiments with
computer simulations. A typical 3D numerical wave tank has several boundaries: a wave-maker at one
end, an absorbing beach at the other end, an impervious boundary at the bottom and on the sides, and a
free surface at the top. However, the terminology ‘wave tank’ is used below abusively even for methods
that can only include fixed vertical boundaries.

6.1. Two-dimensional numerical wave tanks

Boundary integral methods described in Section 2.2 have been used successfully for two-dimensional
waves by Longuet-Higgins and Cokelet (1976), Vinje and Brevig (1981) and New et al. (1985). Most
codes have been based on their formulations. Calculations in 2D have been extensive. Dommermuth
et al. (1988) were able to reproduce overturning waves generated by frequency focusing all the way to
breaking. As shown in Section 2, Laplace’s equation is solved with a high-order BIE method, based either
on Green’s identity or on Cauchy’s integral theorem formulations. Time integration of the free-surface
boundary conditions expressed in a mixed Eulerian–Lagrangian formulation is performed using a time
marching Runge–Kutta scheme, or a predictor–corrector scheme, or both (Longuet-Higgins and Cokelet),
or a Taylor series expansion method (Dold and Peregrine, 1986, and Dold, 1992). Early computations
following this approach were restricted to space-periodic waves over constant depth. Later computations
were able to accommodate both arbitrary incident waves and complex bottom topographies (Ohyama
and Nadaoka, 1991). State-of-the-art models directly work in a physical space region, in which incident
waves are generated at one extremity and reflected, absorbed, or radiated at the other extremity (see for
example Grilli and Subramanya, 1996; Grilli and Horrillo, 1997). The code first developed by Dold and
Peregrine (1986) has been used for various computations by Banner and Tian (1998), Henderson et al.
(1999) and Song and Banner (2002), and extended by Tanaka et al. (1987). Grilli and Subramanya (1996),
who used a high-order boundary element method, provide a comparison between three types of boundary
elements: iso-parametric, quasi-spline and MII/MCI (where MII stands for Mid Interval Interpolation
and MCI stands for MII for the potential and spline for the geometry).

Efficient time-dependent numerical codes based on the formulation presented in Section 2.5 have been
developed by Chalikov and Sheinin (1998) and Zakharov et al. (2002). Precursors to this work include
Whitney (1971) and Fornberg (1980). An anonymous referee reports that Fornberg (1980) eventually
gave up the direction of numerical conformal mapping because of the inefficiency due to the propensity
of the method to disperse points away from sharp and overturning crests.

As said in Section 5, higher-order spectral methods have been developed by West et al. (1987) and
Dommermuth and Yue (1987). Skandrani et al. (1996) applied the numerical method developed by
Dommermuth and Yue (1987) to nonlinear gravity waves in the presence of weak viscous effects and
surface tension and observed the occurrence of downshift.
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6.2. Three-dimensional numerical wave tanks

The boundary element method (BEM) is the predominant method of choice for the spatial discretization
of 3D numerical wave tanks. Wave tanks based on BEM have been designed by Romate (1990a, 1990b),
Romate and Zandbergen (1989), Broeze and Romate (1992), Broeze et al. (1993), Grilli et al. (2001).
There is currently much activity in this area, with much potential for new developments. For example,
three-dimensional wave tanks have been used by Guyenne and Grilli (2006) to study overturning waves
in shallow water, by Grilli et al. (2002) to study tsunami generation, by Fructus et al. (2005) to compute
three-dimensional instabilities of Stokes waves.

6.2.1. Time integration
Once the boundary-value problem at each time step is solved and the velocity on the free surface

obtained from � and �(n), the free-surface boundary conditions (12) and (13) can be integrated in time in
a straightforward manner. Effectively, the problem has been reduced to a very large system of ordinary
differential equations.

Xue et al. (2001) used a fourth-order Adams–Bashforth–Moulton integrator coupled with a fourth-
order Runge–Kutta scheme. Grilli et al. (2001) used a second-order explicit Taylor series expansion.
Zeroth-order coefficients are given by the geometry and the solution of the BIE (11) at time t. First-
order coefficients are then directly obtained from the boundary conditions (12) and (13). Second-order
coefficients are obtained from the material derivative of Eqs. (12) and (13), which requires solving a BIE
similar to (11) for ��/�t . The BIEs for � and ��/�t are solved at time t and thus correspond to the same
boundary geometry and have the same discretized form (see Section 6.2.3). The use of second-order
terms leads to a better accuracy of the time scheme. The time step �t is adapted at each time as a function
of the minimum distance between two neighbouring nodes on the free surface and the magnitude of the
maximum (nodal) velocity on the free surface. An optimal Courant number (typically less than 1) is used.

In mixed Eulerian–Lagrangian simulations, in the absence of numerical damping, saw-tooth instabilities
eventually develop on the free surface as nonlinearity increases, as observed first by Longuet-Higgins
and Cokelet (1976). The presence of saw-tooth instabilities can be expected in the theory for nonlinear
systems without dissipation, wherein energy flows from low to high wavenumbers and accumulates at
the highest wavenumber associated with the discretization. It is said sometimes that the appearance of
saw-tooth instabilities in the simulation of overturning waves depends on the BIE formulation. With
the Green-theorem formulation, severe saw-tooth instabilities usually appear near the crests of steep
waves. On the other hand, no apparent saw-tooth instability effect is observed with the Cauchy-integral
formulation, as emphasized for example by Dold (1992). A possible reason for this is that with the Green-
theorem/Cauchy-integral formulation, one encounters the first/second-kind Fredholm integral equation.
Usually, it is easier to obtain an accurate solution to the second-kind equation than to the first-kind
equation. Another possible reason is that use of explicit integrators such as fourth-order Runge–Kutta
results in high-wavenumber instabilities unless unnatural restrictions are put on the time step (see the
next subsection for discussion of this point). To remove instabilities, several smoothing techniques have
been proposed.

The lack of saw-tooth instabilities observed by Dold (1992) or Grilli et al. (2001) may also be related
to the use of Taylor series expansions for time stepping, or the high-order accuracy of spatial derivatives,
or their combination. Dold and Peregrine (1986) in particular used an 11 point formula for derivatives.
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6.2.2. Towards symplectic integrators for water waves
A long overlooked problem in the numerical simulation of water waves is neglect of the Hamiltonian

structure in the design of numerical method. In celestial mechanics and molecular dynamics the use of
symplectic integrators is pervasive because they give better performance over long times and respect the
energy budget better (see for example the recent monograph by Leimkuhler and Reich, 2005).

There are two principal reasons why symplectic integrators might improve the performance of numerical
wave tanks. First, they show excellent energy conservation properties over extraordinarily large time
intervals. Second they perform much better than non-symplectic methods for systems of oscillators. In
other words, they do far less damage to the Fourier spectrum. This latter point can be seen explicitly on
the linear problem as follows.

After semi-discretization, the linear water-wave problem is reduced to a system of linear ordinary
differential equations of the form ut = Au, where u ∈ RN for some large N. For purposes of discussion
take A to be a constant matrix. As is easily verified, the classical fourth-order explicit Runge–Kutta
method reduces to the following one step method (when A is constant),

un+1 =
[

I + hA + 1

2
h2A2 + 1

3! h3A3 + 1

4! h4A4
]

un (40)

for one time step h. Apply this to the linear 2D water wave problem in finite depth, linearized about the
still water state. In this case, the water wave problem is an infinite coupled system of harmonic oscillators
of the form

q̇k = −�kpk, ṗk = �kqk, k = 1, 2, . . . , where �2
k = gk tanh(kh).

The numerical issue is: what happens to each harmonic oscillator under discretization by (40)? In this
case A decomposes into 2 × 2 blocks, each of which has a simple form,

A = A1� · · · �Ak� · · · , with Ak = �k

(
0 −1
1 0

)
.

The orbit of each mode is circular with the radius determined by initial data, since

d

dt
Ik = 0 where Ik = q2

k + p2
k .

The continuous system preserves each Ik for all time. In other words, in each two-dimensional subplane
(qk, pk) lie on a circle. Does the numerical algorithm reproduce this? Using the discretization (40) applied
to a 2 × 2 sub-block shows that

In+1
k =

(
1 − (h�k)

6

72
+ (h�k)

8

576

)
In
k . (41)

The ratio In+1
k /In

k is plotted as a function of h�k in Fig. 1.
To summarize, the linear water wave problem (in a bounded domain, linearized about the flat state) is

essentially an infinite system of harmonic oscillators, and the classical fourth-order Runge–Kutta method
amplifies the amplitude of each component oscillator by the formula (41).
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Fig. 1. Plot of the ratio In+1
k

/In
k

as a function of h�k , showing the amplification of oscillatory modes given by (41).

Now, note that

In+1
k

I n
k

�1 requires �kh <
√

8,

so if 0 < �kh <
√

8 the amplitude of the oscillator is damped, and if �kh >
√

8 the amplitude is growing.
Since In+1

k = In
k for at most one choice of k, only one Fourier mode can be preserved exactly, the rest

being damped, or unstable. It is clear from this example that severe damage is being done to the Fourier
spectrum.

Contrast this fourth-order Runge–Kutta method with for example the implicit midpoint method:

un+1 =
[

I − h

2
A
]−1 [

I + h

2
A
]

un,

which will satisfy In+1
k = In

k for all n and all k! The implicit midpoint rule is an example of a symplectic
integrator. It is evident that further work is needed to clarify the potentialities of symplectic integrators
for water wave simulation.

6.2.3. Spatial discretization
In three dimensions, integral equations are usually solved by a BEM (see for example Forbes, 1989;

Părău and Vanden-Broeck, 2002; Părău et al., 2005, for other methods). Existing BIE solvers commonly
employ piecewise-constant approximations for the unknowns, piecewise-linear approximation of the
boundary, and collocation at panel centroids. This so-called ‘constant-panel’ method has a number of
shortcomings. To circumvent these shortcomings, higher-order panel or BIE methods must be sought.
Xue et al. (2001) used an iso-parametric quadratic BEM, based on piecewise bi-quadratic representation
of both the boundary and the potential and its normal derivative on the boundary. The boundary panels are
curvilinear quadrilaterals. The boundary is discretized into N collocation nodes and M high-order elements
are used to interpolate in between m of these nodes. Within each element, the boundary geometry and the
field variables are discretized using polynomial shape functions. Various elements can provide a high-
order approximation within their area of definition but only offer C0 continuity in between elements.
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The integrals on the boundary are converted into a sum on the elements, each one being calculated on
the reference element. Depending on the boundary type on which the current node lies, the potential, or
its normal derivative, is either specified by a boundary condition or is an unknown of the problem.

The matrices are built with the numerical computation of the integrals on the reference element. When
the collocation node does not belong to the integrated element, a standard Gauss–Legendre quadrature
method is used.7 When the collocation node belongs to the element, special methods are needed to take
account of the singularities in the evaluation of the Green’s functions. Some of the regular integrals can
be nearly singular because of the accumulation of nodes. An adaptive technique that is based on recursive
subdivisions is needed.

The linear algebraic systems resulting from the two BIEs (one for � and one for ��/�t) are full
and non-symmetric. Assembling the matrix as well as performing the integrations accurately are time
consuming tasks. The assembling is done only once at each time step, since the same matrix is used for both
systems.

Solving the linear system is another time consuming task. A classical algorithm using a direct solver for
the linear system turns out to be very expensive with an O(N3) complexity. This is why the generalized
minimal residual (GMRES) algorithm with preconditioning is often used to solve the linear systems
iteratively (see Saad and Schultz, 1986). The computational complexity is reduced to O(N2), which
is the same as the complexity of the assembling phase. Note that since there are only small changes
in domain shape and variables at each time step, iterative methods for solving the full linear system
can be effective. However, there is a minor drawback of the iterative method when a time stepping
scheme based on Taylor series expansion is used. As said above (see Section 6.2.1), two systems of
equations must be solved at each time step—one for � and one for ��/�t . While the solution of the
second system takes only a few per cent of the time needed to solve the first system with a direct method,
two full systems must be solved with the iterative method. Nevertheless, iterative methods are faster for
large systems.

Fochesato and Dias (2006) recently incorporated the fast multipole algorithm in the numerical wave
tank of Grilli et al. (2001), reducing the complexity to near O(N). The fast multipole algorithm was first
used for 3D problems governed by a Laplacian by Greengard and Rokhlin (1997) (see also Cheng et
al., 1999). For 2D free-surface flows, the fast multipole algorithm was used by Graziani and Landrini
(1999), but they did not use boundary elements to discretize the problem. They used the Euler–McLaurin
quadrature formula.

There are several results available on the convergence of boundary integral methods (see for example
Beale, 2000; Beale et al., 1996; Hou and Zhang, 2001, 2002).

6.3. Three-dimensional wave tank based on Fourier expansions

The methodology described here has its roots in the unidirectional wave model proposed by Fenton
and Rienecker (1982), which itself builds on the time-marching procedures originally proposed by
Longuet-Higgins and Cokelet (1976). It was further developed by Bateman et al. (2001) and Johannessen
and Swan (2003) in order to include the effects of directional spreading.

7 Note that approximation of integrals over non-periodic domains by Gauss–Legendre quadrature is equivalent to the trape-
zoidal rule for integrals over a periodic domain (see Chapter 12 of Trefethen, 2000)
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The water depth h is assumed to be constant. If the wave field is periodic in space (x, y) with large
fundamental wavelengths 	x = 2�/k and 	y = 2�/l, where k and l are the fundamental wavenumbers
in the x- and y-directions, a solution for � that satisfies both Laplace equation and the bottom boundary
condition at z = −h is given by

� =
M∑

m=0

cos(mly)

[
A0m +

N−1∑
n=1

(
(Anm cos(nkx) + Bnm sin(nkx))

cosh(knm(z + h))

sinh(knmh)

)
+
(

ANm cos(Nkx)
cosh(kNm(z + h))

sinh(kNmh)

)]
, (42)

where knm = (n2k2 +m2l2)1/2 and the unknown coefficients Anm and Bnm are functions of time only. It is
further assumed that there are no contributions to � from components beyond the truncation wavenumbers
Nk and Ml. The corresponding free-surface elevation is of the form

� =
M∑

m=0

cos(mly)

(
a0m +

N−1∑
n=1

(anm cos(nkx) + bnm sin(nkx)) + aNm cos(Nkx)

)
, (43)

where anm and bnm are again functions of time only. Eqs. (42) and (43) are based on the assumption
that the wave field is symmetric about y = 0. This imposed symmetry is not essential. It only provides a
reduction of the computational effort.

The nonlinear free-surface boundary conditions define �t and �t in terms of � and the spatial deriva-
tives of � and � evaluated at the water surface. A spatial representation of � and � at some initial
time t = t0 allows �t and �t to be defined and the solution successfully time-marched to t = t0 + �t .
Repeated application allows the evolution of the wave field to be predicted over large times. The
free-surface boundary conditions are applied at 2N(M + 1) spatial locations within a grid defined
by

[x, y]ij =
[
(i − 1)	x

2N
,

(j − 1)	y

2M

]
, i = 1, 2, . . . , 2N, j = 1, 2, . . . , M + 1.

If M and N are integer powers of 2, the unknown time-derivatives within the description of �, (anm)t
and (bnm)t , can be solved rapidly using standard fast Fourier transform techniques. In contrast, a similar
approach cannot be applied to determine the unknown time-derivatives within the description of �,
(Anm)t and (Bnm)t , since the expression for � incorporates the vertical structure of the flow. As a result,
� becomes a function of � when calculated at the water surface. Accordingly, (Anm)t and (Bnm)t are
evaluated using lower–upper factorization and back substitution. Therefore, the scheme is not comparable
in computational efficiency with the best available unidirectional time-stepping procedures, notably those
due to Dold (1992) and Craig and Sulem (1993). The coefficients of � and � are updated using the
Adams–Bashford–Moulton predictor-corrector method similar to that employed by Longuet-Higgins and
Cokelet.

Clamond and Grue (2001) developed an efficient numerical wave tank, based on the vortex sheet
method. Initially development was for two-dimensional deep water waves, with recent extension to 3D.
The 2D version is based on Eqs. (18) and (19). Typically an iterative solution requires O(N2) operations
but Clamond and Grue were able to reduce it to O(N log N) operations by reformulating the boundary
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integrals. It was extended to finite depth by Grue (2002). The 3D version was given in Section 7 of
Clamond and Grue (2001) and implemented in Fructus et al. (2005).8

Bingham and Agnon (2005) developed a Fourier–Boussinesq method for nonlinear water waves. The
equations are essentially of Boussinesq type but they include a generalized Hilbert transform in order to
remove any limitation with respect to relative water depth. The Hilbert transform is evaluated via the fast
Fourier transform.

7. Concluding remarks

The greatest progress in the numerical computation of water waves witnessed in the last five years has
been the development of efficient three-dimensional wave tanks. A distinction must be made between
methods that cannot represent wave overturning, such as those that use spatial Fourier representations,
or assuming single values of surface elevation, and those that can describe wave overturning. The former
may have problems giving fully convincing results. But the most common drawback of most existing fully
nonlinear methods is that the computational schemes are generally explicit and so require very short time
steps. It is still unclear whether one will be able to circumvent this difficulty, by using implicit methods
for example, or if this difficulty is inherent to the water-wave problem. Recent developments such as the
use of multipole expansion (Fochesato and Dias, 2006) may however speed up the internal time for each
time step. Within a given method, it has been noticed too that tiny changes in the formulation can make big
changes in the accuracy or the stability of the method. The computations by Fuhrman et al. (2004) based
on a fully nonlinear and highly dispersive Boussinesq formulation combined with the efficient solution
strategies developed in Fuhrman and Bingham (2004) are also promising. Although most computations
have been based on the Euler equations, some computations that use the Navier–Stokes equations are
emerging (see for example the fully nonlinear three-dimensional breaking waves recently computed by
Lubin et al. (2003) by solving the Navier–Stokes equations in air and water). Finally, there is an urgent
need for performing unbiased comparisons between the various 3D numerical wave tanks that are now
available.
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