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Abstract

This thesis takes as its starting point a well-known family of finite mix-

tures of parsimoniously parameterised multivariate Gaussian distribu-

tions. Three main limitations of this model family are identified. Firstly,

covariates are not incorporated into the clustering process. Secondly,

the assumption of multivariate normality for the underlying component

distributions is inappropriate for categorical data. Thirdly, the models

are generally not well suited to high-dimensional settings where the

number of variables is comparable to or even greater than the number

of observations.

Thus, the standard finite mixture model is extended in three separate

streams, with a full family of methods introduced in each case. Parsi-

mony and model selection are common themes throughout. Maximum

likelihood estimation or Bayesian estimation are used as appropriate to

the task at hand.

Firstly, the finite Gaussian mixture model is extended to accommodate

covariates of mixed type, by combining a range of parsimonious con-

straints on the component covariance matrices with the special cases

of the mixtures of experts framework.

Secondly, a parsimonious family of mixtures of exponential-distance

models are developed for clustering categorical sequence trajectories,

motivated by an application to social survey data on the monthly em-

ployment activities of a cohort of Northern Irish youths.

Finally, the infinite mixture of infinite factor analysers model is pre-

sented as a computationally efficient and somewhat choice-free ap-

proach for clustering high-dimensional data. It assumes factor-analytic

ix



covariance structures under a fully Bayesian nonparametric framework

which theoretically allows infinitely many mixture components and in-

finitely many latent factors within each component simultaneously. The

model is inferred using an adaptive MCMC algorithm which facilitates

automatic estimation of these quantities.

A number of applications in each chapter illustrate the performance of

the proposed families of methods. All novel models in this thesis are

implemented in distributed software packages.
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Chapter 1

Introduction

This thesis is presented in the form of three distinct, self-contained chapters, each

with their own introduction, conclusion, bibliography, and appendices. This overall

introduction chapter aims to outline the content contained within the chapters that

follow and to draw parallels between their overlapping themes and purposes, where

appropriate. Broadly speaking, this thesis describes some extensions of model-

based clustering methods using novel families of parsimonious mixture models.

1.1 Motivation

Clustering methods, in a general sense, are used to uncover group structure in

heterogeneous populations and identify patterns in a data set which may represent

distinct subpopulations. While there is no universally applicable definition of what

constitutes a cluster (Hennig, 2015), it is commonly assumed that clusters should

be well separated from each other and cohesive in an ideal analysis (Everitt et al.,

2011). Conversely, objects within a cluster should be more similar to each other

in some sense, in such a way that an observation has a defined relationship with

observations in the same cluster, but not with observations from other clusters.

Clustering methods can be broadly grouped into heuristic algorithms such as

partitioning-around-medoids (PAM; Kaufman and Rousseeuw, 1990) and hierarchi-

cal clustering on one hand and model-based clustering (MBC) approaches on the

other. The MBC paradigm assumes that data arise from a (usually finite) mixture of

probability distributions (McLachlan and Peel, 2000; Bouveyron et al., 2019). Mix-
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ture models can be thought of as a type of MBC method where each observation in

a data set is assigned to a component probability distribution. Ideally, mixtures of

distributions are supposed to provide a good model for the heterogeneity in a data

set; that is, once an observation has been assigned to a component, it is assumed

to be well-represented by the component distribution. Typically, a one-to-one corre-

spondence is assumed between component distributions and clusters (Fraley and

Raftery, 2002), though this is not always the case (Hennig, 2010). The inferred

underlying parameters of the component distributions can be used to summarise

the subpopulations and the indices of the component to which each observation

belongs can be used to define the clustering partition.

Inference for finite mixture models became much more straightforward with

the introduction of the expectation-maximisation (EM) algorithm (Dempster et al.,

1977), and in particular with the introduction of the incomplete data formulation, in

which each observation’s component membership is treated as the “missing” la-

tent variable which must be estimated. This formulation assumes that the data are

conditionally independent and identically distributed, where the conditioning is with

respect to a latent variable representation of the data (Blei et al., 2003) in which

the latent variable indicates component — and hence cluster — membership. The

EM algorithm for model-based clustering will be described more fully in Chapters

2 and 3, in which it is employed.

Several alternatives to the EM algorithm are available; under a Bayesian specifi-

cation, one prominent example is the class of methods referred to as Markov chain

Monte Carlo (MCMC; Gelfand and Smith, 1990), where the goal is to sample from

a distribution of interest in an iterative manner, rather than to identify the values

which maximise it. While such methods typically require increased computational

cost, their used is necessitated in Chapter 4 by virtue of the flagship model therein

being a fully Bayesian nonparametric infinite mixture.

Though Agresti (2002) highlights the connection between MBC and an ear-

lier method, latent class analysis (Lazarsfeld and Henry, 1968), and McNicholas

(2016) argues that the notion of defining a cluster as a component in a mixture

model can be traced back even further to Tiedeman (1955) and Wolfe (1965),

the term ‘model-based clustering’ was largely popularised with the introduction

of Gaussian parsimonious clustering models (GPCMs) by Banfield and Raftery
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1.1 Motivation

(1993) and Celeux and Govaert (1995). Indeed, the term ‘model-based clustering’

is often synonymous for many with the notion of a finite Gaussian mixture model.

Finite Gaussian mixture models assume data arise from a mixture distribution

of the following form

f (yi |θ) =
G∑

g=1

τgφ(yi |θg = {µg , Σg}) , (1.1)

where G is the number of components, Y = (y1, ... , yn) are the observed data of

dimension p, and φ(yi | ·) denotes the density of a p-variate Gaussian evaluated at

yi . The component mixing proportions, τ = (τ1, ... , τG ) are such that τg > 0 ∀ g
and

∑G
g=1 τg = 1. The collection of parameters specific to each component distri-

bution θg comprises µg , the mean parameters of the g -th component, and Σg , its

p×p covariance matrix. That the covariance matrices are explicitly modelled further

differentiates Gaussian mixture models from other heuristic clustering approaches;

the well-known k-means clustering algorithm (MacQueen, 1967), for instance, fo-

cusses only on detecting differences in mean signals and does not account for the

dependencies among variables.

Within the models comprising the GPCM family, the component distributions

are assumed to be multivariate Gaussians with parsimoniously parameterised co-

variance matrices. The range of constraints on the covariance matrices are de-

scribed in detail in Chapter 2, where they are extensively employed. The influence

of GPCMs is clear on a huge volume of recent works giving consideration to par-

simony in mixture models; one which is particularly relevant from the perspective

of Chapter 4 of this thesis uses a range of constrained factor-analytic structures in

the component covariance matrices (McNicholas and Murphy, 2008). Parsimony

is also a common theme of the family of models introduced in Chapter 3.

Owing to their ubiquity, the term ‘standard mixture model’ in the title of this the-

sis is taken to refer to the family of parameterised finite Gaussian mixture models

described in (1.1), beyond which the novel families of parsimonious model-based

clustering methods proposed in Chapters 2 to 4 extend in various ways. In par-

ticular, this model is limited by not incorporating information contained in related

covariates, being inappropriate for categorical data, and being intractable in cases

where p is comparable to or even greater than the number of observations n unless

the restriction that the component covariance matrices are diagonal is assumed.
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1.2 Chapter Summaries

In each of the following subsections, an overview is provided of Chapters 2–4 and

the MoEClust, MEDseq, and IMIFA model families introduced therein. The ration-

ale for the proposed extension beyond the model in (1.1) is presented in each case.

As these Chapters all exist in the form of journal articles either published (Chap-

ters 2 and 4) or under review (Chapter 3), some material will be repeated and the

notation used will differ in some instances, despite the efforts made to maximise

cohesiveness as much as possible. Note that while each chapter contains ap-

pendices, Appendices 2.D, 2.E, 3.D, and 4.E do not appear in the corresponding

journal articles, nor do Appendices 2.F, 3.E, and 4.F (see Section 1.3).

1.2.1 Chapter 2: MoEClust

The MoEClust family of models introduced in Chapter 2 extend the standard mix-

ture model in (1.1) to the mixtures of experts (MoE) setting (Jacobs et al., 1991;

Gormley and Frühwirth-Schnatter, 2019), in which either or both the component

mixing proportions and/or component means are allowed to depend on related

fixed covariates x1, ... , xn of possibly mixed type. Hence the covariates are used

to guide the construction of the clusters, thereby making them endogenous to the

model. This allows richer insight to be gleaned into the type of observation which

characterises each cluster. In contrast, many analyses using finite Gaussian mix-

ture models cluster the outcome variables yi only and do not make reference to

xi until the uncovered clustering structure is investigated. For instance, the imple-

mentation of GPCMs in the popular R package mclust (Scrucca et al., 2016) does

not accommodate covariates.

MoEClust models rely on the parsimonious parameterisations of Σg achieved

in GPCMs by imposing constraints on the components of an eigen-decomposition

of the form

Σg = λgDgAgD>g .

The constraints encompass models with as few as 1 and as many as Gp(p + 1)/2

covariance parameters. The GPCM family also includes models for univariate data

where the variances are assumed to be equal or unequal across components.

4
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The novel MoEClust family of Gaussian parsimonious MoE models is thus de-

veloped by combining the GPCM constraints with all special cases of the MoE

framework defined by Gormley and Murphy (2011), whereby different subsets of

covariates are allowed to influence either, neither, or both parts of the model.

The full range of GPCM constraints have hitherto not been incorporated into MoE

models. A simple trick involving the residuals of the seemingly unrelated regres-

sions (Zellner, 1962) in the component distributions simplifies estimation of the

constrained Σg matrices under the EM approach employed for model fitting.

Giving consideration to constraining the mixing proportions across components

when they do not depend on covariates, by fixing τg = 1/G ∀ g as per Celeux and

Govaert (1995), expands the model family further. So too does the potential inclu-

sion of a uniform noise component for capturing non-Gaussian outliers, as per Ban-

field and Raftery (1993). Two ways of treating covariates in the mixing proportions of

a model with a noise component are proposed. The model family could be instead

described as GPCMs with various ways of accommodating covariates. Notably, the

model in (1.1) is naturally subsumed into the MoEClust family as a special case.

Compared to non-parsimonious Gaussian MoE models, the reduction in the

number of covariance parameters is shown to offset the number of parameters

introduced by covariates. However, the interpretation of the model fundamentally

differs depending on where covariates enter. A novel stepwise selection procedure

is employed for identifying the optimal subset of covariates and where to put them,

the number of components, and the set of GPCM covariance parameterisations.

A novel initialisation procedure is employed to improve convergence of the EM

algorithm used for model fitting when covariates enter the component distributions.

While some special cases of MoEClust are effectively mixtures of regressions

with or without concomitant variables, the name MoEClust comes from employing

MoE models, albeit with GPCM covariance structures, chiefly for clustering pur-

poses. MoEClust models demonstrate significant improvement over both GPCMs

without covariates incorporated and non-parsimonious Gaussian MoE models. This

is borne out in applications to univariate data on CO2 emissions (Hurn et al., 2003),

with reference to Gross National Product per capita, and a multivariate data set

containing hematological response variables for a cohort of Australian Institute of

Sport athletes and related biological measurements (Cook and Weisberg, 1994).
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1.2.2 Chapter 3: MEDseq

Motivated by an application to a data set containing information on the career se-

quence trajectories of a cohort of Northern Irish youths from the Status Zero Survey

(henceforth referred to as the ‘MVAD’ data; McVicar, 2000; McVicar and Anyadike-

Danes, 2002), the MEDseq family of models is introduced in Chapter 3. As the data

are represented by an ordered collection of monthly employment activity states, the

sense in which these models depart from the standard mixture model is most ap-

parent by the data themselves being both categorical (with v categories) and lon-

gitudinal (with T time points). The MVAD data also contain information on different

characteristics — related to gender, community, geographic and social conditions,

and personal abilities — in the form of baseline covariates, as well as observation-

specific sampling weights used to correct for response bias in the original survey.

The MEDseq family relies on exponential-distance models of the form

f (si |θ,λ, d) = Ψ(λ,θ |T , v)−1 e−λd(si ,θ), (1.2)

where si denotes an observed categorical sequence, d(si ,θ) is a generic distance

function from a location parameter θ, λ is a non-negative precision parameter, and

Ψ(λ,θ |T , v) is a normalising constant such that f (si |θ,λ, d) is a valid probability

mass function (PMF). Distance-based models have been used by several authors

(e.g. Mallows, 1957), and mixtures thereof have also been used for clustering (e.g.

Murphy and Martin, 2003). Interestingly, exponential-distance models share some

of the properties of the Gaussian distribution; indeed, when si is continuous and

d(si ,θ) is the squared Euclidean distance from the mean, the PMF in (1.2) relates

to the density of the Gaussian distribution. Moreover, mixtures of exponential-

distance models are shown to correspond to a model-based equivalent of PAM.

MEDseq models are effectively mixtures of exponential-distance models for se-

quences, hence the name, which employ the Hamming distance metric (Hamming,

1950). Sampling weights are also accounted for by weighting the likelihood function

appropriately. The sense in which MEDseq models constitute a family of methods

is two-fold. Firstly, baseline covariates are allowed to affect or not affect the proba-

bility of component membership, similar to one of the special cases of the MoEClust

model family introduced in Chapter 2. Secondly, a range of settings for the preci-
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sion parameter λ — allowing the parameter to be constrained or unconstrained

across components and/or time points — define useful weighted generalisations of

the Hamming distance and introduce parsimony to the MEDseq model family. Fur-

thermore, models with a uniform noise component arise naturally by restricting the

parameter space. Thus, the aim is not actually to induce parsimony, but to move

between the simplest model with only a single precision parameter to more heavily

parameterised models which provide greater flexibility.

Sequence analysis (SA) is the umbrella term used for a collection of methods

used for analysing such life-course data. The properties of the weighted variants of

the Hamming distance metric employed are contrasted to other dissimilarity mea-

sures often used within the SA community, namely optimal matching (OM; Abbott

and Forrest, 1986; Abbott and Hrycak, 1990) and the dynamic Hamming distance

(DHD; Lesnard, 2010), in terms of their implicitly assumed substitution costs mea-

suring the dissimilarities between pairs of states. Notably, however, the normalis-

ing constant of an exponential-distance model using OM or DHD is not available in

closed form, as a sum over all possible sequences is required. This is infeasible for

even moderately large sequence lengths or numbers of categories. On the other

hand, an exact expression for the normalising constant exists for MEDseq models

based on the Hamming distance, thereby greatly simplifying model fitting.

It is common among the SA community to apply heuristic or partitional cluster-

ing algorithms to a dissimilarity matrix. In McVicar and Anyadike-Danes (2002),

the categorical variable indicating cluster membership — obtained by applying

Ward’s hierarchical clustering (Ward, 1963) to an OM dissimilarity matrix — is

treated as the input to a weighted multinomial logistic regression in order to re-

late the observed sequences to the covariates. MEDseq models, by virtue of being

both model-based and distance-based and including both the covariates and the

weights only once, in a simultaneous fashion, allow new insights to be gleaned

from the MVAD data.

1.2.3 Chapter 4: IMIFA

Chapter 4 returns to the assumption that the component distributions are Gaus-

sian. However, the focus here is on settings where the data dimension p is com-
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parable to or even greater than n. In such settings, performing clustering on a

dimensionally-reduced data set is typically computationally cheap, though caution

is advised (Chang, 1983). Regularisation to ease covariance matrix inversion (e.g.

Fraley and Raftery, 2007), LASSO-like penalisation methods (e.g. Zhou et al.,

2009), and co-clustering algorithms (Govaert and Nadif, 2013) are viable alterna-

tives. So too, however, are parsimonious mixture models. That said, the GPCM

framework in (1.1) is limited when n ≤ p in that only models with diagonal covari-

ance structures are tractable. Thus, subspace clustering approaches via models

of the following form are adopted

f (yi |θ) =
G∑

g=1

τgφ
(

yi |θg =
{
µg , Σg = ΛgΛ>g + Ψg

})
. (1.3)

Subspace clustering methods model data in low-dimensional subspaces; the model

in (1.3) specifically assumes a factor-analytic covariance structure, where Λg is the

cluster-specific factor loadings matrix of dimensions p × q, where q � p is the

dimension of the subspace. This model — a (Gaussian) mixture of factor anal-

ysers (MFA; Ghahramani and Hinton, 1996; McLachlan et al., 2003) — typically

requires estimating fewer parameters than the model in (1.1) for large p, having at

most G (pq − q (q − 1)/2) + Gp covariance parameters. The difficulty is that both

the number of components and the dimension of the subspace must be chosen.

Typically, a range of models with different specified values of G and q are fitted and

the pair which optimise some model selection criterion are chosen.

However, by simultaneously allowing infinitely many components and infinitely

many latent factors within each component, both quantities can be estimated in

an automatic fashion with only a single run. This is achieved under the Bayesian

paradigm using nonparametric shrinkage priors. As well as reducing the compu-

tational burden associated with the search of the model space, this has the added

advantages of allowing cluster-specific numbers of latent factors qg and facilitating

quantification of the uncertainty in the estimates Ĝ and q̂g .

Hence, the infinite mixture of infinite factor analysers model is introduced as

the flagship model at the head of the IMIFA family of factor-analytic mixtures, incre-

mentally built from the basic factor analysis model (Knott and Bartholomew, 1999)

8
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to the most flexible and computationally efficient IMIFA model. The model family

includes among its special cases finite mixtures of finite factor analysers, given

by (1.3), finite mixtures of infinite factor analysers (MIFA), and infinite mixtures in

which the number of factors is finite (IMFA). Versions which overfit the number

of components are also included (Rousseau and Mengersen, 2011), namely the

overfitted mixture of finite factor analysers (Papastamoulis, 2018) and the novel

overfitted mixture of infinite factor analysers.

The IMIFA model relies on the use of a nonparametric Pitman-Yor process

(PYP) prior (Perman et al., 1992; Pitman and Yor, 1997), of which the well-known

Dirichlet process (Ferguson, 1973) is a special case. The stick-breaking construc-

tion (Pitman, 1996) and an independent slice-efficient sampler (Kalli et al., 2011)

are employed to facilitate this. Following Frühwirth-Schnatter and Malsiner-Walli

(2019), the hyperpriors assumed on the PYP parameters for the IMIFA and IMFA

models are matched to the corresponding prior on the mixing proportions in the

overfitted setting to yield ‘sparse’ infinite mixtures which inhibit overestimation of

the number of clusters.

Allowing infinitely many factors within each cluster for the infinite factor models

in the IMIFA family is achieved by assuming multiplicative gamma process (MGP)

shrinkage priors (Bhattacharya and Dunson, 2011; Durante, 2017) on the cluster-

specific factor loadings matrices. Such a prior allows the degree of shrinkage of the

factor loadings towards zero to increase as the subspace dimension tends towards

infinity. In the mixture setting, the MGP prior reflects the belief that the degree of

shrinkage is specific to each cluster. The modal values of the number of non-empty

components and numbers of loadings columns with non-negligible entries are used

to construct histogram approximations to the posterior distributions of G and qg

respectively, with the modal values used as the estimates of these quantities.

An MCMC sampling scheme is devised which, by virtue of the conditionally

conjugate nature of the assumed priors, consists mostly of straightforward Gibbs

updates. In particular, a computationally efficient adaptive Gibbs sampler algorithm

is employed for dynamically truncating the loadings matrices for computational effi-

ciency. The additional hyperpriors for the parameters of the PYP prior necessitate

Metropolis-Hastings steps. Identifiability issues are addressed offline in order to

yield interpretable posterior summaries.

9



1.3 Software Contributions

The advantages of the IMIFA model over other models in the IMIFA family are

demonstrated through application to well-known data on the composition of fatty

acids in Italian olive oils (Forina and Tiscornia, 1982; Forina et al., 1983). In par-

ticular, the flexibility in allowing qg 6= qg ′ is shown to lead to improved clustering

performance. The IMIFA model is also fitted to spectral metabolomic data from an

epilepsy study (Carmody and Brennan, 2010), for which n � p, and handwritten

digit data from the United States Postal Service (Hastie et al., 2001), a setting un-

der which fitting sub-models in the IMIFA family is computationally infeasible. Fur-

thermore, a novel strategy for posterior predictive checking (Gelman et al., 2004) is

introduced and the potential scale reduction factor of Brooks and Gelman (1998) is

employed to demonstrate the IMIFA model’s performance from the perspectives of

assessing model fit and mixing, respectively. Comparisons are made throughout

to other state-of-the-art clustering methods designed for high-dimensional data,

including spectral clustering (Ng et al., 2001), mixtures of factor mixture analy-

sers (Viroli, 2010), and finite mixtures of matrix-variate normal distributions (Viroli,

2011). Additional simulation studies are provided in Appendix 4.B.

Finally, Chapter 5 concludes the thesis with a discussion of issues common

across the main chapters, in which general limitations are examined and potential

further extensions beyond those identified in the individual chapters are suggested.

1.3 Software Contributions

Other contributions of this research are the distributed software packages for imple-

menting the families of methods described in each chapter. With one exception1,

all analysis was performed using the statistical software platform R (R Core Team,

2019) and can be reproduced using the provided packages. Indeed, the MoEClust

package (Murphy and Murphy, 2019), related to Chapter 2, the MEDseq package

(Murphy et al., 2019), related to Chapter 3, and the IMIFA package (Murphy et al.,

2019), related to Chapter 4, are all freely available from the Comprehensive R

Archive Network (CRAN)2. With the exception of the spectral metabolomic data
1 The DP-BP method considered as a comparator of the IMIFA model in Section 4.3.3 of Chapter 4

was fitted using MATLAB code provided by the first author of Chen et al. (2010).
2 https://cran.r-project.org/
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analysed in Chapter 4, all data sets used in this thesis are made available in the

corresponding R packages also.

The final Appendix in each chapter reproduces the vignette document asso-

ciated with the corresponding R package; MoEClust in Appendix 2.F, MEDseq in

Appendix 3.E, and IMIFA in Appendix 4.F. Notably, the vignette in Appendix 3.E

contains a summary of the results of a second application of the MEDseq model

family to data on the yearly family life states from a retrospective survey carried out

by the Swiss Household Panel in 2002 (Müller et al., 2007).

As of September 3rd 2019, the combined number of downloads of the three

R packages exceeds 16,000. Of these, the country of origin of the download is

reported by CRAN in approximately 15,000 cases. Figure 1.1 shows a map of the

world indicating where this subset of downloads have come from, produced with the

aid of the cranlogs (Csárdi, 2019) and rworldmap (South, 2011) R packages. The

country with the highest number of downloads is the U.S.A. (6,480); the Republic

of Ireland has 257.

Figure 1.1: Heat map of the combined number of downloads from CRAN to date of the R packages
MoEClust, MEDseq, and IMIFA on a country-by-country basis as of September 3rd 2019. Darker
colours correspond to greater numbers of downloads and vice versa, while countries in grey have
not recorded any downloads of these packages from CRAN. In total, 118 distinct countries are
represented.
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Chapter 2

Gaussian Parsimonious Clustering

Models with Covariates and a Noise

Component

Abstract

We consider model-based clustering methods for continuous, correlated data that

account for external information available in the presence of mixed-type fixed co-

variates by proposing the MoEClust suite of models. These models allow different

subsets of covariates to influence the component weights and/or component den-

sities by modelling the parameters of the mixture as functions of the covariates. A

familiar range of constrained eigen-decomposition parameterisations of the compo-

nent covariance matrices are also accommodated. This paper thus addresses the

equivalent aims of including covariates in Gaussian parsimonious clustering mod-

els and incorporating parsimonious covariance structures into all special cases of

the Gaussian mixture of experts framework. The MoEClust models demonstrate

significant improvement from both perspectives in applications to both univariate

and multivariate data sets. Novel extensions to include a uniform noise compo-

nent for capturing outliers and to address initialisation of the EM algorithm, model

selection, and the visualisation of results are also proposed.

Keywords: Model-based clustering, mixtures of experts, EM algorithm, parsimony,

multivariate response, covariates, noise component.
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2.1 Introduction

2.1 Introduction

In many analyses using the standard mixture model framework, a clustering method

is typically implemented on the outcome variables only. Reference is not made to

the associated covariates until the structure of the produced clustering is investi-

gated in light of the information present in the covariates. Therefore, interpretations

of the values of the model parameters within each component are guided by covari-

ates that are not actually used in the construction of the clusters. It is desirable to

have covariates incorporated into the clustering process and not only into the inter-

pretation of the clustering structure and model parameters, thereby making them

endogenous rather than exogenous to the clustering model. This both informs the

construction of the clusters and provides richer insight into the type of observation

which characterises each cluster.

When each observation consists of a response variable yi on which the cluster-

ing is based and covariates xi there are, broadly speaking, two main approaches

in the literature to having covariates guide construction of the clusters, neatly sum-

marised by Lamont et al. (2016) and compared in Ingrassia et al. (2012). Letting

zi denote the latent cluster membership indicator vector, where zig = 1 if obser-

vation i belongs to cluster g and zig = 0 otherwise, the first approach assumes

that zi affects the distribution of xi . In probabilistic terms, this means to replace

the actual group-specific conditional distribution f
(
yi | xi , zig = 1

)
Pr
(
zig = 1

)
with

f
(
yi |xi , zig = 1

)
f
(
xi | zig = 1

)
Pr
(
zig = 1

)
. The name ‘cluster-weighted model’

(CWM) is frequently given to this approach, e.g. Dang et al. (2017) and Ingrassia

et al. (2015); the latter provides a recent extension allowing for mixed-type covari-

ates, with a further generalisation presented in Punzo and Ingrassia (2016). Noting

the use of the alternative term ‘mixtures of regressions with random covariates’ to

describe CWMs (e.g. Hennig 2000) provides opportunity to clarify that the remain-

der of this paper focuses on the second approach, with fixed potentially mixed-type

covariates affecting cluster membership via f
(
yi | xi , zig = 1

)
Pr
(
zig = 1 | xi

)
.

This is achieved using the mixture of experts (MoE) paradigm (Dayton and

Macready, 1988; Jacobs et al., 1991) in which the parameters of the mixture are

modelled as functions of fixed, potentially mixed-type covariates. We present, for

finite mixtures of multivariate, continuous, correlated responses, a unifying frame-
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2.1 Introduction

work combining all of the special cases of the Gaussian MoE model with the flexibil-

ity afforded by the covariance constraints in the Gaussian parsimonious clustering

model (GPCM) family (Banfield and Raftery, 1993; Celeux and Govaert, 1995).

This has, to date, been lacking for all but the mixture of regressions and the mix-

ture of regressions with concomitant variables where the same covariates enter

both parts of the model (Dang and McNicholas, 2015).

Parsimony is obtained in GPCMs by imposing a range of constraints on the

elements of an eigen-decomposition of the component covariance matrices. For

MoE models, reducing the number of covariance parameters in this manner can

help offset the number of regression parameters introduced by covariates, which

is particularly advantageous when model selection is conducted using information

criteria with penalty terms involving parameter counts. The main contribution of this

paper is the development of a framework combining GPCM constraints with all of

the special cases of the Gaussian MoE framework whereby different subsets of co-

variates can enter either, neither, or both the component densities and component

weights. We also consider the special cases of the MoE framework for univariate

response data with equal and unequal variance across components. Thus, this

paper addresses the aim of incorporating potentially mixed-type covariates into the

GPCM family and the equivalent aim of bringing GPCM covariance constraints into

the Gaussian MoE framework, by proposing the MoEClust model family. The name

MoEClust comes from the interest in employing MoE models chiefly for clustering

purposes. From both perspectives, MoEClust models show significant improve-

ment in applications to both univariate and multivariate response data.

Other novel contributions include the addition of a noise component for captur-

ing outlying observations, and proposed solutions to initialising the EM algorithm

in the presence of covariates sensibly, addressing the issue of model selection

given the potentially large model space, and a means for visualising the results

of MoEClust models. We also expand the number of special cases in the MoE

framework from four to six, by considering more parsimonious counterparts to the

standard mixture model and the mixture of regressions by constraining the mixing

proportions. In addition, a software implementation for the full suite of MoEClust

models is provided by the associated R package MoEClust (Murphy and Mur-

phy, 2019), which is available from www.r-project.org (R Core Team, 2019),
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2.2 Modelling

with which all results were obtained. The syntax of the popular mclust package

(Scrucca et al., 2016) is closely mimicked, with formula interfaces for specifying

covariates in the gating and/or expert networks.

The structure of the paper is as follows. For both Gaussian mixtures of experts

and MoEClust models, the modelling frameworks and inferential procedures are

described, respectively, in Section 2.2 and Section 2.3. Section 2.3.3 describes

the addition of a noise component for capturing outliers. Section 2.4 discusses

proposals for addressing some practical issues affecting performance, namely the

initialisation of the EM algorithm used to fit the models (Section 2.4.1), and issues

around model selection (Section 2.4.2). The performance of the proposed models

is illustrated in Section 2.5 with applications to univariate response CO2 emissions

data (Section 2.5.1) and multivariate response data from the Australian Institute

of Sports (Section 2.5.2). Finally, the paper concludes with a brief discussion in

Section 2.6, with some additional results deferred to the Appendices.

2.2 Modelling

This section builds up the MoEClust models by first describing the mixture of ex-

perts (MoE) modelling framework in Section 2.2.1 — elaborating on the special

cases of the MoE model in Section 2.2.1.1 — and then extending to the family

of MoEClust models comprising Gaussian mixture of experts models with parsi-

monious covariance structures from the GPCM family in Sections 2.2.2 and 2.2.3.

Finally, a brief review of existing models and software is given in Section 2.2.4.

2.2.1 Mixtures of Experts

The mixture of experts model (Dayton and Macready, 1988; Jacobs et al., 1991)

extends the mixture model used to cluster response data yi by allowing the pa-

rameters of the model for observation i to depend on covariates xi . An inde-

pendent sample of response/outcome variables of dimension p, denoted by Y =

(y1, ... , yn), is modelled by a G -component finite mixture model where the model

parameters depend on the associated covariate inputs X = (x1, ... , xn) of dimen-

sion d . The MoE model is often referred to as a conditional mixture model (Bishop,
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2.2 Modelling

2006) because, given the set of covariates xi , the distribution of the response vari-

able yi is a finite mixture model:

f
(
yi | xi

)
=

G∑
g=1

τg (xi) f
(
yi |θg (xi)

)
.

Each component is modelled by a probability density function f
(
yi |θg (xi)

)
with

component-specific parameters θg (xi) and mixing proportions τg (xi); the latter

are only allowed to depend on covariates when G ≥ 2. As usual, τg (xi) > 0 and∑G
g=1 τg (xi) = 1.

The MoE framework facilitates flexible modelling. While the response vari-

able yi is modelled via a finite mixture, model parameters are modelled as functions

of related covariates xi from the context under study. Both the mixing proportions

and the parameters of component densities can depend on covariates. The ter-

minology used to describe MoE models in the machine learning literature often

refers to the component densities f
(
yi |θg (xi)

)
as ‘experts’ or the ‘expert network’,

and to the mixing proportions τg (xi) as ‘gates’ or the ‘gating network’, hence the

nomenclature mixture of experts. Given that covariates can be continuous and/or

categorical with multiple levels, we let d + 1 denote the number of columns in the

corresponding design matrices, accounting also for the intercept term, in contrast

to the number of covariates r , with d ≥ r .

In the original formulation of the MoE model for continuous data (Jacobs et al.,

1991), the mixing proportions (gating network) are modelled using multinomial lo-

gistic regression (MLR), though this need not strictly be the case; Geweke and

Keane (2007) impose a multinomial probit structure here instead. The mixture

components (expert networks) are generalised linear models (GLM; McCullagh

and Nelder, 1983). Thus,

τ̂g (xi) =
exp
(
x̃i β̂g

)∑G
h=1 exp

(
x̃i β̂h

) , (2.1)

and

θ̂g (xi) =
{
ψ
(
x̃i γ̂g

)
, Σ̂g

}
, (2.2)
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2.2 Modelling

for some link function ψ (·), with a collection of parameters in the component den-

sities (comprising a (d + 1)×p matrix of expert network regression parameters γ̂g
and the p × p component covariance matrix Σ̂g ), a (d + 1)-dimensional vector of

regression parameters β̂g in the gates in (2.1), and x̃i = (1, xi). Note that expert

network covariates influence only the component means, and not the component

covariance matrices. Henceforth, we restrict our attention to continuous outcome

variables as per the GPCM family. Therefore, component densities are assumed

to be the p-variate Gaussian φ (yi | ·), and the link function ψ (·) in (2.2) is simply

the identity, such that covariates are linearly related to the response variables, i.e.

f
(
yi | xi

)
=

G∑
g=1

τg (xi)φ
(
yi |θg (xi) =

{
x̃iγg , Σg

})
. (2.3)

2.2.1.1 The MoE Family of Models

It is possible that some, none, or all model parameters depend on the covariates.

This leads to the four special cases of the Gaussian MoE framework shown in

Figure 2.1, with the following interpretations, due to Gormley and Murphy (2011):

(a) in the mixture model the distribution of yi depends on the latent cluster mem-

bership variable zi , the distribution of zi is independent of the covariates xi ,

and yi is independent of xi conditional on zi : f
(
yi

)
=
∑G

g=1 τgφ
(
yi |θg ={

µg , Σg

})
.

(b) in the expert network MoE model the distribution of yi depends on the co-

variates xi and the latent cluster membership variable zi , and the distribution

of zi is independent of xi : f
(
yi | xi

)
=
∑G

g=1 τgφ
(
yi |θg

(
xi

)
=
{

x̃iγg , Σg

})
.

(c) in the gating network MoE model the distribution of yi depends on the la-

tent cluster membership variable zi , zi depends on the covariates xi , and yi

is independent of xi conditional on zi : f
(
yi | xi

)
=
∑G

g=1 τg
(
xi

)
φ
(
yi |θg ={

µg , Σg

})
.

(d) in the full MoE model, given by (2.3), the distribution of yi depends on both

the covariates xi and on the latent cluster membership variable zi , and the

distribution of the latent variable zi depends in turn on the covariates xi .
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2.2 Modelling

For models (c) and (d), zi has a multinomial distribution with a single trial and prob-

abilities equal to τg (xi). The full MoE model thus has the following latent variable

representation:
(
yi | xi , zig = 1

)
∼ φ

(
yi |θg (xi) =

{
x̃iγg , Σg

})
, Pr (zig = 1 | xi) =

τg (xi).

XZ

Y

τ

θ = {µ,Σ}

(a) Mixture model.

XZ

Y

τ

θ = {γ,Σ}

(b) Expert network MoE model.

XZ

Y

β

θ = {µ,Σ}

(c) Gating network MoE model.

XZ

Y

β

θ = {γ,Σ}

(d) Full MoE model.

Figure 2.1: The graphical model representation of the mixture of experts models. The differences
between the special cases are due to the presence or absence of edges between the covariates X
and the latent variables Z and/or response variables Y. Note that different subsets of the covariates
in X can enter these two different parts of the full MoE model in (d).

The MoE family can be expanded further, from four to six special cases, by con-

sidering the models in (a) and (b), under which covariates do not enter the gating

network, by constraining the mixing proportions to be equal across components,

i.e. τg = 1/G ∀ g . This leads, respectively, to the equal mixing proportion mixture

model and equal mixing proportion expert network MoE model. Such models are

more parsimonious than their counterparts with unconstrained τ , as they require

estimation of G − 1 fewer parameters. Note that the size of a cluster is propor-

tional to τg , which is distinct from its volume (Celeux and Govaert, 1995). Thus,

situations where τig = τg (xi), τig = τg , or τig = 1/G can all be accommodated.

The six special cases of this MoE framework can be applied to both univariate and

multivariate response data.
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2.2 Modelling

It is worth noting that CWMs most fundamentally differ from MoE models in their

handling of the mixing proportions τg and in how the joint density f (xi , zig = 1)

is treated, either as Pr (zig = 1 | xi) = τg (xi) (MoE) or f (xi | zig = 1) Pr (zig = 1)

(CWM). In other words, the direction of the edge between X and Z in the full MoE

model in Figure 2.1d is reversed under CWMs (Ingrassia et al., 2012). By virtue

of modelling the distribution of the covariates, CWMs are also inherently less par-

simonious. The same covariate(s) can enter both parts of full MoE models, in

principle. Such models can provide a useful estimation of the conditional density

of the outcome given the covariates, but the interpretation of the clustering model

and the effect of the covariates becomes more difficult in this case. Conversely,

allowing different covariates enter different parts of the model further differentiates

MoE models from CWMs. It is common to distinguish among the overall set of

covariates between concomitant gating network variables and explanatory expert

network variables. Thus, for clarity, x(G)
i and x(E)

i will henceforth refer, respectively,

to the possibly overlapping subsets of gating and expert network covariates, such

that xi =
{

x(G)
i ∪ x(E)

i

}
, with the dimensions of the associated design matrices

given by dG + 1 and dE + 1. Higher order terms, transformations, and interaction

effects between covariates are also allowed in both networks.

2.2.2 Gaussian Parsimonious Clustering Models

Parsimony has been considered extensively in the model-based clustering litera-

ture. In particular, the volume of work on Gaussian and/or parsimonious mixtures

has increased hugely since the work of Banfield and Raftery (1993) and Celeux

and Govaert (1995). These works introduced the family of GPCMs, which are im-

plemented in the popular R package mclust (Scrucca et al., 2016). The influence

of GPCMs is clear on many other works which obtain parsimony in the component

covariance matrices; e.g., using constrained factor-analytic structures (McNicholas

and Murphy, 2008), the multivariate t-distribution and associated tEIGEN family

(Andrews and McNicholas, 2012), and the multivariate contaminated normal distri-

bution (Punzo and McNicholas, 2016).

Parsimonious covariance matrix parameterisations are obtained in GPCMs by

means of imposing constraints on the components of an eigen-decomposition of
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2.2 Modelling

the form Σg = λgDgAgD>g , where λg is a scalar controlling the volume, Ag is a

diagonal matrix, with entries proportional to the eigenvalues of Σg with det(Ag ) =

1, specifying the shape of the density contours, and Dg is p× p orthogonal matrix,

the columns of which are the eigenvectors of Σg , governing the corresponding

ellipsoid’s orientation. Imposing constraints reduces the number of free covariance

parameters from Gp (p + 1) /2 in the unconstrained (VVV) model. This is desirable

when p is even moderately large. Thus, GPCMs allow for intermediate component

covariance matrices lying between homoscedasticity and heteroscedasticity. Table

2.1 summarises the geometric characteristics of the GPCM constraints, which are

then shown in Figure 2.2.

Table 2.1: Nomenclature, descriptions, and parameter counts of the parameterisations of the com-
ponent covariance matrices Σg available under GPCMs, all of which are available when there is no
dependency in any way on covariates. † indicates availability in the first four special cases of the
Gaussian MoE framework shown in Figure 2.1 and the MoEClust family; • indicates other models
available in the MoEClust family. While all models are possible when G = 1, they are all equivalent
to one of the highlighted available models, otherwise missing entries correspond to models which
are never available. The other central columns refer to G > 1 settings.

Name Model G = 1 n > p n ≤ p Distribution Volume Shape Orientation Covariance Parameters

E σ † • (univariate) equal 1

V σg † (univariate) variable G

EII λI † • • spherical equal equal — 1

VII λgI • • spherical variable equal — G

EEI λA • • • diagonal equal equal axis-aligned p

VEI λgA • • diagonal variable equal axis-aligned G + (p − 1)

EVI λAg • • diagonal equal variable axis-aligned 1 + G(p − 1)

VVI λgAg † † diagonal variable variable axis-aligned Gp

EEE λDAD> • • ellipsoidal equal equal equal p(p + 1)/2

EVE λDAgD> • ellipsoidal equal variable equal 1 + p(p − 1)/2 + G(p − 1)

VEE λgDAD> • ellipsoidal variable equal equal G + p(p − 1)/2 + (p − 1)

EEV λDgAD>g • ellipsoidal equal equal variable 1 + Gp(p − 1)/2 + (p − 1)

VEV λgDgAD>g • ellipsoidal variable equal variable G + Gp(p − 1)/2 + (p − 1)

EVV λDgAgD>g • ellipsoidal equal variable variable 1 + Gp(p − 1)/2 + (p − 1)

VVE λgDAgD> • ellipsoidal variable variable equal G + p(p − 1)/2 + G(p − 1)

VVV λgDgAgD>g † ellipsoidal variable variable variable Gp(p + 1)/2
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EII VII EEI VEI EVI VVI EEE

EVE VEE EEV VEV EVV VVE VVV

Figure 2.2: Ellipses of isodensity for each of the 14 parsimonious eigen-decomposition covariance
parameterisations for multivariate data in GPCMs, with three components in two dimensions.

Note for models with names ending with I that the number of parameters is

linear in the data dimension p. Thus, the diagonal models are especially parsimo-

nious and useful in n ≤ p settings. While there are 2 variance parameterisations

for mixtures of univariate response data, and 14 covariance parameterisations for

mixtures of multivariate response data, considering the equal mixing proportion

constraint doubles the number of models available in each of these cases.

2.2.3 The MoEClust Family of Models

Interest lies in bringing parsimonious covariance structures to Gaussian MoE mod-

els with network-specific subsets of covariates:

f
(
yi | xi

)
=

G∑
g=1

τg
(
x(G)
i

)
φ
(

yi

∣∣ θg(x(E)
i

)
=
{

x̃(E)
i γg , Σg

})
,

where Σg can follow any of the GPCM constraints outlined in Table 2.1. It is equiv-

alent to say that interest lies in incorporating covariate information into the GPCM

model family. Using the covariance constraints, combined with the six special

cases of the MoE model described in Section 2.2.1.1, yields the MoEClust family of

models, which are capable of dealing with correlated responses and offering addi-

tional parsimony in the component densities compared to current implementations

of Gaussian MoE models, by virtue of allowing the size, volume, shape, and/or
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orientation to be equal or unequal across components. For MoE models, every

continuous covariate added to the gating and expert networks introduces G − 1

and Gp additional regression parameters, respectively. Parsimonious MoEClust

models allow the increase in the number of regression parameters to be offset by

the reduction in the number of covariance parameters. This can be advantageous

when model selection is conducted using information criteria which include penalty

terms based on parameter counts (see Section 2.4.2).

2.2.4 Existing Models and Software

A number of tools for fitting MoE models are available in the R programming en-

vironment (R Core Team, 2019). These include flexmix (Grün and Leisch, 2007,

2008), mixtools (Benaglia et al., 2009), and others. Tools for fitting GPCMs with-

out covariates include mclust (Scrucca et al., 2016) and Rmixmod (Lebret et al.,

2015).

The flexmix package (Grün and Leisch, 2007, 2008) can accommodate the

full range of MoE models outlined in Section 2.2.1.1, excluding those for which τ

is constrained to be equal, in the case of univariate yi , though only models with

unequal variance can be fitted. The user can specify the form of the GLM and

covariates (if any) to be used in the gating and expert networks, for which the

package has a similar interface to the glm functions within R. In the case of a

multivariate continuous response, there is functionality for multivariate Gaussian

component distributions though only for models without expert network covariates.

Furthermore, only the VVI and VVV constraints and models with unequal mixing

proportions or gating concomitants are facilitated.

For univariate data, the mixtools package (Benaglia et al., 2009) can accom-

modate the expert network MoE model with equal or unequal variance; it can also

accommodate the full MoE model, though only for G = 2, with unequal variance,

and with the restriction that all covariates enter both part of the model. The package

allows for nonparametric estimation of the functional form for the mixing proportions

(gating networks) and the component densities (expert networks), so it offers fur-

ther flexibility beyond flexmix in these cases. However, the multivariate models in

mixtools use the local independence assumption, so it does not directly offer the
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facility to model multivariate Gaussian component densities with non-diagonal co-

variance matrices. Furthermore, multivariate response models in mixtools do not

yet incorporate covariates in any way, and the equal mixing proportions constraint

is not facilitated in any way either.

The mclust package (Scrucca et al., 2016) and Rmixmod package (Lebret et al.,

2015) can accommodate the full range of covariance constraints in Table 2.1, and

are thus examples of existing software which can fit GPCMs, but only using the

standard finite mixture model (model (a) in Figure 2.1) or the equal mixing pro-

portions mixture model; i.e., they do not facilitate dependency on covariates in

any way.

Another important contribution in this area is by Dang and McNicholas (2015).

This work introduces eigen-decomposition parsimony to the MoE framework, though

only for the expert network MoE model and the full MoE model. However, for the full

MoE model, all covariates are assumed to enter into both parts of the model. Thus,

the MoEclust model family completes the work of Dang and McNicholas (2015) by

considering all six special cases of the MoE framework, whereby different sub-

sets of covariates can enter either, neither, or both the component densities and/or

component weights, as well as models with equal mixing proportions. In addition,

our unifying MoEClust framework also incorporates such parsimonious models for

univariate response data.

Finally, it should be noted that eigen-decomposition parsimony has been intro-

duced to the alternative CWM framework, in which all covariates enter the same

part of the model, by Dang et al. (2017), for the multivariate Gaussian distributions

of both the response variables and the covariates, assuming only continuous co-

variates; see also Punzo and Ingrassia (2015) for eigen-decomposition parsimony

applied to the covariates only. The flexCWM package (Mazza et al., 2018) allows

GPCM covariance structures in the distribution of the continuous covariates only,

though only univariate responses are accommodated. It also allows, simultane-

ously or otherwise, covariates of other types, as well as omitting the distribution for

the covariates entirely, leading to non-parsimonious mixtures of regressions, with

or without concomitant variables.
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2.3 Model Fitting via EM

To estimate the parameters of MoEClust models, we focus on maximum likelihood

estimation using the EM algorithm (Dempster et al., 1977). This is outlined first

for MoE models in Section 2.3.1 and then extended to MoEClust models in Sec-

tion 2.3.2. Model fitting details are described chiefly for the full MoE model only,

for simplicity. A simple trick involving the residuals of the weighted linear regres-

sions in the expert network assists fitting when using GPCM constraints. A uniform

noise component to capture outlying non-Gaussian observations is added in Sec-

tion 2.3.3. When gating concomitants are present, the noise component is treated

in two different ways.

2.3.1 Fitting MoE Models

For the full mixture of experts model, the likelihood is of the form

L(β,γ, Σ |Y, X) =
n∏

i=1

G∑
g=1

τg
(
x(G)
i

)
φ
(
yi |θg

(
x(E)
i

))
,

where τg
(
x(G)
i

)
and θg

(
x(E)
i

)
are as defined by (2.1). The data are augmented

by imputing the latent cluster membership indicator zi = (zi1, ... , ziG )>. Thus, the

conditional distribution of
(
yi , zi | xi

)
is of the form

f
(
yi , zi | xi

)
=

G∏
g=1

[
τg
(
x(G)
i

)
φ
(
yi |θg

(
x(E)
i

))]zig
.

Hence, the complete data likelihood is of the form

Lc(β,γ, Σ |Y, X, Z) =
n∏

i=1

G∏
g=1

[
τg
(
x(G)
i

)
φ
(
yi |θg

(
x(E)
i

))]zig
,

and the complete data log-likelihood has the form

`c(β,γ, Σ |Y, X, Z) =
n∑

i=1

G∑
g=1

zig
[

log τg
(
x(G)
i

)
+ log φ

(
yi |θg

(
x(E)
i

))]
. (2.4)
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The iterative EM algorithm for MoE models follows in a similar manner to that

for standard mixture models. It consists of an E-step (expectation) which replaces

for each observation the missing data zi with their expected values ẑi , followed by a

M-step (maximisation) which maximises the expected complete data log-likelihood,

computed with the estimates Ẑ = (ẑ1, ... , ẑn), to provide estimates of the compo-

nent weight parameters τ̂g
(
x(G)
i

)
and the component parameters θ̂g

(
x(E)
i

)
. Aitken’s

acceleration criterion is used to assess convergence of the non-decreasing se-

quence of log-likelihood estimates (Böhning et al., 1994). Parameter estimates

produced on convergence achieve at least a local maximum of the likelihood func-

tion. Upon convergence, cluster memberships are estimated via the maximum a

posteriori (MAP) classification. The E-step involves computing

ẑ
(t+1)
ig = E

(
zig
∣∣ yi , xi , β̂

(t), γ̂(t), Σ̂
(t)
)

=
τ̂
(t)
g

(
x(G)
i

)
φ
(
yi | θ̂(t)g

(
x(E)
i

))∑G
h=1 τ̂

(t)
h

(
x(G)
i

)
φ
(
yi | θ̂(t)h

(
x(E)
i

)) ,

where
{
β̂(t), γ̂(t), Σ̂

(t)}
are the estimates of the parameters in the gating and ex-

pert networks on the t-th iteration of the EM algorithm.

For the M-step, we notice that the complete data log-likelihood in (2.4) can

be considered as a separation into the portion due to the gating network and the

portion due to the expert network. Thus, the expected complete data log-likelihood

(2.5) can be maximised separately under the EM framework:

E
[
`c
(
β,γ, Σ |Y, X, Z, β̂(t), γ̂(t), Σ̂

(t))]
=

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log τg

(
x(G)
i

)
+

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log φ

(
yi |θg

(
x(E)
i

))
.

(2.5)

The first term is of the same form as a MLR model, here written with component 1

as the baseline reference level, for identifiability reasons:

log
τg
(
x(G)
i

)
τ1
(
x(G)
i

) = log
Pr
(
ẑ
(t+1)
ig = 1

)
Pr
(
ẑ
(t+1)
i1 = 1

) = x̃(G)
i βg ∀ g ≥ 2, where β1 = (0, ... , 0)>.
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Thus, methods for fitting such models can be used to maximise this term and esti-

mate the parameters in the gating network. The second term is of the same form

as fitting G separate weighted multivariate linear regressions, and thus methods for

fitting such models can be used to estimate the expert network parameters. Note

that these are multivariate in the sense of a multivariate outcome yi ; the associ-

ated design matrix having dE + 1 columns means these regressions are possibly

also multivariate in terms of the explanatory variables. Thus, fitting MoE models is

straightforward in principle.

2.3.2 Fitting MoEClust Models

Maximising the second term in (2.5), corresponding to the expert network, gives

rise to the following expression

−1

2

(
p log 2π +

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log|Σg |+

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig

(
yi − x̃(E)

i γg
)>

Σ−1g

(
yi − x̃(E)

i γg
))

.

(2.6)

When the same set of regressors are used for each dependent variable, as is

always the case for MoEClust models, or when Σg is diagonal, it can be shown

that γg does not depend on Σg , much like a Seemingly Unrelated Regression

model (SUR; Zellner, 1962). We first estimate γ̂g and then Σ̂g . Fitting G separate

multivariate regressions (weighted by ẑig ), yields G sets of n × p SUR residuals

r̂ig = yi − x̃(E)
i γ̂g which, crucially, satisfy

∑n
i=1 ẑig r̂ig = 0. Thus, maximising (2.6) is

equivalent to minimising

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig log|Σg |+

n∑
i=1

G∑
g=1

ẑ
(t+1)
ig r̂>igΣ−1g r̂ig , (2.7)

which is of the same form as the criterion used in the M-step of a standard Gaussian

finite mixture model with component covariance matrices Σ̂, component means

equal to zero, and new augmented data set R̂. Thus, when estimating the com-

ponent covariance matrices via (2.7), the same M-step function as used within
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2.3 Model Fitting via EM

mclust can be applied to augmented data, constructed so that each observation

is represented as follows:

1. Stack the G sets of SUR residuals

into the (n × G )× p matrix R̂:

R̂ =



r̂111 r̂112 ... r̂11p

r̂211 r̂212 ... r̂21p
...

...
. . .

...

r̂n11 r̂n12 ... r̂n1p

r̂121 r̂122 ... r̂12p

r̂221 r̂222 ... r̂22p
...

...
. . .

...

r̂n21 r̂n22 ... r̂n2p
...

...
. . .

...

r̂1G1 r̂1G2 ... r̂1Gp

r̂2G1 r̂2G2 ... r̂2Gp
...

...
. . .

...

r̂nG1 r̂nG2 ... r̂nGp



2. Create the (n × G )× G block-diagonal

matrix ζ̂ from the columns of Ẑ:

ζ̂ =



ẑ11 0 ... 0

ẑ21 0 ... 0
...

...
. . .

...

ẑn1 0 ... 0

0 ẑ12 ... 0

0 ẑ22 ... 0
...

...
. . .

...

0 ẑn2 ... 0
...

...
. . .

...

0 0 ... ẑ1G

0 0 ... ẑ2G
...

...
. . .

...

0 0 ... ẑnG


Structuring the model in this manner allows GPCM covariance structures to be

easily imposed on Gaussian MoE models with gating and/or expert network co-

variates. In the end, the M-step involves three sub-steps, each using the current

estimate of Ẑ: i) estimating the gating network parameters β̂g and hence the com-

ponent weights τ̂g
(
x(G)
i

)
via MLR, ii) estimating the expert network parameters γ̂g

and hence the component-specific means via weighted multivariate multiple linear

regression, and iii) estimating the constrained component covariance matrices Σ̂g

using the augmented data set comprised of SUR residuals, as outlined above.

In the absence of covariates in the gating and/or expert networks, under the

special cases outlined in Section 2.2.1.1, their respective contribution to (2.5) is

maximised as per the corresponding term in a standard GPCM. In other words, the

gating and expert networks without covariates can be seen as regressions with only

an intercept term. Thus, the augmented data structure is not required when there

are no expert covariates and the formula for estimating τ in the absence of con-

comitant variables is τ̂g = n−1
∑n

i=1 ẑig , rather than (2.1). As described in Section

2.2.1.1, it is sometimes useful to expand the model family further by considering
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2.3 Model Fitting via EM

more parsimonious alternatives to the special cases of models (a) and (b) in Fig-

ure 2.1, where gating network concomitants are omitted, by constraining the mixing

proportions to be equal and fixed, i.e. τg = 1/G ∀ g . Similarly, removing the corre-

sponding regression intercept(s) from the part(s) of the model where covariates en-

ter can yield further parsimony in appropriate settings, e.g. when there are strong

a priori physical reasons for believing E
(
Y |X(E) = 0

)
= 0 (Eisenhauer, 2003).

2.3.3 Adding a Noise Component

For models with expert network covariates, and/or when the volume and/or shape

differ across components, the mixture likelihood is unbounded. We restrict our in-

terest only to solutions for which the log-likelihood at convergence is finite. As per

the eps argument to the mclust R package’s emControl function (Scrucca et al.,

2016), we monitor the conditioning of the covariances and add a tolerance param-

eter (set to the relative machine precision, i.e. 2.220446e-16 on IEEE compliant

machines) to the M-step estimation of the component covariances to control termi-

nation of the EM algorithm on the basis of small eigenvalues. For models with un-

constrained Σg , each cluster must contain at least p+1 units to avoid computational

singularity. Thus, in practice, such spurious solutions with infinite likelihood occur

especially for higher G values, whereby either solutions with empty components

reduce to ones with fewer components, or uninteresting solutions with degenerate

components containing too few units or even singletons are found. Sensible initial

allocations (see Section 2.4.1) and/or the equal mixing proportion constraint, which

help avoid empty or otherwise poorly populated clusters, can help to alleviate this

problem. García-Escudero et al. (2018) offer an excellent discussion of the notions

of spurious solutions and degenerate components.

Further extending MoEClust models via the inclusion of an additional uniform

noise component can also help in addressing these issues, by capturing outly-

ing observations which do not fit the prevailing pattern of Gaussian clusters and

thus would otherwise be assigned to (possibly many) small clusters. In particular,

the noise component for encompassing clusters with non-Gaussian distributions is

here distributed as a homogeneous spatial Poisson process, as per Banfield and

Raftery (1993). Such a noise component can be included regardless of where co-
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variates (if any) enter, and regardless of the GPCM constraints employed, though

this has hitherto only been considered for the standard mixture model with no co-

variates. Model-fitting via the EM algorithm is not greatly complicated by the ad-

dition of a noise component, though it is required to estimate V , the hypervolume

of the region from which the response data have been drawn, or to consider V as

an independent tuning parameter as per Hennig and Coretto (2008), especially if

n ≤ p. For univariate responses V is given by the range of y1, ... , yn. For multivari-

ate data, V can be estimated by the hypervolume of the convex hull, ellipsoid hull,

or smallest hyperrectangle enclosing the data. We focus on the latter method.

For initialisation, a column in which each entry is τ0 (the guess of the prior prob-

ability that observations are noise) is appended to the starting Z matrix, with other

columns corresponding to non-noise components then multiplied by 1 − τ0. The

initial τ0 should not be too high; it is set to 0.1 here. For models with a noise compo-

nent and no gating concomitants, the mixing proportions can be, as before, either

constrained or unconstrained. In the latter case, we estimate τ0 and then constrain

the remaining proportions. We add the extension that concomitants, when present,

are allowed to affect (2.8) or not affect (2.9) the mixing proportion of the noise com-

ponent. Henceforth, for clarity, we refer to these settings as the gated noise (NG)

and non-gated noise (NGN) models, respectively. The NGN model assumes τ0 is

constant across observations and covariate patterns. It is thus the more parsimo-

nious model; it requires only 1 extra gating network parameter, rather than dG + 1

under the GN model, relative to models without a noise component, though it is

only defined for G ≥ 2.

GN : f
(
yi | xi

)
=

G∑
g=1

τg
(
x(G)
i

)
φ
(

yi

∣∣ θg(x(E)
i

)
=
{

x̃(E)
i γg , Σg

})
+
τ0
(
x(G)
i

)
V

. (2.8)

NGN : f
(
yi | xi

)
=

G∑
g=1

τg
(
x(G)
i

)
φ
(

yi

∣∣ θg(x(E)
i

)
=
{

x̃(E)
i γg , Σg

})
+
τ0
V

. (2.9)

2.4 Practical Issues

In this section, factors affecting the performance of MoEClust models are dis-

cussed; namely, the necessity of a good initial partition to prevent the EM algorithm
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from converging to a suboptimal local maximum (Section 2.4.1), and the necessity

of model selection with regard to where and what covariates (if any) enter the

model to yield further parsimony by reducing the number of gating and/or expert

network regression parameters (Section 2.4.2). Novel strategies for dealing with

both issues are proposed.

2.4.1 EM Initialisation

With regards to initialisation of the EM algorithm for G > 1 MoEClust models,

model-based agglomerative hierarchical clustering and quantile-based clustering

have been found to be suitable for multivariate and univariate data, respectively.

Both flexmix and mixtools randomly initialise the allocations, despite the obvi-

ous computational drawback of the need to run the EM algorithm from multiple

random starting points. However, when explanatory variables x(E)
i enter the expert

network, it is useful to use them to augment the initialisation strategy with extra

steps. Algorithm 1 outlines the proposed initialisation strategy, similar to that of

Ning et al. (2008). It takes the initial partition of the data (whether obtained by

hierarchical clustering, random initialisation, or some other method) and iteratively

reallocates observations in such a way that each subset can be well-modelled by

a single expert.

Algorithm 1: Iterative reallocation initialisation with expert network covariates

0 Concatenate the response data and expert network covariates into a matrix.
1 Obtain some non-overlapping hard starting partition Ω1,Ω2, ... ,ΩG .
2 Estimate the expert network regression ηg (γg , ·) on every subset {Ωg}Gg=1.
3 Compute the fitted values

ŷig = ηg
(
γ̂g , x

(E)
i

)
∀ (i , g)

and hence the residuals r̂ig = yi − ŷig .

4 Compute Ψ̂g = Cov
(
R̂g

)
= 1

n−dE−1 R̂>g R̂g ∀ g .

5 Compute the squared Mahalanobis distance M̂ig = d2M
(
yi , ŷig

)
= R̂>g Ψ̂

−1
g R̂g .

6 Let ki = argming
(
M̂ig

)
.

7 Reassign observation i to subset Ωki .
8 Repeat Steps 2–7 until convergence is achieved, i.e. the partition ceases to change.
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When using a deterministic approach to obtain the starting partition for Algo-

rithm 1, initialisation can be further improved by considering information in the ex-

pert network covariates to find a good clustering of the joint distribution of
(
yi , x(E)

i

)
.

When x(E)
i includes categorical or ordinal covariates, a model-based approach to

clustering mixed-type data (McParland and Gormley, 2016) can be employed in

Step 1, though this is not considered further here.

If at any stage a level is dropped from a categorical variable in subset Ωg the

variable itself is dropped from the corresponding regressor for the observations with

missing levels. Convergence of the algorithm is guaranteed and the additional com-

putational burden incurred is negligible. By using the Mahalanobis distance metric

(Mahalanobis, 1936), each observation is assigned to the cluster corresponding

to the Gaussian ellipsoid to which it is closest. This has the added advantage of

potentially speeding up the running of the EM algorithm. The estimates of γ̂g at

convergence are used as starting values for the expert network. The gating net-

work is initialised by considering the partition itself at convergence as a discrete

approximation of the gates.

While convergence is monitored via the partition itself, Algorithm 1 implicitly

finds the hard partition which minimises the total intra-component regression error

criterion
G∑

g=1

min
{ηg ,γg}

( ∑
i ∈Ωg

d2
M

(
yi , ηg

(
γg , x(E)

i

)))
. (2.10)

However, there are a few small caveats. Firstly, it suffices to use the Euclidean

distance in place of the Mahalanobis distance for applications to univariate re-

sponse data. Secondly, the Moore-Penrose pseudo-inverse (Moore, 1920) or p-

dimensional identity matrix Ip is used in place of Ψ̂
−1
g when n ≤ p. Finally, we

note that Algorithm 1 applies only to the non-noise components; in the presence

of a noise component, the Ẑ matrix outputted by the algorithm at convergence is

modified in the usual way.

Figure 2.3 illustrates the necessity of this procedure using a toy data set, with a

single continuous covariate and a univariate response clearly arising from a mixture

of two linear regressions, which otherwise would not be discerned without including

the covariate in the initialisation routine via Algorithm 1. A further demonstration of

the utility of this strategy is shown in Appendix 2.B.
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Similar to the EM algorithm’s susceptibility to local maxima, a limitation of our

initialisation strategy is that the result at convergence may represent a suboptimal

local minimum. However, the problem is transferred from the difficult task of initial-

ising the EM algorithm to initialising Algorithm 1. Thus, it is feasible to repeat the

algorithm with many different partitions and choose the best result — in the sense

of minimising the criterion in (2.10) — to initialise one run of the EM algorithm,

since Algorithm 1 converges very quickly, requires much less computational effort

than the EM algorithm itself, and generally reduces the number of required EM it-

erations. However, we caution against using the total intra-component regression

error criterion to guide the inclusion of expert network covariates.
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(a) Hierarchical clustering of the
response variables only.
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(b) Random allocation.
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(c) Partition obtained via Algorithm 1.

Figure 2.3: Initial 2-component hard partitions on univariate data clearly arising from a mixture of
two linear regressions, obtained using (a) agglomerative hierarchical clustering, (b) random allo-
cation, and (c) Algorithm 1 applied to the initialisation in (b) upon convergence after 6 iterations,
demonstrating the improvement achieved by incorporating expert network covariates into the initial-
isation strategy. Allocations are distinguished using blue circles and red triangles. Corresponding
fitted lines are also shown.

2.4.2 Model Selection

Whether a variable should be considered as a covariate or as part of the responses

is usually clear from the context of the data being clustered and the related re-

search question of interest. While the MoEClust model family is explicitly intended

for use in such cases, a discussion of cases where it is not known which variables

should be treated as response variables and which should be treated as covariates

is provided in Appendix 2.E.
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However, within the suite of MoE models outlined in Section 2.2.1.1, it is nat-

ural to question which variables — among the subset of variables designated as

covariates, if any — are to be included, and if so in which part(s) of the MoE model.

Unless the manner in which covariates enter is guided by the question of interest

in the application under study, this is a challenging problem as the space of MoE

models is potentially very large once variable selection for the covariates entering

the gating and expert networks is considered. Thus, only models where covariates

enter all mixture components or all component weights in a linear manner are typi-

cally considered in practice in order to restrict the size of the model search space.

However, even within this reduced space, there are 2r models to consider when

G = 1 and 22r models to consider otherwise. Thus, the model space increases

further if the number of components G is unknown.

Model comparison for the MoEClust family is even more challenging, especially

for multivariate response data for which there are potentially 14 different GPCM

covariance constraints to consider for models with G ≥ 2 and 3 otherwise. When

p = 1, there are 2 covariance constraints to consider when G ≥ 2 and 1 oth-

erwise. Considering constraints on the mixing proportions further increases the

model search space. However, model selection can still be implemented in a sim-

ilar manner to other model-based clustering methods: the Bayesian Information

Criterion (BIC; Schwarz, 1978) and Integrated Completed Likelihood (ICL; Bier-

nacki et al., 2000) have been shown to give suitable model selection criteria, both

for the number of component densities (and thus clusters) required and for se-

lecting covariates to include in the model. The number of free parameters in the

penalty term for these criteria of course depends on the included gating and expert

network covariates and the GPCM constraints employed.

For MoEClust models involving mixtures of GLMs, stepwise variable selection

approaches can be used to find the optimal covariates for inclusion in either the

multinomial logistic regression (gating network) or the weighted linear regression

(expert network). Indeed, more parsimony can be achieved using variable selec-

tion, as there are a total of G (dG + 1) + Gp (dE + 1) intercept and regression co-

efficients to estimate for a G > 1 full MoE model. However, the selected covariates

may only be optimal for the given G and the given set of GPCM covariance matrix

constraints. MoEClust models also allow for covariates entering only one part of the
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model. Thus, we propose a greedy stepwise search whereby each step could in-

volve adding/removing a component or adding/removing a single covariate in either

the gating or expert networks. We adopt a forward search, starting from a G = 1

model, as backward selection can be particularly cumbersome when r is large. In

the considered applications, it sufficed to consider only additions (of components

and covariates) rather than additions and removals in the sense that the same final

model was obtained despite fewer models being evaluated over the course of the

search. Hence, the recommended forward search algorithm proceeds as follows:

Algorithm 2: Greedy forward stepwise search for MoEClust models

1 Choose the best G = 1 model with no covariates among all allowable model types.
2 Either:
• increase G by 1,
• add an explanatory variable to the expert network,
• add a concomitant variable to the gating network (only when G ≥ 2).

3 For every action in Step 2, consider the full range of allowable GPCM constraints.
4 Accept the change which yields the best improvement in terms of BIC or ICL.
5 Repeat Steps 2–4 until there is no further improvement in the selection criterion.

While one could consider changing the GPCM constraints as another poten-

tial action in Step 2 of Algorithm 2, our experience suggests that increasing G or

adding covariates (especially in the expert network) can radically alter the covari-

ance structure. Thus, we advise changing the GPCM constraints simultaneously

and identifying the optimum action by first finding the optimum constraints for each

action. While this is more computationally intensive than altering the GPCM con-

straints as a step in itself, this makes the search less likely to miss optimal models

as it traverses the model space. See Appendix 2.A for an example of how to con-

duct such a stepwise search using code from the MoEClust R package (Murphy

and Murphy, 2019) and Appendix 2.E for simulation studies examining the perfor-

mance of Algorithm 2 in the presence of uninformative covariates.

In certain special instances, some extra steps can be considered. When there

are no gating network concomitants, a choice can be made, for each action, be-

tween fitted models with equal or unequal mixing proportions. We distinguish be-

tween G -component models without a noise component and models with G − 1

Gaussian components plus an additional noise component. Thus, we recommend

treating models with a noise component differently, by running a stepwise search
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for models excluding the possibility of a noise component, running a separate step-

wise search starting from a G = 0 noise-only model, and ultimately choosing be-

tween the optimal models with and without a noise component identified by each

search. In the presence of a noise component, one can also fit the GN and NGN

models, given by (2.8) and (2.9) respectively, when evaluating every action involv-

ing models with gating network concomitants.

When r is not so prohibitively large as to render an exhaustive search infeasible,

Gormley and Murphy (2010) demonstrate how model selection criteria such as the

BIC can be employed to choose the appropriate number of components and guide

the inclusion of covariates across the six special cases of the MoE model described

in Section 2.2.1.1. Adapting this approach to MoEClust models where GPCM con-

straints must also be chosen requires fixing the covariates to be included in the

component weights and densities and finding the G value and GPCM covariance

structure which together optimise some criterion. Different fits with different combi-

nations of covariates are then compared according to the same criterion. However,

due to the highlighted computational difficulties when r is large, Algorithm 2 re-

mains the recommended approach.

2.5 Results

The clustering performance of the MoEClust models is illustrated by application

to two well-known data sets: univariate CO2 data (Section 2.5.1) and multivari-

ate data from the Australian Institute of Sports (Section 2.5.2). Additional results

are provided for each data set in the Appendices. In particular, code examples (Ap-

pendix 2.A), details of the initialisation (Appendix 2.B), and results from a predictive

rather than clustering point of view (Appendix 2.D) for the CO2 data, and results

of the stepwise search (Appendix 2.C) for the AIS data, are given. Furthermore,

Appendix 2.E examines issues around identifying responses and covariates and

identifying the informative subsets of covariates among those variables designated

as covariates.

Hereafter, any mention of methods for initialising the allocations, when covari-

ates enter the expert network, refers to finding a single initial partition for Algorithm
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1. The BIC and the stepwise search strategy outlined in Algorithm 2 were used

to find the optimal number of components, choose the covariance type, and select

the best subset of covariates, as well as where to put them. Results of exhaustive

searches are also provided for demonstrative purposes. All results were obtained

using the R package MoEClust (Murphy and Murphy, 2019).

2.5.1 CO2 Data

As a univariate example of an application of MoEClust, data sourced from the

OECD on the CO2 emissions of n = 28 countries in the year 1996 (Hurn et al.,

2003) are clustered, with Gaussian component densities. Studying the relationship

between CO2 and the covariate Gross National Product (GNP), both measured per

capita, is of interest. As consideration is only being given to inclusion/exclusion of

a single covariate in the gating and/or expert networks, an exhaustive search is

feasible. A range of models (G ∈ {1, ... , 9}) are fitted, with either the equal (E)

or unequal variance (V) models from Table 2.1. Quantile-based clustering of the

CO2 values is used to initialise Algorithm 1 when the expert network excludes GNP,

otherwise hierarchical clustering of both CO2 and GNP is used.

Table 2.2 gives BIC and ICL values for the top model under each of the six

special cases of the MoE framework. The chosen model had G = 3, equal vari-

ances (i.e. the E constraint), equal mixing proportions, and GNP in the expert

network; thus, this is an equal mixing proportion expert network MoE model. This

model maximised both the BIC and ICL criteria, and was also identified by the

forward stepwise search described in Algorithm 2, starting from a G = 1 model

(BIC=−163.90), adding a component (BIC=−163.16), adding GNP to the expert

network and changing to the V model type (BIC=−157.20), and finally adding a

further component, constraining the mixing proportions, and changing back to the

E model type (BIC=−155.20). Thereafter, neither adding a component nor adding

GNP to the gating network improved the BIC. Code to reproduce both the exhaustive

and stepwise searches using the MoEClust R package is given in Appendix 2.A.
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Table 2.2: The MoEClust BIC and ICL values of the top models under the six MoE special cases for
the CO2 data. Each row is optimal with respect to G and GPCM type, given the included covariates.

Special Case Gating Expert G GPCM BIC ICL

Mixture Model 2 E −163.16 −163.91

Expert Network MoE Model GNP 2 V −157.20 −160.04

Gating Network MoE Model GNP 2 E −166.05 −166.68

Full MoE Model GNP GNP 2 V −159.25 −161.47

Equal Mixing Proportion Mixture Model Equal 2 V −165.19 −184.71

Equal Mixing Proportion Expert Network MoE Model Equal GNP 3 E −155.20 −159.06

Repeating both the exhaustive and stepwise searches with the addition of a

noise component for all models also failed to yield any model with an improved

BIC. The fourth row of Table 2.2 corresponds to a full MoE, with GNP included in

both parts of the model; its sub-optimal BIC highlights the benefits of the model

selection approach. The parameters of the optimal model are given in Table 2.3.

Its fit is exhibited in Figure 2.4, which shows that the relationship between CO2

and GNP is clustered around three different linear regression lines; one cluster

of 8 countries with a large slope value and two equally-sized clusters, each with

different intercepts but similar near-zero slope values. Clustering uncertainties,

given by Ûi = ming∈{1,...,Ĝ}(1− ẑig ), are also shown.

Table 2.3: Estimated parameters of the optimal MoEClust model fit to the CO2 data.

Parameter Component 1 Component 2 Component 3

Proportion 1/3 1/3 1/3

(Intercept) 1.41 7.29 10.84

GNP 0.68 −0.04 −0.04

σ2
g 0.98 0.98 0.98
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Figure 2.4: Scatter plots of GNP against CO2 emissions for n = 28 countries with three linear
regression components from the optimal MoEClust model with equal variances and mixing propor-
tions.

The optimal model contains GNP in the expert network and has constraints

on the component variances and mixing proportions. These are features of the

MoEClust models which neither MoE nor GPCM models can fully accommodate.

While flexmix and mixtools can fit the sub-optimal expert network MoE model

in row four of Table 2.2, with unequal variances and mixing proportions (which

achieves the second highest BIC value), our initialisation strategy ultimately leads

to the same or higher BIC estimates. Across 50 random starts, BIC values of

−157.29 and −157.20 are achieved using flexmix and mixtools, respectively.

Among these random starts, BIC values as low as−163.67 are obtained. However,

the MoEClust R package, with Algorithm 1 invoked, achieves a BIC of−157.20 with

only a single initial partition. Using MoEClust without this initialisation strategy also

yields the lower BIC value of −163.67. A further demonstration of the advantages

of our initialisation strategy, using instead the optimal model for the the CO2 data,

is provided in Appendix 2.B. Finally, we note that additional results for the CO2

data from the point of view of predicting the response, rather than clustering, are

provided in Appendix 2.D.
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2.5.2 Australian Institute of Sport (AIS) Data

Various physical and hematological (blood) measurements were made on 102 male

and 100 female athletes at the Australian Institute of Sport (AIS; Cook and Weis-

berg, 1994). The thirteen variables recorded in the study are detailed in Table 2.4.

Table 2.4: Australian Institute of Sports data variables. The p = 5 in the first column are hemato-
logical response variables and the others, the r = 8 covariates, are physical measurements for the
athlete.

Response Description Covariate Description (Units)

RCC red cell count BMI body mass index (kg/m2)

WCC white cell count SSF sum of skin folds (mm)

Hc Hematocrit Bfat body fat percentage (%)

Hg Hemoglobin LBM lean body mass (kg)

Fe plasma ferritin Ht height (cm)

concentration Wt weight (kg)

sex a factor with levels: female, male

sport a factor with levels: Basketball, Field, Gymnastics, Netball,

Rowing, Swimming, Tennis, Track 400m, Track Sprint, Water Polo

MoEClust models are used to investigate the clustering structure in the athletes’

hematological measurements and investigate how covariates may influence these

measurements and the clusters. Cluster allocations are initialised using model-

based agglomerative hierarchical clustering. Results of the forward stepwise model

search described in Algorithm 2, with all covariates considered for inclusion, are

given in Appendix 2.C. The optimal model (BIC=−4010.14) is a 2-component EVE

equal mixing proportion expert network MoE model, which thus has clusters of

equal size, volume, and orientation, and unequal shape. Notably, the only covariate

(sex), only enters in one part of the model, the expert network.

The sub-optimal BIC values for the best model with all covariates in both parts

of the model (G = 1, EEE, BIC=−4234.79), which is the same as the best model

with all covariates in the expert network only (regardless of τ being constrained or

not), and all covariates in the gating network only (G = 2, VEE, BIC=−4092.72),

highlight the need for the model selection strategy employed. As the optimal

model uses the EVE constraints, it has 19 covariance parameters; an otherwise

exactly equivalent VVV model, having 30 such parameters, yields a lower BIC
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of −4056.19, thus showcasing the benefits of the parsimonious covariance con-

straints. The difference of 11 covariance parameters between these models is ex-

actly one more than the number of regression parameters introduced by the expert

network covariate.

Subsequently, and purely for the purposes of comparing certain special cases

of interest, an exhaustive search over a range of MoEClust models is conducted,

with G ∈ {1, ... , 9}. This is rendered feasible by only considering the covariates

BMI and sex; allowing either, neither, or both to enter either, neither, or both of

the gating and expert networks. Note that BMI is itself computed using the co-

variates measuring weight (Wt) and height (Ht). With 3 permissible covariance

parameterisations for the single component models, and 14 otherwise, 16 possible

combinations of gating and/or expert network covariate settings, and consideration

also being given to models with equal mixing proportions, this still requires fitting

2, 252 MoEClust models. However, some spurious solutions were found, particu-

larly for higher values of G , in the sense that models with empty components or

degenerate components with few observations reduced to equivalent models with

fewer non-empty components (see Section 2.3.3). Table 2.5 gives the BIC and ICL

values of a selection of these fitted models, representing the optimal models for

certain special cases of interest.

Table 2.5: The BIC and ICL values for a selection of MoEClust models fitted to the Australian
Institute of Sports data. Rows 1 and 2 give the optimal models under settings available in flexmix;
models without expert network covariates, using either the VVV or VVI covariance constraints.
Among the more general MoEClust family, the last row gives the top model according to the ICL
criterion and the remaining rows give the top models according to the BIC criterion for each of the
six special cases of the MoE framework. Thus, row 3 corresponds to the optimal model according
to mclust.

Rank (BIC) Gating Expert G GPCM BIC ICL No. Parameters

206 sex 2 VVV −4113.31 −4121.32 42

896 sex 5 VVI −4319.85 −4345.55 58

301 2 EVE −4146.16 −4201.61 30

3 sex 2 EVE −4015.35 −4059.54 40

24 sex 3 EVE −4037.32 −4066.66 42

2 BMI sex 2 EVE −4013.40 −4074.11 41

277 Equal 2 EVE −4140.98 −4192.21 29

1 Equal sex 2 EVE −4010.14 −4057.87 39

26 BMI, sex 3 EEE −4038.75 −4043.01 36
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Clearly, the inclusion of covariates improves the fit compared to GPCM mod-

els. Similarly, using GPCM covariance constraints improves the fit compared to

standard Gaussian MoE models. In particular, it is notable that the optimal models

using the VVV and VVI constraints only have covariates enter the gating network.

This suggests that the parsimony afforded by the remaining GPCM settings some-

what offsets the number of regression parameters introduced to the expert network.

The top three models according to BIC all have 2 components, the EVE covari-

ance constraints, and the covariate sex in the expert network; they differ only in

their treatment of the gating network. Models with equal and unequal mixing

proportions, and with BMI as a gating concomitant, have zero, one, and two associ-

ated gating network parameters, respectively. The optimal model has equal mixing

proportions and was also identified above via Algorithm 2. The full MoE model

with BMI in the gating network and sex in the expert network is an interesting case

as it does not fit the framework of Dang and McNicholas (2015), which assumes

that when covariates enter the model, they enter in both parts. The best such

model has ‘sex’ in both networks (G = 2, EVE) and achieves a BIC of −4020.22

with a corresponding rank of 8.

Up to now, models with a noise component have not yet been considered for

the AIS data. Thus, another stepwise search is conducted, including a noise com-

ponent for all candidate models and starting from a G = 0 noise-only model (see

Appendix 2.C). Consideration was also given to both the GN and NGN model types,

in (2.8) and (2.9) respectively, where models included gating concomitants, and to

models with equal/unequal mixing proportions for the non-noise components for

models without gating concomitants. The optimal full MoE model thus found has

two EEE Gaussian clusters and an additional noise component. The covariate ‘sex’

enters the expert network (see Table 2.6). Both ‘SSF’ and ‘Ht’ enter the gating net-

work, though not for the noise component, which has a constant mixing proportion

(τ̂0 ≈ 0.08), as per the NGN model in (2.9). Thus, the Gaussian clusters have equal

volume, shape, and orientation, but unequal size. This model achieves a BIC value

of −3989.83, which compares favourably to the previously optimal model from Ta-

ble 2.5, adding a noise component to a model otherwise identical to the optimal

model from Table 2.5 (BIC=−3992.81), and to models with a noise component but

no stepwise selection of covariates (or no covariates at all).
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Table 2.6: Coefficients of the expert network linear regressions for the G = 2 Gaussian clusters in
the optimal ‘full’ MoEClust model (with an extra noise component and gating concomitants entering
the non-noise clusters only) fit to the AIS data, with female as the reference level for the explanatory
variable ‘sex’.

RCC WCC Hc Hg Fe

Cluster 1

(Intercept) 4.56 6.89 42.33 14.08 49.73

sexmale 0.42 0.12 2.95 1.30 28.19

Cluster 2

(Intercept) 4.26 6.93 38.91 13.11 59.70

sexmale 0.86 0.59 7.36 2.80 132.66

The gating network has an intercept of 10.58 and slope coefficients of 0.04

(SSF) and−0.08 (Ht) with corresponding odds ratios of 1.04 and 0.93. Thus, higher

SSF values increase the probability of belonging to the second Gaussian cluster,

to which taller athletes are less likely to belong, and the probability of belonging

to the noise component is constant. Though every observation has its own mean

parameter in the presence of expert covariates, given by the fitted values of the

expert network (shown in Table 2.6), the means are summarised in Table 2.7 by

the posterior mean of the fitted values of the model according to (2.11). The noise

component is accounted for by V , the p-dimensional centroid of the region used to

estimate V :

µ̂g =

∑n
i=1 ẑig ŷi∑n
i=1 ẑig

=

∑n
i=1 ẑig

(∑G
g=1 ẑig

(
x̃(E)
i γ̂g

)
+ ẑi0V

)∑n
i=1 ẑig

. (2.11)

Given that there exists a binary variable, ‘sex’, in the expert network for the optimal

MoEClust model, there are effectively four Gaussian components plus an additional

noise component. By virtue of the EEE constraint on the Gaussian components, all

four components and thus both clusters in fact share the same covariance matrix.

Components 1 and 2, corresponding to females and males in Cluster 1, share

the same covariance matrix but differ according to their means. The same is true

for females and males (Components 3 and 4) in Cluster 2. Table 2.7 gives the

means and average gates in terms of both components and clusters, as well as

the common Σ̂ matrix.
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Table 2.7: Estimated parameters of the G = 2 Gaussian clusters in the optimal ‘full’ MoEClust model
fit to the AIS data (with an extra noise component and gating concomitants entering the non-noise
clusters only), with further splitting due to the binary covariate sex in the expert network, giving
average gates and component means (for females and males) and the common EEE covariance
matrix. While every observation has its own mean parameter, given by the fitted values of the expert
network in Table 2.6, the means are summarised by the posterior mean of the model’s fitted values,
given by (2.11).

Cluster 1 Cluster 2
Σ̂ (EEE)

All Female Male All Female Male

τ̂g 0.60 0.22 0.38 0.33 0.25 0.07 RCC WCC Hc Hg Fe

RCC 4.81 4.51 4.98 4.51 4.33 5.12 0.08 0.08 0.46 0.15 −0.83

WCC 7.02 6.95 7.06 7.10 6.96 7.57 2.50 0.60 0.21 5.12

Hc 44.06 41.79 45.35 41.14 39.61 46.29 3.84 1.33 −7.55

Hg 14.88 13.94 15.51 13.91 13.32 15.90 0.57 −1.05

Fe 70.18 53.05 79.87 87.84 58.96 184.67 821.68

Though the plots in Figure 2.4 are suitable for univariate data with a single

continuous expert network covariate, visualising MoEClust results for multivariate

data with r > 1 mixed-type covariates constitutes a much greater challenge. For

the optimal full MoE model fit to the AIS data, the data and clustering results are

shown using a generalised pairs plot in Figure 2.5. This plot depicts the pairwise

relationships between the hematological response variables, the included gating

and expert network covariates, and the MAP classification, coloured according to

the MAP classification. The marginal distributions of each variable are given along

the diagonal. For the hematological response variables, ellipses with axes related

to the within-cluster covariances are drawn.

For the purposes of visualising Figure 2.5, owing to the presence of an expert

network covariate in the fitted model, the multivariate Gaussian ellipses in panels

depicting two response variables are centred on the posterior mean of the fitted

values, as described in (2.11). Their shape and size are also modified for the same

reason: they are derived by adding the extra variability in the component means to

Σ̂g . Thus, the depicted ellipses do not conform to the EEE covariance constraints

of the optimal model.
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Figure 2.5: Generalised pairs plot for the optimal ‘full’ MoEClust model fit to the AIS data, depicting
pairwise relationships between the hematological response variables, the expert network covari-
ate sex, the gating concomitants SSF and Ht, and the MAP classification. Colours and plotting
symbols correspond to the MAP classification: blue circles and red squares for the two Gaussian
clusters; grey crosses for the 4 female and 9 male outlying observations assigned to the uniform
noise component. Mosaic plots are used to depict two categorical variables, scatter plots are used
for panels involving two continuous variables, and a mix of box-plots and jittered strip-plots are used
for mixed pairs.

It is clear from Figure 2.5 that the variables ‘Hematocrit’ (Hc), ‘Hemoglobin’

(Hg), and ‘plasma ferritin concentration’ (Fe), and the gating network concomi-

tants ‘SSF’ and ‘Ht’, are driving much of the separation between the clusters. On
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the other hand, the expert network covariate ‘sex’ is driving separation within the

Gaussian clusters. The correspondence between the MAP classification and the

sex label is notably poor, with an adjusted Rand index (ARI; Hubert and Arabie,

1985) of just 0.11 (see Table 2.8a). This is because, under the optimal model, the

athletes’ size in terms of their SSF and height measurements, rather than their sex,

influences the probability of cluster membership, and athletes are divided by sex

within each cluster rather than the clusters necessarily capturing their sex. The ARI

is higher for models where sex does not enter the expert network, especially when

it instead enters the gating network, though such fitted models all have sub-optimal

BIC values (see Table 2.5).

Indeed, Table 2.6 implies that males, on average, have elevated levels of all five

blood measurements in both Gaussian clusters. However, the magnitude of this

effect is more pronounced in Cluster 2, related to athletes with higher average SSF

measurements (a proxy for body fat) and lower average height. Interestingly, Figure

2.5 also shows that females have higher average SSF measurements and lower

average height; this may explain why there are more males than females in Cluster

1, and the reverse in Cluster 2, given the signs of the gating network coefficients

for SSF (0.04) and Ht (−0.08).

Given that one of the unused covariates (‘sport’) is categorical, the concor-

dance between the MAP classification and the athletes’ sport can also be as-

sessed, even if there are many more than G = 2 levels to the sport covariate. Table

2.8 comprises three sub-tables showing the cross-tabulation of the MAP classifica-

tion against ‘sex’ (Table 2.8a), ‘sport’ (Table 2.8b), and a new categorical variable

obtained by splitting each level of the sport covariate into male and female players

(Table 2.8c). In the latter case, it is worth noting that there are no male gymnasts

and no female water polo players. Despite the poor ARI values, some interesting

conclusions can still be drawn. For instance, all male basketball players are iso-

lated in a single cluster, the majority of the (all female) netball players are isolated

in a single cluster, most of the rowers are assigned to the first cluster, and most

of the male Track 400m and Water Polo athletes are in the first cluster also. This

suggests that collapsing the sport covariate into fewer categorical levels — by, for

instance, distinguishing between water-based sports and the others — could prove

fruitful in future analyses.
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Table 2.8: Cross-tabulations of the MAP classification under the optimal ‘full’ MoEClust model
against the ‘sex’ covariate (Table 2.8a), the ‘sport’ covariate (Table 2.8b), and a combination of
both covariates (Table 2.8c). Note that ‘sex’ was used as an expert network covariate in the fitted
model, while ‘sport’ was not selected at all. Corresponding ARI values are given in each case.

(a) ARI = 0.11.

‘sex’ Female Male

Cluster 1 46 78

Cluster 2 50 15

Noise 4 9

(b) ARI = 0.07.

‘sport’ Basketball Field Gymnastics Netball Rowing Swimming Tennis Track 400m Track Sprint Water Polo

Cluster 1 17 7 1 1 29 17 6 25 9 12

Cluster 2 8 8 3 21 8 4 4 3 3 3

Noise 0 4 0 1 0 1 1 1 3 2

(c) ARI = 0.05.

‘sport’ Basketball Field Gymnastics Netball Rowing

‘sex’ Female Male Female Male Female Male Female Male Female Male

Cluster 1 5 12 1 6 1 0 1 0 15 14

Cluster 2 8 0 4 4 3 0 21 0 7 1

Noise 0 0 2 2 0 0 1 0 0 0

‘sport’ Swimming Tennis Track 400m Track Sprint Water Polo

‘sex’ Female Male Female Male Female Male Female Male Female Male

Cluster 1 7 10 3 3 9 16 4 5 0 12

Cluster 2 2 2 3 1 2 1 0 3 0 3

Noise 0 1 1 0 0 1 0 3 0 2

2.6 Discussion

The development of a suite of MoEClust models has been outlined, clearly demon-

strating the utility of mixture of experts models for parsimonious model-based clus-

tering where covariates are available. A novel means of visualising such models

has also been proposed. The ability of MoEClust models to jointly model the re-

sponse variable(s) and related covariates provides deeper and more principled in-

sight into the relations between such data in a mixture-model based analysis, and

provides a principled method for both creating and explaining the clustering, with
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reference to information contained in covariates. Their demonstrated use to cluster

observations and appropriately capture heterogeneity in cross-sectional data pro-

vides only a glimpse of their potential flexibility and utility in a wide range of settings.

Indeed, given that general MoE models have been used, under different names, in

several fields, including but not limited to statistics (Grün and Leisch, 2007, 2008),

biology (Wang et al., 1996), econometrics (Wang et al., 1998), marketing (Wedel

and Kamakura, 2012), and medicine (Thompson et al., 1998), MoEClust models

could prove useful in many domains.

Improvement over GPCM models has been introduced by accounting for ex-

ternal information available in the presence of potentially mixed-type covariates.

Similarly, improvement over Gaussian mixture of experts models which incorpo-

rate fixed covariates has been introduced by allowing GPCM family covariance

structures in the component densities. MoEClust models are thus Gaussian par-

simonious MoE models where the size, volume, shape, and/or orientation can be

equal or unequal across components. MoEClust models have been further ex-

tended to accommodate the presence of an additional uniform noise component to

capture departures from Gaussianity, in such a way that observations are smoothly

classified as belonging to Gaussian clusters or as outliers. In particular, two means

of doing so have been proposed for models which include gating concomitants.

Due to sensitivity of the final solution obtained by the EM algorithm to the ini-

tial values, an iterative reallocation procedure based on the Mahalanobis distance

has been proposed to mitigate against convergence to suboptimal local maxima

for models with expert network covariates. This initialisation algorithm converges

quickly and also speeds up convergence of the EM algorithm itself.

Previous parsimonious Gaussian mixtures of experts (Dang and McNicholas,

2015) accommodated only the cases where all covariates enter the expert network

MoE model, or the full MoE model with the restriction that all covariates enter both

parts of the model. MoEClust constitutes a unifying framework whereby different

subsets of covariates can enter either, neither, or both the gating and/or expert net-

works of Gaussian parsimonious MoE models. Considering the standard mixture

model (with no dependence on covariates), or the expert network MoE model, with

the equal mixing proportion constraint expands the model family further.

54



2.6 Discussion

On a cautionary note, care must be exercised in choosing how and where co-

variates enter when a MoEClust model is used as a clustering tool, as the inter-

pretation of the analysis fundamentally depends on where covariates enter, which

of the six special cases of the MoE framework is invoked, and on which GPCM

constraints are employed. To this end, a novel greedy forward stepwise search

algorithm has been employed for model/variable selection purposes. This strategy

has the added advantage of introducing additional parsimony, by potentially reduc-

ing the number of regression parameters in the gating and/or expert networks.

Gating network MoEClust models may be of particular interest to users of

GPCMs; while concomitants influence the probability of cluster membership, the

correspondence thereafter between component densities and clusters has the same

interpretation as in standard GPCMs. When covariates enter the component den-

sities, we warn that observations with very different response values can be clus-

tered together, because they are being modelled using the same GLM; similarly,

regression distributions with distinct parameters do not necessarily lead to well-

separated clusters.

MoEClust models allow the number of parameters introduced by gating and

expert network covariates to be offset by a reduction in the number of covariance

parameters. This is particularly advantageous when model selection is conducted

using the BIC or ICL, which include a penalty term based on the parameter count.

Thus, MoEClust models may tend to favour including covariates more than stan-

dard Gaussian MoE models would. This is particularly true for explanatory vari-

ables in the expert network, which tend to necessitate more regression parameters

(Gp) than concomitant variables in the gating network (G − 1) per additional con-

tinuous covariate or level of categorical covariates included. Thus, in cases where

a MoE model might elect to include a concomitant variable in the gating network,

a MoEClust model with fewer covariance parameters may elect to include it as an

explanatory expert network variable instead. While this does lead to a better fit, it

can complicate interpretation.

Possible directions for future work in this area include investigating the utility

of nonparametric estimation of the gating network (Young and Hunter, 2010), as

well as exploring the use of regularisation penalties in the gating and expert net-

works to help with variable selection when the number of covariates r is large.
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2.6 Discussion

Regularisation in another, Bayesian sense, by specifying a prior on the component

variances/covariances in the spirit of Fraley and Raftery (2007), and/or component

regression parameters, could also prove useful for avoiding spurious solutions due

to computational singularity described in Section 2.3.3. MoEClust models could

also be developed in the context of hierarchical mixtures of experts (Jordan and Ja-

cobs, 1994), and/or extended to the supervised or semi-supervised model-based

classification settings, where some or all observations are labelled.

Beyond the family of GPCM constraints, MoEClust models could be extended

to avail of parsimonious factor-analytic covariance structures for high-dimensional

data (McNicholas and Murphy, 2008). These could be incorporated into Gaus-

sian mixture of experts models using residuals in an equivalent fashion to Section

2.3.2 above. Similarly, MoEClust models could benefit from the heavier tails of the

multivariate t-distribution, and the robustness to outliers it affords, by considering

the associated tEIGEN family of covariance constraints (Andrews and McNicholas,

2012). However, the inclusion of a uniform noise component has the advantage of

drawing a clearer distinction between observations belonging to clusters or desig-

nated as outliers.
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2.A Appendix 1

CO2 Data: Code Examples

Code to reproduce both the exhaustive (Listing 2.A.1) and greedy forward stepwise

(Listing 2.A.2) searches for the CO2 data described in Section 2.5.1, using the

MoEClust R package (Murphy and Murphy, 2019), is provided below. The code in

Listing 2.A.1 can be used to reproduce the results in Table 2.2.

Listing 2.A.1: Exhaustive search R code for the CO2 data.

library(MoEClust)

data(CO2data)

CO2 <- CO2data$CO2

GNP <- CO2data$GNP

# Fit models under the 6 special cases of the MoE framework

m1 <- MoE_clust(CO2 , G=1:9)

m2 <- MoE_clust(CO2 , G=2:9, gating=~GNP)

m3 <- MoE_clust(CO2 , G=1:9, expert=~GNP)

m4 <- MoE_clust(CO2 , G=2:9, gating=~GNP , expert=~GNP)

m5 <- MoE_clust(CO2 , G=2:9, equalPro=TRUE)

m6 <- MoE_clust(CO2 , G=2:9, expert=~GNP , equalPro=TRUE)

# Collate results and rank (by BIC) only the 6 optimal models

res <- list(m1=m1 , m2=m2 , m3=m3 , m4=m4 , m5=m5 , m6=m6)

(comp <- MoE_compare(res , optimal.only=TRUE))
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Listing 2.A.2: Stepwise search R code for the CO2 data.

library(MoEClust)

data(CO2data)

CO2 <- CO2data$CO2

GNP <- CO2data$GNP

# Conduct a stepwise search

(mod1 <- MoE_stepwise(CO2 , GNP))

# Conduct a stepwise search for models with a noise component

(mod2 <- MoE_stepwise(CO2 , GNP , noise=TRUE))

# Compare both sets of results to choose the optimal model

(best <- MoE_compare(mod1 , mod2 , optimal.only=TRUE)$optimal)
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CO2 Data: EM Initialisation

The regression lines for the optimal G = 3 equal mixing proportion expert net-

work MoEClust model with equal component variances and the explanatory vari-

able ‘GNP’ fitted to the CO2 data with and without the initial partition being passed

through Algorithm 1 are shown in Figure 2.B.1. A BIC value of −155.20 is achieved

after 21 EM iterations with 6 iterations of our proposed initialisation strategy com-

pared to a value of −161.06 in 28 EM iterations without. While the models differ

only in terms of the initialisation strategy employed, Table 2.2 shows that the model

would not have been identified as optimal according to the BIC criterion had Algo-

rithm 1 not been used. The superior solution in Figure 2.B.1a has one cluster with

a steep slope and two clusters with near-zero slopes but different intercepts.
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(a) With Algorithm 1 invoked for initialisation, achieving a BIC
value of −155.20.
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(b) Without Algorithm 1 invoked for initialisation, achieving a
BIC value of −161.06.

Figure 2.B.1: Scatter plots of GNP against CO2 emissions for n = 28 countries showing three
coloured linear regression components from the optimal MoEClust model, with equal variances
and mixing proportions, with (a) and without (b) the initialisation strategy described in Algorithm 1
invoked.
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AIS Data: Stepwise Model Search

For the AIS data, Table 2.C.1 gives the results of the greedy forward stepwise

model selection strategy described in Algorithm 2, showing the action yielding the

best improvement in terms of BIC for each step. This forward search is less com-

putationally onerous than its equivalent in the backwards direction. A 2-component

EVE equal mixing proportion expert network MoE model is chosen, in which the

mixing proportions are constrained to be equal and sex enters the expert network.

This same model was identified after an exhaustive search over a range of G val-

ues, the full range of GPCM covariance constraints, and every possible combina-

tion of the BMI and sex covariates in the gating and expert networks (see Table

2.5). Note, however, that the remaining covariates in Table 2.4 are also considered

for inclusion here.

To give consideration to outlying observations departing from the prevailing pat-

tern of Gaussianity, a separate stepwise search is conducted, starting from a G = 0

noise-only model, with all candidate models having an additional noise component.

Thus, a distinction is made between the model found by following the steps shown

in Table 2.C.1 with G = 2 EVE Gaussian components, and the model found by

the second stepwise search described in Table 2.C.2 with three, of which two are

EEE Gaussian and one is uniform. Ultimately, the model with the noise component

identified in Table 2.C.2 is chosen, based on its superior BIC. Aside from the noise

component, it similarly includes ‘sex’ in the expert network, but differs in its treat-

ment of the gating network and the GPCM constraints employed for the Gaussian

clusters. It is a full MoE model where the Gaussian clusters have equal volume,

shape, and orientation, the expert network includes the covariate ‘sex’, and the

both ‘SSF’ and ‘Ht’ influence the probability of belonging to the Gaussian clusters

but not the additional noise component, as per (2.9).
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Table 2.C.1: Results of the forward stepwise model selection algorithm applied to the AIS data
where candidate models do not include a noise component. All covariates in Table 2.4 are con-
sidered for inclusion in both parts of the model. The optimal action and associated BIC value is
detailed for each step. The resulting models are described in terms of the number of Gaussian
components G , the GPCM constraints used, and the treatment of the gating and expert networks.

Step Optimal Action G GPCM Gating Expert BIC

1 — 1 EEE — −4202.79

2 Add explanatory variable (Expert) 1 EEE — sex −4050.64

3 Add component and constrain mixing proportions 2 EVE Equal sex −4010.14

4 Stop 2 EVE Equal sex −4010.14

Table 2.C.2: Results of the forward stepwise model selection algorithm applied to the AIS data
where all candidate models explicitly include a noise component. All covariates in Table 2.4 are
considered for inclusion in both parts of the model. The optimal action and associated BIC value
is detailed for each step. The resulting models are described in terms of the number of Gaussian
(i.e. non-noise) components G , the GPCM constraints used, and the treatment of the gating and
expert networks. When gating concomitants are included, the chosen models here correspond to
the NGN model in (2.9). Thus, the noise component’s mixing weight is constant and independent
of the included concomitants.

Step Optimal Action G GPCM Gating Expert BIC

1 — 0 — — — −4869.82

2 Add component 1 EEE −4149.46

3 Add explanatory variable (Expert) 1 EEE sex −4013.55

4 Add component 2 EVE sex −3992.81

5 Add concomitant (Gating) 2 EVE NGN: SSF sex −3990.09

6 Add concomitant (Gating) 2 EEE NGN: SSF, Ht sex −3989.83

7 Stop 2 EEE NGN: SSF, Ht sex −3989.83
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Prediction and Validation for MoEClust Models

In addition to their demonstrated use for clustering, MoEClust models can also be

used to make point estimate predictions, which we consider here in the context of a

model fitted to a training data set used for predicting newly observed test data. This

can be done if both new covariates x?i and new response data y?i are observed, or

if only x?i are observed. Thus, for instance, predictions for new athletes using the

optimal MoEClust model fit to the AIS data can be made if their sex and their Ht

and SSF measurements are known, with or without also having their hematological

measurements. Point estimate predictions can be made of the cluster membership

probabilities ẑ?ig (and hence the MAP classification, here denoted by ĉ?i ) as well as

the response variables ŷ?i . Typically, predicting ẑ?ig and ĉ?i will be of most interest

when x?i and y?i are observed, while predicting ŷ?i will be of interest when only x?i are

observed. However, we caution that a model considered optimal from a clustering

point of view may not necessarily be optimal from a prediction point of view.

Predicting ẑ?ig when both x?i and y?i are observed amounts to an E-step:

ẑ?ig =
τ̂g

(
x?(G)
i

)
φ
(

y?i | θ̂g
(

x?(E)
i

)
=
{

x̃?(E)
i γ̂g , Σ̂g

})
∑G

h=1 τ̂h

(
x?(G)
i

)
φ
(

y?i | θ̂h
(

x?(E)
i

)
=
{

x̃?(E)
i γ̂h, Σ̂h

}) ,

whereas ẑ?ig = τ̂g
(
x?(G)
i

)
when only x?i are observed. Both expressions are appro-

priately modified when the GN or NGN settings are adopted in the presence of a

noise component and gating concomitants. Similarly, the noise component, if any,

can be accounted for in subsequently predicting ŷ?i , as per (2.11), via

ŷ?i =
G∑

g=1

ẑ?ig
(
x̃?(E)
i γ̂g

)
+ ẑi0V , (2.12)

where V is the p-dimensional centroid of the region used to estimate the hypervol-

ume V . Here, V is estimated from the smallest hyperrectangle enclosing the data,

though we note that V can also be computed for the convex hull or ellipsoid hull,

should they be instead used to estimate the hypervolume. Clearly, for models

where x(E)
i = ∅, ŷ?i is simply given by the weighted mean of the component means.
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Alternatively, the noise component can be discarded by removing the column of

Ẑ? corresponding to the noise component, if any, and renormalising its rows prior

to computing ŷ?i =
∑G

g=1 ẑ
?
ig

(
x̃?(E)
i γ̂g

)
. We leave this decision as a choice for the

interested researcher, with two caveats. Firstly, V is not defined if V is specified as

independent tuning parameter, which it must be when n ≤ p. Secondly, we note

that unseen data y?i may lie outside the region used to define the hypervolume and

thus lie outside the support of the uniform noise component.

The approach for predicting ŷ?i in (2.12) can be interpreted as an aggregation

of the predictions in the component-specific expert networks (accounting also for

the centroid of the noise component, if any). While this approach is appealing in

that the estimated ‘soft’ cluster membership probabilities ẑ?ig are utilised, it can be

criticised by virtue of the information lost in reducing the heterogeneous regression

functions to the one aggregated function in (2.12). This limitation is pronounced

further by the fact that ẑ?ig = τ̂g
(
x?(G)
i

)
amounts only to a prediction of the prior

mixing weights when only x̂?i are observed, though we note that the aggregated

regression function in this instance is a curve (hypersurface) rather than a line

(hyperplane) for MoEClust models with gating network concomitants.

An alternative is to predict ŷ?i using the individual expert network regression of

the component to which the new observation is most probably assigned, via

ĉ?i = arg max
g∈{0,...,G}

(
ẑ?ig
)

, ŷ?i =

{
x̃?(E)
i γ̂ĉ?i iff ĉ?i ∈ {1, ... ,G} ,

V iff ĉ?i = 0.
(2.13)

As above, the noise component, if any, can be accounted for either by explicitly in-

cluding V or by discarding the column of Ẑ corresponding to the noise component

and renormalising its rows prior to computing ĉ?i , again with the same caveats. In

any case, this approach is not without limitations either when only x?i are observed.

In particular, ĉ?i cannot be determined for models with equal mixing proportions,

and ĉ?i = c? ∀ i when the mixing proportions are unequal but not dependent on co-

variates, such that ỹ?i is always predicted only by the expert network regression of

the largest component. As a result, the aggregation in (2.12) remains the recom-

mended approach. Moreover, when only x?i are observed, the approach in (2.13)

is discouraged for MoEClust models which assume assignment independence, i.e.

all model types without gating covariates such that ĉ?i does not depend on x?(G)
i .
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In order to investigate MoEClust models from a predictive point of view, we

turn to the CO2 data, for which the optimal model identified did not include a noise

component. We focus on predicting ŷ?i when x̂i are observed, rather than predicting

ẑ?ig and/or ĉ?i when both y?i and x?i are observed. In so doing, we use the aggregated

regression function in (2.12), with ẑ?ig predicted from the mixing proportions, as

appropriate. In order to explore whether the optimal model identified in Section

2.5.1 is indeed optimal from a predictive as well as clustering point of view, all 6

models in Table 2.2 (i.e. the optimal models under each special case of the MoE

framework) are investigated. Two 1-component models are also considered as

comparators — one with no covariates and a linear regression of CO2 on GNP.

Figure 2.D.1 shows, for all 8 considered models, the values of ŷ?i predicted via

(2.12) using only x?i . Here, the observed data is used as the ‘new’ data. Component-

specific regression lines and corresponding aggregated regression functions are

also shown. Notably, the aggregated functions in Figure 2.D.1b and Figure 2.D.1d

are curves rather than lines, owing to the inclusion of a covariate in the respective

gating networks. Recall that the model shown in Figure 2.D.1f was chosen by BIC.
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(c) Optimal expert network MoE model.
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(f) Optimal equal mixing proportion
expert network MoE model.
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(h) Optimal G = 1 expert network MoE
model.

Figure 2.D.1: Predicted values ŷ?
i (red triangles), component-specific regression lines (dotted blue),

and aggregated regression functions (solid green, where applicable) for a number of MoEClust
models fit to the CO2 data — each one optimal with respect to a (labelled) special case of the MoE
framework — with the ‘new’ data treated as the fitted data (shown, for reference, as black points).
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In order to quantify the goodness-of-fit of the 8 considered models, we use the

coefficient of determination and other measures recently proposed for mixtures of

regressions by Ingrassia and Punzo (2019), which rely on a three-term decompo-

sition of the total sum of squares (TSS). In particular, the TSS is decomposed into

the (soft) between-cluster sum of squares (BSS), which measures how well sepa-

rated the clusters are, and the (soft) within-cluster sum of squares (WSS), which

measures how close observations in a cluster are to the regression line of that clus-

ter. Here, ‘soft’ means that the quantities are weighted by the estimated cluster-

membership probabilities. The WSS is further decomposed into EWSS, the (soft)

within-cluster sum of squares explained by the model (by virtue of the inclusion

of expert network covariates), and RWSS, the (soft) within-cluster residual sum of

squares, with the EWSS and RWSS are obtained by summing the cluster-specific

(soft) ESSg and RSSg values. By definition, BSS is not defined for 1-component

models and EWSS is not defined for models without expert network covariates.

By dividing BSS, EWSS, and RWSS by TSS, Ingrassia and Punzo (2019) also

obtain the normalised summary measures NEWSS, NBSS, and NRWSS. These

measures are hence interpreted as proportions of the total variation of the re-

sponse variable accounted for by the main parts of the model. They can be used

to evaluate the fitted model in a number of ways. Firstly, the quantity NESS =

NBSS + NEWSS = 1 − NRWSS, which represents the proportion of the TSS

explained by the fitted model, indicates a well-fitting model for values close to 1.

Secondly, Ingrassia and Punzo (2019) propose visualising the triplet (NEWSS,

NBSS, NRWSS) using a ternary diagram. The corresponding points are shown

on such a diagram for all 8 models under consideration in Figure 2.D.2. The point

labelled ‘F’, corresponding to the 3-component equal mixing proportion expert net-

work MoE model (with equal variances) identified as optimal according to the BIC

criterion, achieves the highest NESS (0.94). While the optimal mixture model (‘A’)

and optimal gating network MoE model (‘B’) both achieve a superior NBSS, their

performance is hampered by their vanishing NEWSS values. This confirms that

the inclusion of GNP in the expert network improves the model fit. Conversely,

linear regression (‘H’) achieves a much lower NEWSS despite the inclusion of the

covariate GNP. This confirms that mixtures with G ≥ 2 achieve superior fits.
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Figure 2.D.2: Ternary diagram of the points (NBSS, NEWSS, NRWSS) for the 8 models fitted to the
CO2 data, with the letters corresponding to the labels of the subfigures in Figure 2.D.1.

Much like the popular coefficient of determination for linear regression models,

Ingrassia and Punzo (2019) also define local and global coefficients of determina-

tion for finite mixtures of regressions (henceforth referred to as R2
g and R2, respec-

tively). The former, given by R2
g = ESSg/SSg , where SSg = ESSg + RSSg , can

be interpreted as the proportion of response variation in the g -th cluster explained

by the expert network covariates. The latter, given by R2 = EWSS/WSS, can be

interpreted as the proportion of the within-cluster response variation explained by

the fitted model. This global coefficient of determination can be seen as a weighted

average of the local coefficients R2
1 , ... ,R2

G , with weights SS1/WSS, ... , SSG/WSS

being the proportion of the within-cluster sum of squares due to each cluster.
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Figure 2.D.1f and Figure 2.D.1c suggest that the 3-component model chosen

by BIC (‘F’) differs from the optimal G = 2 expert network MoE model (‘C’) in that

the component with near-zero slope in model C is split into two components with

near-zero slopes but different intercepts under model F. Furthermore, Hungary and

South Korea are assigned (according to the MAP classification) to the component

with the steep slope under model F while they are assigned to the component with

a flat slope under model C. The R2 for model C is 0.76 while the R2 for model F is

0.92. The local coefficients of determination and their weights help to explain the

superior fit of model F. Under model F, R2
1 = 0.98, R2

2 = 0.13, and R2
3 = 0.21, with

weights SS1 = 0.92, SS2 = 0.04, and SS3 = 0.04. Under model C, R2
1 = 0.98 and

R2
2 = 0.02, with SS1 = 0.77 and SS2 = 0.23. Clearly, therefore, both models fit well

to the component with the steep slope, but model F achieves a better fit by virtue

of the higher weight attached to this component. A similar conclusion is drawn

when comparing model F against the full MoE model (‘D’), for which we report, for

completeness, R2 = 0.77, R2
1 = 0.98, R2

2 = 0.03, SS2
1 = 0.78, and SS2

2 = 0.22.

Overall, we conclude that all special cases of the MoE framework are useful

from a clustering point of view, only the gating network MoE model and full MoE

model are useful from an out-of-sample prediction point of view, and the expert

network MoE model, full MoE model, and equal mixing proportion expert network

MoE model are useful from a general explanatory point of view. However, we

caution against using these validation measures as model selection tools.
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Distinguishing Responses and Covariates

By design — by virtue of MoEClust being a family of conditional mixture models

— it is assumed that the designation of which variables are responses and which

variables are to be treated as covariates is always known for MoEClust models, in

the sense that the conditioning is guided by the context of the application under

study and the related research question of interest. Thus, there is no need to

choose the subset of covariates, only to choose — among the known subset of

covariates — which further subsets, if any, belong in the gating or expert network.

Hence, two related issues are explored within this Appendix. Firstly, situations

in which it is not known which variables should be responses and which should be

covariates are examined. Secondly, with regard to the proposed stepwise proce-

dure (Algorithm 2) for selecting the informative covariates — and identifying which

part of the model they should enter — simulation studies are provided to assess

the performance of this procedure, from the point of view of overfitting. Both issues

are illustrated through an application to data gathered on a cohort of 544 Kenyan

donkeys (Milner and Rougier, 2014). The variables recorded in this study are of

mixed type and are detailed in Table 2.E.1.

Table 2.E.1: Variables recorded in the Kenyan donkeys data set.

Variable Description

Girth continuous (cm)

Height continuous (cm)

Length continuous (cm)

Weight continuous (kg)

Age] an ordinal factor with levels:

< 2, 2–5, 5–10, 10–15, 15–20, > 20 (years)

BCS] body condition score — an ordinal factor with levels:

from 1 (emaciated) through 3 (healthy) to 5 (obese) in steps of 0.5

Sex a factor with levels:

female, gelding, stallion

] Following Milner and Rougier (2014), three unrepresentative donkeys were excluded from the

analysis to leave n = 541 donkeys; one was a baby, one had a BCS of 1, and one had a BCS of

4.5. No other donkeys had a BCS of 1, 4.5, or 5, so these levels were dropped from this variable.
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Comparing Joint and Conditional Mixture Models

When it is not known which variables should be treated as response variables and

which should be treated as covariates, we suggest clustering all variables jointly,

rather than employing a conditional MoEClust mixture model. Under the condi-

tional MoEClust model, all response variables are assumed to be continuous, while

the covariates in both networks are allowed to be of mixed type. However, under

the joint mixture model, which groups all variables into the set of response vari-

ables, MoEClust models without dependence on covariates of any kind (i.e. the

mixture model in Figure 2.1) can only be fitted in cases where all variables are con-

tinuous. To jointly cluster data of mixed type, including continuous, binary, ordinal,

and nominal variables, we propose to use the model-based approach to clustering

mixed-type data introduced in McParland and Gormley (2016), henceforth referred

to as clustMD models after the name of the associated R package.

In addition, we acknowledge that CWMs — here fitted using the flexCWM R

package (Mazza et al., 2018) — can be used in cases where it is of interest to

jointly model both yi and xi via f (yi | xi , zig = 1)f (xi | zig = 1), even if this still prob-

lematically reintroduces the need to distinguish among the overall set of variables

between the response(s) and the covariate(s). For this class of models, in the

application which follows, a Gaussian distribution with unequal variances across

components is assumed for the response variable and a (multivariate) Gaussian

distribution is assumed for the continuous covariates. While it is also possible to

exploit the local independence assumption in order to model the marginal distribu-

tion of categorical covariates under CWMs, such models are not considered here

for the sake of brevity.

In order to facilitate a fair comparison against clustMD models and CWMs,

MoEClust models with a noise component are not considered herein. Neither are

models with equal mixing proportions. All three model classes allow for some de-

gree of parsimony in the component covariance matrices: MoEClust models allow

GPCM covariance structures in the distribution of the response variables, CWMs

allow GPCM covariance structures in the distribution of the continuous covariates,

and clustMD models allow the 6 spherical and diagonal GPCM covariance struc-

tures in Table 2.1 as well as a block diagonal (BD) structure for the underlying
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latent variables. As treating the categorical variables ‘Age’ and ‘BCS’ as ordinal

rather than nominal variables simplifies the fitting of clustMD models (McParland

and Gormley, 2016), these variables are henceforth coded in that way.

In comparing the three model classes, we note the assertion in Milner and

Rougier (2014) that a donkey is effectively an elliptical cylinder with appendages,

such that one might expect its weight to be approximately proportional to the prod-

uct of its length and its squared girth, with its less cylindrical aspects possibly

accommodated by including its height as an additional predictor (as well as the

other categorical factors). Hence, we pre-process the data by taking the natural

log of the Girth and Length variables. Indeed, the motivation behind this study was

the difficulty in estimating the weight of a donkey, relative to the ease with which

physical measurements of its girth, height, and length can be obtained.

Therefore, conditional MoEClust mixture models are investigated in Table 2.E.2

with weight as the univariate response variable (‘A’ and ‘B’). Secondly, artificial sit-

uations in which one is not guided by this research question and instead proceeds

to cluster all variables jointly are reflected by the inclusion of a clustMD model (‘E’)

and a CWM (‘F’) in the comparison in Table 2.E.2. Thirdly, MoEClust models where

are all continuous variables are treated as the response are also estimated (‘C’ and

‘D’). Thus, different scenarios are modelled whereby no covariates, the subset of

continuous covariates only, or all covariates are considered (either as covariates

or as part of the responses, as appropriate to the given model class). Finally, Ta-

ble 2.E.2 also examines the effects of interchanging the role of the (continuous)

covariates and the Weight response variable (‘G’ and ‘H’).

For MoEClust models with covariates (‘B’, ‘D’, and ‘H’), a stepwise search us-

ing Algorithm 2 and the BIC is conducted to select the optimal model. Otherwise,

exhaustive searches over G ∈ {1, ... , 9} and all allowable covariance structures

are conducted, with the optimal model chosen by BIC reported in each case. How-

ever, the three model classes are not all comparable in terms of BIC (Ingrassia

and Punzo, 2019); the likelihood function for MoEClust models is a product of

conditional probabilities while the likelihood for clustMD and flexCWM models is a

product of joint probabilities. Moreover, CWMs with different subsets of covariates

cannot be compared in terms of BIC either, for similar reasons. Hence, covariate

selection was not considered for this class of models.

76



2.E Appendix 5

While clustMD models with gating concomitants are feasible — despite com-

plicating the designation of response(s) and covariate(s) again — such models

are excluded from the comparison as they are not currently implemented in the

clustMD package. Similarly, multivariate response CWMs are not implemented in

the flexCWM package and are hence also excluded from the comparison. Finally,

we note that all other function arguments were set to their default values when

using these two packages.

Table 2.E.2: Results of a comparison between conditional and joint mixture models for the Kenyan
donkeys data set, giving — for each model — a name, the R package used, the designation of
response(s) and covariate(s), the optimal number of components and covariance decomposition,
the included gating and expert network covariates for MoEClust models, and the BIC. Horizontal
lines separate model classes which are not comparable in terms of BIC, though the BIC for the
optimal model within each class is highlighted. A number of abbreviations are used: ALL (all
variables), CTS1 (all continuous variables excluding ‘Weight’), CTS2 (CTS1 and Weight), CAT (all
categorical variables), COV1 (CAT and CTS2), and COV2 (CAT and ‘Weight’).

Name Package Response(s) Covariate(s) G Covariance Gating Expert BIC

A MoEClust Weight 2 E — — −5039.34

B MoEClust Weight COV1 1 E BCS, CTS1 −3892.41

C MoEClust CTS2 2 EEV — — −3502.03

D MoEClust CTS2 CAT 1 EEE Age, BCS −3147.32

E clustMD ALL — 2 BD — — −7647.63

F flexCWM Weight CTS1 2 VEE\ — — −3509.07

G MoEClust CTS1 5 VII — — −4564.73

H MoEClust CTS1 COV2 5 EII Weight −3916.63

\ Note that the stated covariance decomposition for the flexCWM model relates to the Gaussian distribution of the

covariates only; the univariate Gaussian distribution for the response has unequal variance across components.

Several interesting conclusions can be gleaned from Table 2.E.2. Firstly, note

that model B, which includes BCS, Girth, Height, and Length as expert network

covariates with Weight as the univariate response amounts to a simple linear re-

gression, while model E, which jointly clusters all variables, and model C, which

jointly clusters all continuous variables only, address incomparable questions and

both find G = 2 clusters. Hence, the lack of conditioning on covariates in models

A, D, and E is shown to introduce an extra component relative to models B and D.

While models C and E reflect a situation in which the designation of responses and

covariates is unknown, clustering all variables jointly still produces sensible results,
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albeit addressing a different aim. On the other hand, models G and H, which one

might fit if one was not guided by the interest in treating the Weight variable as the

response, appear to overestimate the number of components greatly. Notably, the

responses in models G and H are treated as covariates under model F. The fact

that models with G > 1 are identified in each case implies that group information

within the set of random covariates is captured by CWMs. Overall, this suggests

that a conditional mixture model should be used when a specific conditioning is

required, while clarifying the recommendation that one should instead cluster all

variables jointly when the designation of response(s) and covariate(s) is unknown.

Finally, we note that broadly similar conclusions can be drawn when Length

and Girth are not log-transformed, where relevant, with the exceptions of models

E, G, and H, for which models with 1, 2, and 1 components are identified, respec-

tively. Given that the decision to pre-process these variables was motivated by

the consideration of Weight as the univariate response, this arguably represents a

truer approximation of a situation in which one is agnostic as to the designation of

response(s) and covariate(s).

Simulation Studies to Assess Overfitting

Henceforth, only MoEClust models for the Kenyan donkeys data set which treat

Weight as the response variable are considered. Attention turns to assessing the

performance of the novel stepwise selection procedure (Algorithm 2) for identifying

informative covariates, as well the part of the model to which they should belong.

To this end, high-dimensional noise is appended to the set of potential covari-

ates used as input to Algorithm 2, in the form of 25 variables containing no clus-

tering information drawn from a N (µ0 = 0,σ0 = 1) distribution (see Table 2.E.3).

Here, the log-transformed Length and Girth variables are used. Furthermore, a

scenario in which only the noisy variables are considered is also assessed (see

Table 2.E.4). The rationale for these simulations is to assess situations in which

there is an imbalance between the number of responses and covariates, in order

to examine whether the approach can lead to overfitting. In contrast to the results

shown in Table 2.E.2, models with equal mixing proportions are explored in these

stepwise searches, though models with a noise component are not.
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Reasssuringly, the algorithm never elects to include a noisy covariate in either

experiment. Notably, the final model in Table 2.E.3 is identical to model B in Table

2.E.2, while the final model in Table 2.E.4 differs from model A only in that the

mixing proportions are constrained to be equal. This holds for the results obtained

using other values of µ0 and σ0, which are not shown here for the sake of brevity.

Table 2.E.3: Results of the forward stepwise model search for the Kenyan donkeys data with unin-
formative covariates appended to all variables other than Weight in Table 2.E.1 used as input.

Step Optimal Action G GPCM Gating Expert BIC

1 — 1 E — −5062.91

2 Add explanatory variable (Expert) 1 E — Girth −4161.28

3 Add explanatory variable (Expert) 1 E — Girth, Length −3993.71

4 Add explanatory variable (Expert) 1 E — BCS, Girth, Length −3924.93

5 Add explanatory variable (Expert) 1 E — BCS, Girth, Height, Length −3892.41

6 Stop 1 E — BCS, Girth, Height, Length −3892.41

Table 2.E.4: Results of the forward stepwise model search for the Kenyan donkeys data with only
uninformative covariates used as input.

Step Optimal Action G GPCM Gating Expert BIC

1 — 1 E — −5062.91

2 Add component 2 V Equal −5038.56

3 Stop 2 V Equal −5038.56

79



2.F Appendix 6

2.F Appendix 6

MoEClust R Package Vignette

This appendix presents a reproduction of the package vignette3 of the associated

R package MoEClust for implementation of the proposed method. Notably, some

additional plot types are presented for the CO2 and AIS data sets.

3 cran.r-project.org/web/packages/MoEClust/vignettes/MoEClust.html
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MoEClust: Gaussian
Parsimonious Clustering Models
with Gating and Expert Network
Covariates and a Noise
Component

Keefe Murphy

Introduction

MoEClust is an R package which fits finite Gaussian Mixtures of Experts models
using a range of parsimonious covariance parameterisations via the EM/CEM
algorithm, i.e. allows incorporation of covariates into the mixing proportions and/or
Gaussian densities of finite Gaussian mixture models under the various
parsimonious covariance parameterisations in the GPCM family (e.g. mclust). These
models were introduced by Murphy and Murphy (2019). The package also facilitates
the inclusion of an additional noise component, and allows visualisation of
Gaussian mixture of experts models with parsimonious covariance
parameterisations using generalised pairs plots.

The most important function in the MoEClust package is: MoE_clust, for fitting the
model via the EM/CEM algorithm with gating and/or expert network covariates,
supplied via formula interfaces. MoE_compare is provided for conducting model
selection between different results from MoE_clust using different covariate
combinations &/or initialisation strategies, etc.

MoE_stepwise is provided for conducting a greedy forward stepwise search to identify
the optimal model in terms of the number of components, GPCM covariance type,
and the subsets of gating/expert network covariates.

MoE_control allows supplying additional arguments to MoE_clust and MoE_stepwise
which govern, among other things, controls on the inclusion of an additional noise
component and controls on the initialisation of the allocations for the EM/CEM
algorithm.

A dedicated plotting function exists for visualising the results using generalised
pairs plots, for examining the gating network, and/or log-likelihood, and/or
clustering uncertainties, and/or graphing model selection criteria values. The
generalised pairs plots (MoE_gpairs) visualise all pairwise relationships between
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clustered response variables and associated continuous, categorical, and/or ordinal
covariates in the gating &/or expert networks, coloured according to the MAP
classification, and also give the marginal distributions of each variable (incl. the
covariates) along the diagonal.

An as.Mclust method is provided to coerce the output of class "MoEClust" from 
MoE_clust to the "Mclust" class, to facilitate use of plotting and other functions for
the "Mclust" class within the mclust package. As per mclust, MoEClust also
facilitates modelling with an additional noise component (with or without the
mixing proportion for the noise component depending on covariates). Finally, a 
predict method is provided for predicting the fitted response and probability of
cluster membership (and by extension the MAP classification) for new data, in the
form of new covariates and new response data, or new covariates only.

Other functions also exist, e.g. MoE_crit, MoE_dens, MoE_estep, and aitken, which are all
used within MoE_clust but are nonetheless made available for standalone use. The
package also contains two data sets: ais and CO2data.

If you find bugs or want to suggest new features please visit the MoEClust GitHub
issues page.

This vignette aims to demonstrate the MoEClust models via application to well-
known univariate and multivariate data sets provided with the package.

Installing MoEClust

MoEClust will run in Windows, Mac OS X or Linux. To install it you first need to
install R. Installing Rstudio as a nice desktop environment for using R is also
recommended.

Once in R you can type at the R command prompt:

install.packages('devtools') 
devtools::install_github('Keefe-Murphy/MoEClust')

to install the latest development version of the package from the MoEClust GitHub
page.

To instead install the latest stable official release of the package from CRAN go to R
and type:

install.packages('MoEClust')

In either case, if you then type:

library(MoEClust)
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it will load in all the MoEClust functions.

The GitHub version contains a few more features but some of these may not yet be
fully tested, and occasionally this version might be liable to break when it is in the
process of being updated.

CO2 Data

Load the CO2 data.

data(CO2data) 
CO2   <- CO2data$CO2; GNP <- CO2data$GNP

Fit various MoEClust mixture models to cluster the CO2 data, allowing the GNP
variable to enter the gating &/or expert networks, or neither, via a formula
interface. Also consider models with equal mixing proportions. Note that for
models with covariates in the gating network, or models with equal mixing
proportions, we don’t need to fit single-component models (though it could be
done!) as this would merely duplicate the single-component models within m1 and 
m3, respectively.

m1    <- MoE_clust(CO2, G=1:3, verbose=FALSE) 
m2    <- MoE_clust(CO2, G=2:3, gating= ~ GNP, verbose=FALSE) 
m3    <- MoE_clust(CO2, G=1:3, expert= ~ GNP, verbose=FALSE) 
m4    <- MoE_clust(CO2, G=2:3, gating= ~ GNP, expert= ~ GNP, verbose=FALSE) 
m5    <- MoE_clust(CO2, G=2:3, equalPro=TRUE, verbose=FALSE) 
m6    <- MoE_clust(CO2, G=2:3, expert= ~ GNP, equalPro=TRUE, verbose=FALSE)

Choose the best model among these.

comp  <- MoE_compare(m1, m2, m3, m4, m5, m6, optimal.only=TRUE)

See if a better model can be found using greedy forward stepwise selection.
Conduct a stepwise search on the same data

(mod1 <- MoE_stepwise(CO2, GNP, verbose=FALSE)) 
## --------------------------------------------------------------------- 
## Comparison of Gaussian Parsimonious Clustering Models with Covariates 
## Data: CO2 
## Ranking Criterion: BIC 
## Optimal Only: TRUE 
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## --------------------------------------------------------------------- 
##  
##  rank MoENames modelNames G df iters      bic      icl      aic  loglik 
gating 
##     1   Step_4          E 3  7    21   -155.2 -159.062 -145.875 -65.937   
None 
##     2   Step_3          V 2  7     7 -157.205 -160.039  -147.88  -66.94   
None 
##     3   Step_2          E 2  4    19 -163.164 -163.911 -157.835 -74.917   
None 
##     4   Step_1          E 1  2     1 -163.905 -163.905  -161.24  -78.62   
None 
##  expert algo equalPro 
##    ~GNP   EM     TRUE 
##    ~GNP   EM    FALSE 
##    None   EM    FALSE 
##    None   EM

Conduct another stepwise search considering models with a noise component.

(mod2 <- MoE_stepwise(CO2, GNP, noise=TRUE, verbose=FALSE)) 
## --------------------------------------------------------------------- 
## Comparison of Gaussian Parsimonious Clustering Models with Covariates 
## Data: CO2 
## Ranking Criterion: BIC 
## Optimal Only: TRUE 
## --------------------------------------------------------------------- 
##  
##  rank MoENames modelNames G df iters      bic      icl      aic  loglik 
gating 
##     1   Step_2          E 1  4    22 -160.781 -173.158 -155.453 -73.726   
None 
##     2   Step_1            0  1     1 -165.503 -165.503 -164.171 -81.086   
None 
##  expert algo  noise 
##    None   EM hypvol 
##    None   EM hypvol

Compare all sets of results to choose the optimal model.

(best  <- MoE_compare(mod1, mod2, comp, pick=1)$optimal) 
## Call:    MoE_stepwise(data = CO2, network.data = GNP, verbose = FALSE) 
##  
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## Best Model (according to BIC): univariate, equal variance (E), with 3 
components 
## Equal Mixing Proportions 
## BIC = -155.2 | ICL = -159.062 | AIC = -145.875 
## Including expert network covariates: 
##  Expert: ~GNP

(summ <- summary(best))

## ------------------------------------------------------ 
## Gaussian Parsimonious Clustering Model with Covariates 
## Data: CO2 
## ------------------------------------------------------ 
##  
## MoEClust: E (univariate, equal variance), with 3 components 
##  
## Gating Network Covariates:  None 
## Expert Network Covariates:  ~GNP 
## Equal Mixing Proportions:   TRUE 
## Noise Component:            FALSE 
##  
##  log.likelihood  n d df iters    BIC      ICL      AIC Algo 
##         -65.937 28 1  7    21 -155.2 -159.062 -145.875   EM 
##  
## Clustering table: 
##  1  2  3  
##  8 10 10

Visualise the results for the optimal model using a generalised pairs plot.

plot(best, what="gpairs", jitter=FALSE)
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Visualise the density of the mixture distribution.
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Convert from the "MoEClust" class to the "Mclust" class in order to further visualise
the results. Examine the "classification" and "uncertainty" options.

mod <- as.Mclust(comp$optimal) 
plot(mod, what="classification") 
plot(mod, what="uncertainty")
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Predictions can also be made from MoEClust models: the response, probability of
cluster membership, and the MAP classification can be predicted for the fitted data
or for new data (in the form of new covariates and new response variables, or new
covariates only). Let’s predict the response variable using the optimal model fit
above to the CO2 data.

as.vector(predict(comp$optimal)$y) 
##  [1] 14.258797  3.901356 20.461833  9.057538  8.292203 14.981863  6.849704 
##  [8]  6.679846  9.695510 10.632816  9.451615  9.831188  6.255028  9.590701 
## [15]  7.237534  5.289565  9.782900  6.588562  9.531164 17.968480  8.514569 
## [22]  6.936316  6.725192  6.275709  5.546887  3.319349  9.910969 10.736908

Now let’s build a model on some of the CO2 data and retain the indices of the
withheld observations:

ind     <- sample(1:nrow(CO2data), 2) 
 
res2    <- MoE_clust(CO2data[-ind,]$CO2, G=3, expert=~GNP,  
                     equalPro=TRUE, network.data=CO2data[-ind,])

Now we can make predictions on the withheld data, either by using the withheld
covariates only, or by also using the withheld response variables. Note that newdata
can be either a list with component(s) new.x (and optionally new.y) or a single
matrix/data.frame with the appropriate columns.

# Using new covariates only 
 
predict(res2,  
        newdata = CO2data[ind,],  
        use.y = FALSE)[1:3] 
## y : 
##         CO2 
## 1  7.254644 
## 2 11.543315 
##  
## classification : 
## 1 2  
## 2 2  
##  
## z : 
##    Cluster1  Cluster2  Cluster3 
## 1 0.3333333 0.3333333 0.3333333 
## 2 0.3333333 0.3333333 0.3333333 
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# Using both new covariates & new response data 
 
predict(res2,  
        newdata = CO2data[ind,])[1:3]          
## y : 
##         CO2 
## 1  3.870231 
## 2 18.510889 
##  
## classification : 
## 1 2  
## 2 2  
##  
## z : 
##       Cluster1  Cluster2     Cluster3 
## 1 1.059569e-11 0.9971625 2.837470e-03 
## 2 8.410580e-11 1.0000000 8.891566e-25

AIS Data

Load the Australian Institute of Sports data.

data(ais) 
hema  <- ais[,3:7]

Examine the various additional options around initialisation of the algorithm:

?MoE_control

Fit a parsimonious Gaussian mixture of experts MoEClust model to the
hematological variables within the AIS data, supplying sex in the expert network and
BMI in the gating network via formula interfaces. Include an additional noise
component by specifying it’s prior mixing proportion tau0. Toggle between allowing
the mixing proportion for the noise component depend on the gating concomitant
or not via the noise.gate argument. This time, allow the printing of messages to the
screen.

mod   <- MoE_clust(hema, G=1:3, expert= ~ sex, gating= ~ BMI,  
                   network.data=ais, tau0=0.1, noise.gate=FALSE)
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Visualise the results for the optimal model using a generalised pairs plot.

plot(mod, what="gpairs")

Replace the scatter plots in response vs. response panels with bivariate density
contours. Note that this is liable to be slow for models with expert network
covariates.

plot(mod, what="gpairs", response.type="density")
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Visualise the clustering uncertainty for the optimal model using a generalised pairs
plot.

plot(mod, what="gpairs", response.type="uncertainty")
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Instead visualise the clustering uncertainty in the form of an ordered profile plot
(type="barplot" can also be specified here).

plot(mod, what="uncertainty", type="profile")
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Plot the BIC of the visited models.

plot(mod, what="criterion", legendArgs=list(x="right"))
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Plot the gating network of the optimal model against the gating concomitant BMI.
Note the flat horizontal line of grey circles corresponding to the noise component
due to the specification of noise.gate=FALSE in the original function call.

plot(mod, what="gating", x.axis=ais$BMI, type="p", xlab="BMI", pch=1)

For the optimal model, plot the log-likelihood vs. the number of EM iterations.

plot(mod, what="loglik")
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Produce further visualisations for the Gaussian components with the aid of the 
lattice library.

require("lattice") 
z <- factor(mod$classification[mod$classification > 0],  
            labels=paste0("Cluster", seq_len(mod$G))) 
splom(~ hema | ais$sex, groups=z) 
splom(~ hema | z, groups=ais$sex)
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Chapter 3

Clustering Longitudinal Life-Course

Sequences using Mixtures of

Exponential-Distance Models

Abstract

Sequence analysis is an increasingly popular approach for the analysis of life

courses represented by categorical sequences, i.e. as an ordered collection of act-

ivities experienced by subjects over a given time period. Several criteria have been

introduced in the literature to measure pairwise dissimilarities among sequences.

Typically, dissimilarity matrices are employed as the input to heuristic clustering

algorithms, with the aim of identifying the most relevant patterns in the data.

Here, we propose a model-based clustering approach for categorical sequence

data. The technique is applied to a survey data set containing information on

the career trajectories, in terms of monthly labour market activities, of a cohort

of Northern Irish youths tracked from the age of 16 to the age of 22.

Specifically, we develop a family of methods for clustering sequence data di-

rectly based on mixtures of exponential-distance models, which we call MEDseq.

The Hamming distance, or weighted variants thereof, are employed as the distance

metric. The existence of closed-form expressions for the normalising constant us-

ing these metrics facilitates the development of an ECM algorithm for model fitting.

Additionally, MEDseq models allow the probability of component membership to
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depend on fixed covariates. Sampling weights, which are often associated with

life-course data arising from surveys, are also accommodated. The simultaneous

inclusion of both the weights and the covariates in the clustering process allows

new insights to be gleaned from the Northern Irish data.

Keywords: Life-course data, categorical sequences, exponential-distance models,

model-based clustering, weighted Hamming distance, gating covariates, survey

sampling weights.

3.1 Introduction

Sequence analysis (SA) is an umbrella term for tools defined to explore and de-

scribe categorical life-course data. Specifically, attention is focused on the ordered

sequence of states (or activities) experienced by individuals over a given time-

span (usually at T equally spaced discrete time periods). The goal of analysis is to

identify the most relevant patterns in the data. To this end, pairwise dissimilarities

among sequences in their entirety are first assessed. Dissimilarity matrices are

then employed to identify the most typical trajectories using, in the vast majority of

applications, cluster analysis.

Quantifying the distance between categorical sequences is not a trivial task.

Optimal matching (OM), developed by Abbott and Forrest (1986) and extended to

sociology by Abbott and Hrycak (1990), is popular among the SA community. OM is

derived from the edit distance originally proposed in the field of information theory

and computer science by Levenshtein (1966). The OM metric assigns costs to the

different types of edits, namely insertion, deletion, and substitution. Typically, in-

sertion and deletion are assigned a cost of 1 while substitution costs are allowed

to vary. However, specifying these costs involves subjective choices, and may lead

to violations of the triangle inequality if not done carefully. Several proposals in the

literature introduced criteria to improve or guide the choice of costs in OM. Also,

alternative dissimilarity criteria have been introduced to allow control over the im-

portance assigned to the characteristics of the sequences (namely, the collection of

experienced states, their timing, or their duration) in the assessment of their differ-

ences: see Studer and Ritschard (2016) for an excellent discussion. Even so, there
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are no results proving that one procedure is superior to the others, and the choice

of dissimilarity measure remains a fundamental choice left to the researcher.

Given a dissimilarity matrix D, obtained from a set of sequences S = (s1, ... , sn),

where n is the number of subjects, cluster analysis is usually applied to group se-

quences and to identify the most typical trajectories experienced by the sampled

individuals. Typically, heuristic clustering algorithms, either hierarchical or parti-

tional, are used. In many applications, it is also of interest to relate the sequences

to a set of baseline covariates. Within the described framework, this is solely done

by relating the uncovered clustering partition to covariates, using for example multi-

nomial logistic regression (MLR). This approach is questionable from a few points

of view. Firstly, the original sequences are substituted by a categorical variable

indicating clustering membership, thus disregarding the heterogeneity within clus-

ters. This is clearly only sensible when the clusters are sufficiently homogeneous.

However, a clear clustering structure can often be obtained only by increasing the

number of clusters (often with some clusters possibly small in size). More impor-

tantly, suitable partitions do not necessarily lead to suitable response variables as

input for the MLR. It thus seems desirable to cluster sequences and relate the

clusters to the covariates simultaneously.

To address these issues, we propose to cluster trajectories in a model-based

fashion, allowing the covariates to guide the construction of the clusters, rather

than leaving them exogenous to the clustering model. This permits to better un-

derstand if and to what extent specific covariates affect the typical sequence pat-

terns characterising each cluster. Model-based clustering methods typically as-

sume that the data arise from a finite mixture of G distributions; Bouveyron et al.

(2019) provide an excellent overview. In principle, any distribution can be used,

though the term ‘model-based clustering’ was popularised by Banfield and Raftery

(1993), in which the underlying distributions are assumed to be parsimoniously

parameterised multivariate Gaussians with component-specific parameters. Such

models have been recently extended to the mixture of experts setting (Gormley

and Frühwirth-Schnatter, 2019) to facilitate dependence on fixed covariates (Mur-

phy and Murphy, 2019). However, these models can be problematic when applied

to dissimilarity matrices, either due to non-identifiability or because the input data

are usually far from Gaussian. This problem cannot be addressed by applying mul-
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tidimensional scaling to D because the resulting low-dimensional configuration is

also typically far from Gaussian. Notably, our attempts to fit non-Gaussian mixtures

in these settings did not yield useful results.

Another popular framework for clustering categorical data is latent class analy-

sis (LCA; Lazarsfeld and Henry 1968)). Agresti (2002) shows the connection be-

tween model-based clustering and LCA. Such models are finite mixtures in which

the component distributions are assumed to be multi-way cross-classification ta-

bles with all variables mutually independent. Latent class regression models (Day-

ton and Macready, 1988) are particularly interesting, because their connection to

the mixture of experts framework permits the inclusion of covariates to predict the

latent class memberships. However, fitting such models is challenging when the

sequence length, the number of categories, or the number of latent classes are

even moderately large, due to the explosion in the number of parameters.

For the reasons mentioned above, we model the sequences directly, via par-

simonious mixtures of exponential-distance models. Exponential-distance models

typically depend on a central sequence and a precision parameter in a way that

relates to the chosen distance metric. Mostly for reasons of computational conve-

nience, we use dissimilarities based on simple matching, in particular the Hamming

distance (Hamming, 1950). This distance is liable to suffer from temporal rigidity,

since anticipations and/or postponements of the same choices in life courses are

not accounted for. Hence, similar sequences shifted by one time period may be

maximally distant from one another. While misalignment is less of a concern for

sequences exhibiting long durations in the same state, we address the issue using

weighted variants of the Hamming distance, characterised by a range of constraints

on the precision parameters in the mixture setting. This leads to the novel MEDseq

family of models, which can be seen as similar to a version of the k-medoids/PAM

algorithm (Kaufman and Rousseeuw, 1990) based on the Hamming distance with

some restrictions relaxed.

Our approach is illustrated using data from the 1999 sweep of the Status Zero

Survey (McVicar, 2000; McVicar and Anyadike-Danes, 2002) — henceforth re-

ferred to as the MVAD data — on the school-to-work trajectories experienced by a

cohort of Northern Irish youths. McVicar and Anyadike-Danes (2002) apply Ward’s

agglomerative hierarchical clustering algorithm (Ward, 1963) to an OM dissimilar-
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ity matrix to obtain G = 5 clusters of these trajectories, without performing model

selection. Thereafter, they use MLR to relate the hard assignments of trajectories

to the clusters to a set of baseline covariates. We instead cluster the MVAD data in

a model-based fashion, using the MEDseq model family, and allow the covariates

to guide the construction of the clusters by assuming they influence the probability

of component membership. Importantly, information is also available on the survey

sampling weights, which are only incorporated in the MLR stage of the analysis

in McVicar and Anyadike-Danes (2002). While sampling weights can be incorpo-

rated into heuristic clustering algorithms, such as Ward’s hierarchical clustering

(by weighting the linkages between clusters) or k-medoids, and subsequently in

the MLR, one of the advantages of our approach is that both the covariates and

the weights are incorporated simultaneously.

MEDseq models, like standard SA heuristic clustering algorithms and LCA

models, approach the clustering task from the holistic perspective of modelling

whole trajectories, in order to uncover groups of similar sequences. In contrast, a

number of multistate models employing finite mixtures with Markov components

(e.g. Melnykov 2016a; Pamminger and Frühwirth-Schnatter 2010) or with hid-

den Markov components (Helske et al., 2016) have recently attained popularity

for the analysis of categorical sequence data. Such models focus on modelling

instantaneous transitions within the life course and on factors that might explain

the probability of experiencing them. As described by Wu (2000), this amounts to

a difference between considering sequences in their entirety under the MEDseq

framework or as time-to-event processes under the Markovian framework.

The remainder of the article is organised as follows. Section 3.2 presents some

exploratory analysis of the MVAD data. Section 3.3 develops the MEDseq family

of mixtures of exponential-distance models that account for sampling weights and

allow potential dependency on covariates. Section 3.4 describes the model fitting

procedure and discusses factors affecting performance. Section 3.5 presents re-

sults for the MVAD data, including applications of MEDseq models and compari-

sons to other methods. The insights gleaned from the MVAD data under the optimal

MEDseq model are summarised in Section 3.6. The paper concludes with a brief

discussion on the MEDseq methodology and potential future extensions in Section

3.7. A software implementation for the full MEDseq model family is provided by
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the associated R package MEDseq (Murphy et al., 2019), which is available from

www.r-project.org (R Core Team, 2019), with which all results were obtained.

3.2 Status Zero Survey: MVAD Data

The term ‘MVAD data’ refers throughout to a cohort of n = 712 Northern Irish youths

aged 16 and eligible to leave compulsory education as of July 1993 who were

observed at monthly intervals until June 1999 as part of the Status Zero Survey

(McVicar, 2000; McVicar and Anyadike-Danes, 2002). The subjects were inter-

viewed about the labour market activities they experienced, distinguishing between

employment (EM), further education (FE), higher education (HE), joblessness (JL),

school (SC), or training (TR). Each observation i is represented by an ordered cat-

egorical sequence of length T = 72, with an alphabet of v = 6 possible categories,

e.g. si = (si ,1, si ,2, ... , si ,72)> = (SC,SC, ... ,TR,TR, ... ,EM,EM)>. Notably, the tran-

sitions HE SC and TR HE are never observed. The sequences share a com-

mon length, the time periods are equally spaced, and there are no missing data.

It is of interest to relate the MVAD sequences to covariates in order to under-

stand whether different characteristics — related to gender, community, geographic

and social conditions, and personal abilities — impact on the school-to-work tra-

jectories. These covariates are summarised in Table 3.1. All covariates were mea-

sured at the age of 16 (i.e. at the start of the study period in July 1993), with the

exception of ‘Funemp’ and ‘Livboth’, and are thus static background characteristics.

The MVAD data also come with associated observation-specific survey sampling

weights. Each sample was weighted based on the first state value at age 16, and

the ‘Grammar’ and ‘Location’ covariates (McVicar and Anyadike-Danes, 2002).

The MVAD data are available in the R packages MEDseq and TraMineR (Gabad-

inho et al., 2011). As the data have been used to illustrate some of the functionali-

ties of the TraMineR package in its associated vignette4, interesting features of an

exploratory analysis of the data can be found therein. However, we reproduce plots

of the transversal state distributions in Figure 3.1 and the transversal Shannon en-

tropies in Figure 3.2, i.e. the entropy of each time point of the state distribution

(Billari, 2001). Note that the sampling weights are accounted for in both cases.
4 cran.r-project.org/web/packages/TraMineR/vignettes/TraMineR-state-sequence.pdf
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3.2 Status Zero Survey: MVAD Data

Table 3.1: Available covariates for the MVAD data set. For binary covariates, the event denoted
by 1 is indicated. Otherwise, the levels of the categorical covariate ‘Location’ are grouped in curly
brackets.

Covariate Description

Gender 1=male

Catholic 1=yes

Grammar Type of secondary education, 1=grammar school

Funemp Father’s employment status as of June 1999, 1=employed

GCSE5eq Qualifications gained by the end of compulsory education,

1=5+ GCSEs at grades A-C, or equivalent

FMPR SOC code of father’s current or most recent job as of the beginning of the survey,

1=SOC1 (professional, managerial, or related)

Livboth Living arrangements as of June 1995, 1=living with both parents

Location {Belfast, N. Eastern, S. Eastern, Southern, Western}
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Figure 3.1: Overall state distribution for the weighted MVAD data.
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Figure 3.2: Transversal entropy plot for the weighted MVAD data.

Figure 3.1 shows that the number of subjects who found employment increased

over time. Conversely, fewer students were in training or further education by the

end of the observation period. Most students appear to have entirely left school

within 2/3 years of the commencement of the survey. Interestingly, many students

were jobless during the first two months of observation, possibly because this pe-

riod coincided with the summer break from school. Finally, while students only be-

gan to pursue higher education from July 1995 onwards, a number of students had

already pursued further education during the two preceding years. Figure 3.2 con-

firms that the heterogeneity of the state distribution varies over time. In particular,

the entropy declines after Sep 1995, by which point most students had left school.

3.3 Modelling

In this section, we introduce the family of MEDseq models. The exponential-

distance model is described in Section 3.3.1, extended to account for sampling

weights in Section 3.3.2, expanded into a family of mixtures in Section 3.3.3, and

finally embedded within the mixture of experts framework in Section 3.3.4 in order

to accommodate covariates.
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3.3.1 Exponential-Distance Models

For an arbitrary distance metric d(·, ·), a location parameter θ, and a precision

parameter λ, the probability mass function (PMF) of an exponential-distance model

for sequences is

f (si |θ,λ, d) =
exp(−λd(si ,θ))∑

si∈S′ exp(−λd(si ,θ))
= Ψ(λ,θ |T , v)−1 exp(−λd(si ,θ)) , (3.1)

with the corresponding log-likelihood function given by

`(θ,λ |S, d) =
n∑

i=1

log f (si |θ,λ, d) = −λ
n∑

i=1

d(si ,θ)− n log Ψ(λ,θ |T , v) . (3.2)

Such a model is analogous to the Gaussian distribution (characterised by the

squared Euclidean distance from the mean) and similar to the Mallows model for

permutations (Mallows, 1957). Indeed, mixtures of Mallows models have been

used to cluster rankings (Murphy and Martin, 2003). We only consider models

with λ ≥ 0. When λ = 0, the distribution of sequences is uniform. For λ > 0, the

central sequence θ is the mode, i.e. the sequence with highest probability, and

the probability of any other sequence decays exponentially as its distance from θ

increases. The precision parameter λ controls the speed of this decay. Larger λ

values cause sequences to concentrate around θ, tending toward a point-mass as

λ→∞. Notably, λ is not identifiable when all sequences are identical.

The log-likelihood in (3.2) is generally intractable, as the normalising constant

Ψ(λ,θ |T , v) depends on λ (and possibly also on θ, for some more complicated

distances), as well as the fixed constants T > 1 and v > 1, and requires a sum

over all possible sequences. With reference to the MVAD data, for example, the

computation of Ψ(λ,θ |T , v) is practically infeasible because there are vT = 672

possible sequences. Fortunately, however, the normalising constant exists in closed

form under the Hamming distance metric, dH(si , sj) =
∑T

t=1 1(si ,t 6= sj ,t), in a man-

ner which facilitates direct enumeration and crucially does not depend on θ. Con-

sider, for example, the Hamming distances between all ternary (v = 3) sequences

of length T = 4. From the arbitrary reference sequence (0, 0, 0, 0), there is 1

instance of a distance of 0, 8 instances of a distance of 1, 24 instances of a dis-
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tance of 2, 32 instances of a distance of 3, and 16 instances of a distance of 4.

Therefore, ΨH(λ |T , v) = e0 + 8e−λ + 24e−2λ + 32e−3λ + 16e−4λ. Hence, the nor-

malising constant under the Hamming distance metric depends on the parameter

λ, the sequence length T , and the number of categories v , and simplifies greatly:

ΨH(λ |T , v) =
T∑

p=0

(
T

p

)
(v − 1)p exp(−λp) =

(
(v − 1) e−λ + 1

)T
. (3.3)

Inspired by the generalised Mallows model (Irurozki et al., 2019), the model

in (3.1) based on the Hamming distance can be extended to one based on the

weighted Hamming distance. By introducing T precision parameters λ1, ... ,λT , one

for each time point (i.e. sequence position), and expressing the exponent in (3.1) as

dWH(si ,θ) =
∑T

t=1 λt1(si ,t 6= θt) rather than λdH(si ,θ) = λ
∑T

t=1 1(si ,t 6= θt), differ-

ent time points can contribute differently to the overall distance, weighted according

to the period-specific precision parameters. Thus, the distance from a sequence to

the central sequence under the weighted Hamming distance becomes a sum of the

precision parameters associated with each time point which differs from the corre-

sponding central sequence position. This allows modelling a situation in which

there is high consensus regarding the state values of some time period(s), with a

large uncertainty about the values of others, and can help to prevent sequences

the same distance from θ from having the same probability. Returning to the MVAD

data, the non-constant transversal entropies in Figure 3.2 suggest that such an ex-

tension may be fruitful. The extension requires rewriting the log-likelihood in (3.2)

with the weighted Hamming distance decomposed into its T components and the

normalising constant (3.3) also modified:

`(θ,λ1, ... ,λT |S, dWH) = −
n∑

i=1

[
T∑
t=1

(
λt1(si ,t 6= θt) + log

(
(v − 1) e−λt + 1

))]
.

Though other dissimilarity measures are available for sequences, we hence-

forth consider only the Hamming or weighted Hamming distances. In our setting,

dH(·, ·) can be seen as a special case of OM with all substitution costs equal to

λ and no insertions or deletions (see Appendix 3.D). In the sense of having time-

varying substitution costs, dWH (·, ·) is similar to the dynamic Hamming distance

(DHD; Lesnard, 2010), a prominent alternative to OM. However, the substitution
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costs in our model are always assumed to be common with respect to each pair

of states. Hence, dWH (·, ·) corresponds to the Gower distance (Gower, 1971) with

equally weighted states and equally or unequally weighted time points.

3.3.2 Incorporating Sampling Weights

Sampling weights are often associated with life-course data, as the data typically

arise from surveys where the weights are used to correct for representivity bias

or stratified sampling schemes. Following Chambers and Skinner (2003), the

sampling weights w = w1, ... ,wn are incorporated into the exponential-distance

model by exponentiating the likelihood of each sampled unit by the attached weight

wi , which is akin to unit i being observed wi times. The resultant pseudo likelihood

Lw(· | ·) reweights the likelihood contribution for each unit in order to rebalance the

information in the observed sample to approximate the balance of information in

the target finite population. The sampling weights w are thus interpretable as being

inversely proportional to the unit inclusion probabilities, remain fixed, and are con-

fined to those included in the sample. Notably, f (si |θ,λ, d)wi ∝ f (si |θ,wiλ, d),

such that the weights induce a unit-specific rescaling of the precision parameter; it

follows that the observed data are independent but not identically distributed.

A secondary benefit of this extension is that it facilitates computational gains in

the presence of duplicate observations. Such duplicates are quite likely when deal-

ing with discrete life-course data. Indeed, non-uniqueness can be exploited using

likelihood weights for computational efficiency, by fitting models to the subset of

unique sequences only, weighted by the sum of the sampling weights (if available,

otherwise wi = 1 ∀ i ) across each corresponding set of duplicates. In so doing, ob-

servations with different sampling weights which are otherwise duplicates are also

treated as duplicates, in such a way that the (pseudo) likelihood is unaltered. The

number of duplicates clearly lowers when considering both the sequences them-

selves and their associated covariate patterns. In particular, all observations are

unique when there are continuous covariates. Nonetheless, in many applications

— e.g. the MVAD data (see Table 3.1) — the covariates are all categorical. Hence,

exploiting non-uniqueness in this manner can be extremely computationally con-

venient, with or without existing sampling weights. For instance, only 557 of the

n = 712 sequences in the MVAD data set are distinct.
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3.3.3 A Family of Mixtures of Exponential-Distance Models

Extending the exponential-distance model with the Hamming distance and sam-

pling weights to the model-based clustering setting yields a weighted pseudo like-

lihood function of the form

Lw(λ,θ1, ... ,θG |S, w, dH) =
n∏

i=1

[
G∑

g=1

τg
exp(−λdH(si ,θg ))

((v − 1) e−λ + 1)T

]wi

,

where the mixing proportions τ1, ... , τG are positive and sum to 1. Thus, the clus-

tering approach is both model-based and distance-based, thereby bridging the gap

between these two ‘cultures’ in the SA community.

The mixture setting naturally suggests a further extension, whereby the preci-

sion parameter λ can be constrained or unconstrained across clusters, in addition

to the aforementioned possibility for the precision parameters to be constrained or

unconstrained across time points. Within a family of models we term ‘MEDseq’, we

thus define the CC, UC, CU, and UU models, where the first letter denotes whether

precision parameters are constrained (C) or unconstrained (U) across clusters and

the second denotes the same across time points. Hence, all but the CC model

employ different weighted variants of the Hamming distance.

Given the role played by λ when it takes the value 0, whereby the distribution of

the sequences is uniform, it is convenient and natural to include a noise component

(denoted by N) whose single precision parameter is fixed to 0. This extension can

be added to each of the 4 models above, regardless of how the precision parame-

ters are otherwise specified. This completes the MEDseq model family with the

CCN, UCN, CUN, and UUN models. When G = 1, the CC, CU, and CCN models

can be fitted. When G = 2, the CCN and CUN models are equivalent to the

UCN and UUN models, respectively, as there is only one non-noise component.

As the noise component arises naturally from restricting the parameter space, we

consider the noise component as one of the G components, denoted hereafter with

the subscript 0. All 8 model types are summarised further in Appendix 3.A.
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3.3.4 Incorporating Covariates

We now illustrate how to incorporate the available covariate information into the

clustering process, both to guide the construction of the clusters and to better in-

terpret the type of observation characterising each cluster. As is typical for model-

based clustering analyses, the data are augmented in MEDseq models by introduc-

ing a latent cluster membership indicator vector zi = (zi ,1, ... , zi ,G )>, where zi ,g = 1

if observation i belongs to cluster g and zi ,g = 0 otherwise. An advantage of the

MEDseq approach is that it can be easily extended to incorporate the possible

effects of covariates on the sequence trajectories by allowing the covariates to in-

fluence the distribution of the latent variable zi .

The inclusion of covariates is achieved under the mixture of experts frame-

work (Jacobs et al., 1991; Gormley and Frühwirth-Schnatter, 2019), by extending

the mixture model to allow the mixing proportions for observation i to depend on

covariates xi . This is particularly attractive as the interpretation of the remaining

component-specific parameters is the same as it would be under a model without

covariates. For example, in the case of the CC MEDseq model

f (si |λ,θ1, ... ,θG , xi ,wi , dH) =

[
G∑

g=1

τg (xi)
exp(−λdH(si ,θg ))

((v − 1) e−λ + 1)T

]wi

,

where the mixing proportions τg (xi) are referred to as ‘gates’ or the ‘gating net-

work’, with τg (xi) > 0 and
∑G

g=1 τg (xi) = 1, as usual. Such a model can be seen

as a conditional mixture model (Bishop, 2006) because, given the covariates xi ,

the distribution of the sequences is a finite mixture model under which zi has a

multinomial distribution with a single trial and probabilities equal to τg (xi). The

distance-based k-medoids algorithm, though closely related (see Section 3.4.2),

does not accommodate the inclusion of covariates.

Incorporating covariates in ‘hard’ clustering algorithms using MLR, as done by

McVicar and Anyadike-Danes (2002), has been criticised because the hard as-

signment of extraneous cases can negatively impact internal cluster cohesion and

the MLR coefficient estimates (Piccarreta and Studer, 2019). An advantage of

the noise component in MEDseq models is that it captures uniformly distributed

sequences that deviate from those in the other, more defined clusters. Filtering

109



3.4 Model Estimation

outliers in this way lessens their impact on the non-noise gating network coeffi-

cients, thereby enabling more accurate inference and improving the interpretability

of the effects of the covariates. Moreover, the ‘soft’ partition obtained under the

model-based paradigm allows the cluster membership probabilities for sequences

lying on the boundary between two neighbouring clusters to be quantified and the

effect of such sequences on the gating network coefficients to be mitigated.

As per Murphy and Murphy (2019), the CCN, UCN, CUN, and UUN models

which include an explicit noise component can be restricted to having covariates

only influence the mixing proportions for the non-noise components, with all ob-

servations therefore assumed to have equal probability of belonging to the uniform

noise component (i.e. by replacing τ0(xi) with τ0). We refer to the former setting as

the gated noise (GN) model and to the latter as the non-gated noise (NGN) model.

Gating covariates can only be included when G ≥ 2 under the GN model or when

there are 2 or more non-noise components under the NGN model.

3.4 Model Estimation

This section describes the strategy employed for model fitting and some implemen-

tation issues that arise in practice. Specifically, Section 3.4.1 outlines the ECM

algorithm employed for parameter estimation, Section 3.4.2 discusses the initial-

isation of the ECM algorithm with reference to the similarities between MEDseq

models and the k-medoids algorithm, and the issues of model selection and vari-

able selection are treated in Section 3.4.3.

3.4.1 Model Fitting via ECM

Parameter estimation is greatly simplified by the existence of a closed-form ex-

pression for the normalising constant for MEDseq models under the Hamming or

weighted Hamming distances. We focus on maximum (pseudo) likelihood esti-

mation using a simple variant of the EM algorithm (Dempster et al., 1977). For

simplicity, model fitting details are described chiefly for the CC MEDseq model

with sampling weights and gating covariates. Additional details for other model

types are deferred to Appendix 3.B. The complete data pseudo likelihood for the

CC model is given by
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Lw
c (λ,θ1, ... ,θG |S, X, Z, w, dH) =

n∏
i=1

[
G∏

g=1

(
τg
(
xi

) exp(−λdH(si ,θg ))

((v − 1) e−λ + 1)T

)zi ,g]wi

,

and the complete data pseudo log-likelihood hence has the form

`w
c (λ,θ1, ... ,θG |S, X, Z, w, dH) =

n∑
i=1

G∑
g=1

zi ,gwi [ log τg
(
xi

)
− λdH(si ,θg )

−T log
(
(v − 1) e−λ + 1

)]
.

(3.4)

Under this model, the distribution of si depends on the latent cluster membership

variable zi , which in turn depends on covariates xi , while si is independent of xi

conditional on zi .

The iterative algorithm for MEDseq models follows in a similar manner to that

for standard mixture models. It consists of an E-step (expectation) which replaces

for each observation the missing data zi with their expected values ẑi , followed

by a M-step (maximisation), which maximises the expected complete data pseudo

log-likelihood. The M-step is replaced by a series of conditional maximisation (CM-

steps) in which each parameter is maximised individually, conditional on the other

parameters remaining fixed. Hence, model fitting is in fact conducted using an

expectation conditional maximisation (ECM) algorithm (Meng and Rubin, 1993).

Aitken’s acceleration criterion is used to assess convergence of the non-decreasing

sequence of weighted pseudo log-likelihood estimates (Böhning et al., 1994). Pa-

rameter estimates produced on convergence achieve at least a local maximum of

the pseudo likelihood function. Upon convergence, cluster memberships are esti-

mated via the maximum a posteriori (MAP) classification.

The E-step (with similar expressions when λ is unconstrained across clusters

and/or time points) involves computing expression (3.5), where (m + 1) is the cur-

rent iteration number:

ẑ
(m+1)
i ,g = E

(
zi ,g

∣∣ si , xi , θ̂
(m)
g , λ̂(m), β̂(m)

g ,wi , dH

)
=

τ̂
(m)
g

(
xi

)
f
(
si
∣∣ θ̂(m)

g , λ̂(m),wi , dH

)∑G
g=1 τ̂

(m)
g

(
xi

)
f
(
si
∣∣ θ̂(m)

g , λ̂(m),wi , dH

) .
(3.5)

Note that the weights wi in the numerator and denominator cancel each other out,

leaving the E-step unchanged regardless of the inclusion or exclusion of weights.
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Subsequent subsections describe the CM-steps for estimating the remaining

parameters in the model. These individual CM-steps rely on the current estimates

Ẑ(m+1) =
(
ẑ(m+1)
1 , ... , ẑ(m+1)

n

)
to provide estimates of the regression coefficients

β̂
(m+1)
g , and hence the mixing proportion parameters τ̂ (m+1)

g (xi), as well as the cen-

tral sequence(s) θ̂(m+1)
g and component precision parameter(s) λ̂(m+1). It is clear

from (3.4) that the sampling weights can be accounted for by simply multiplying

every ẑ
(m+1)
i by the corresponding weight wi . Conversely, in the CM-steps which

follow, corresponding formulas for unweighted MEDseq models can be recovered

by replacing ẑ
(m+1)
i ,g wi with ẑ

(m+1)
i ,g . The sampling weights for the MVAD data sum to

≈ 711.52, rather than n = 712 though the parameter estimates are not affected by

multiplying the weights by a constant value. However, to account for the different

characteristics of different weighting systems, all relevant subsequent formulas ex-

plicitly account for the sum of the weights, with W =
∑n

i=1 wi , so as to focus on the

relative importance of each case as a representative of cases in the population.

3.4.1.1 Estimating the Gating Network Coefficients

The portion of (3.4) corresponding to the gating network, given by

n∑
i=1

G∑
g=1

zi ,gwi log τg
(
xi

)
,

is of the same form as a MLR model with weights given by wi , here written with

component 1 as the baseline reference level, for identifiability reasons:

log
τg (xi)

τ1(xi)
= log

Pr(zi ,g = 1)

Pr(zi ,1 = 1)
= x̃iβg ∀ g ≥ 2, with β1 = (0, ... , 0)>,

where x̃i = (1, xi). Thus, methods for fitting such models can be used to maximise

the expectation of this term at each iteration to find estimates of the regression

parameters in the gating network β̂(m+1)
g and hence the mixing proportions via

τ̂ (m+1)
g (xi) =

exp
(

x̃i β̂
(m+1)
g

)
∑G

g=1 exp
(

x̃i β̂
(m+1)
g

) .
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When there are no gating covariates, the mixing proportions are estimated by

τ̂
(m+1)
g = W−1∑n

i=1 ẑ
(m+1)
i ,g wi , i.e. the weighted mean of the g -th column of the

matrix Ẑ(m+1). However, τ can also be constrained to be equal (i.e. τg = 1/G ∀ g )

across clusters. Thus, situations where τi ,g = τg (xi), τi ,g = τg , or τi ,g = 1/G

are accommodated.

The standard errors of the MLR in the gating network at convergence are not a

valid means of assessing the uncertainty of the coefficient estimates as the cluster

membership probabilities are estimated rather than fixed and known. Therefore, we

adapt the weighted likelihood bootstrap (WLBS) of O’Hagan et al. (2019) to the

MEDseq setting. This is easily implemented by multiplying the sampling weights wi

by draws, for each of B samples, from an n-dimensional symmetric uniform Dirichlet

distribution. Here, B = 1000 is used to ensure stable estimation of the standard er-

rors. To ensure rapid convergence, the estimated Ẑ matrix under the optimal model

fit to the full data set is used to initialise the ECM algorithm when refitting models

to each sample with corresponding new likelihood weights. Finally, the standard

errors of the gating network coefficients across the B samples are obtained.

3.4.1.2 Estimating the Central Sequences

The location parameter θ is sometimes referred to as the Fréchet mean or the

central sequence. The k-medoids/PAM algorithm, which is closely related to the

MEDseq models with certain restrictions imposed (see Section 3.4.2), fixes the

estimate of θ̂g to be the medoid of cluster g (Kaufman and Rousseeuw, 1990), i.e.

the observed sequence with minimum distance from the others currently assigned

to the same cluster. This estimation approach is especially quick as the Hamming

distance matrix for the observed sequences is pre-computed. Notably, this greedy

search strategy may fail to find the optimum solution.

However, it can be shown — for a single unweighted exponential-distance

model based on the Hamming distance — that θ̂ is given simply by the modal

sequence, which is intuitive when dH(si , sj) is expressed as T −
∑T

t=1 1(si ,t = sj ,t).

Thus, the parameter has a natural interpretation. For more complicated distance

metrics, the first-improvement algorithm (Hoos and Stützle, 2004) or a genetic al-

gorithm could be used to estimate θ. Notably, the modal sequence need not be an
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observed sequence. It is also notable that the Fréchet mean may be non-unique

under any of the proposed estimation strategies.

For the G > 1 MEDseq setting, under the ECM framework, central sequence

position estimates θ̂(m+1)
g ,t are given by arg minϑ

(∑n
i=1 ẑ

(m+1)
i ,g wi1(si ,t 6= ϑ)

)
. Since

this expression is independent of the precision parameter(s), it holds for all MED-

seq model types, including those which employ the weighted Hamming distance

variants. Thus, θ̂g is estimated easily and exactly via a type of weighted mode,

which is composed, for each position in the sequence, by the category correspond-

ing to the maximum of the sum of the weights ẑ
(m+1)
i ,g wi associated with each of the

v observed state values. Similarly, the central sequence under a weighted G = 1

model is also estimated via a weighted mode, with the weights given only by wi .

Notably, to estimate the Fréchet mean for a MEDseq model of any type without

sampling weights, one need only remove wi from these terms. Note also that θ0
does not need to be estimated for the models with an explicit noise component as

it does not contribute to the likelihood.

3.4.1.3 Estimating the Precision Parameters

It is worth noting, for the exponential-distance model in general, with any distance

metric, that the method of moments estimate for λ is equal to the maximum likeli-

hood estimate (MLE). This is because, for fixed θ, the PMF in (3.1) belongs to the

exponential family with natural parameter λ. Hence, with θ̂ already estimated as

per Section 3.4.1.2, λ̂ ensures that the expected distance of observations from θ̂

is equal to the observed average distance from θ̂, since the solution of

∂`(λ |S, θ̂, d)

n∂λ
=

∑
si∈S′ d

(
si , θ̂

)
exp
(
−λd

(
si , θ̂

))∑
si∈S′ exp

(
−λd

(
si , θ̂

)) − 1

n

n∑
i=1

d(si , θ̂)

implies

Eλ(d(S, θ̂)) =

∑
si∈S′ d

(
si , θ̂

)
exp
(
−λd

(
si , θ̂

))∑
si∈S′ exp

(
−λd

(
si , θ̂

)) = d
(
S, θ̂

)
=

1

n

n∑
i=1

d
(
si , θ̂

)
. (3.6)

114



3.4 Model Estimation

Under the Hamming distance, the value of the expectation in (3.6) holds with

any arbitrary reference sequence in place of θ̂. Hence, with known θ̂, the MLE for

λ for an unweighted single-component CC model can be obtained as follows:

`
(
λ |S, θ̂, dH

)
= −λndH

(
S, θ̂

)
− nT log

(
(v − 1) e−λ + 1

)
,

∂` (·)
∂λ

=
nT (v − 1)

eλ + (v − 1)
− ndH

(
S, θ̂

)
,

∴ λ̂ = log

(
(v − 1)

(
T

dH

(
S, θ̂

) − 1

))
,

which notably relies on the inverse of the average Hamming distance normalised

by the sequence length T . However, this can yield a negative value for λ̂. Recall

that we only consider λ ≥ 0. Since all distances are non-negative and typically

not identical, ∂`(·)
∂λ

is negative ∀ λ > 0 in the case where the sufficient statistic

dH

(
S, θ̂

)
> v−1T (v − 1), with limλ→∞

∂`(·)
∂λ

= −ndH

(
S, θ̂

)
. Thus,

λ̂ = max

(
0, log

(
(v − 1)

( T

dH

(
S, θ̂

) − 1
)))

.

When dH

(
S, θ̂

)
< v−1T (v − 1), such that λ̂ > 0, the identity log(c (a/b − 1)) =

log(c) + log(a − b) − log(b) is used for numerical stability, otherwise λ̂ is set to 0.

When sampling weights are included, following the same steps as above yields the

corresponding estimate

λ̂ = max

(
0, log(v − 1) + log

(
TW∑n

i=1 widH

(
si , θ̂

) − 1

))
. (3.7)

While λ̂ can potentially be estimated as zero, the inclusion of a noise component in

the CCN, UCN, CUN, and UUN models makes this explicit, by restricting one of the

clusters to have λ̂g ,t = 0 ∀ t = 1, ... ,T . When λ̂g ,t is either estimated as zero or set

to zero, estimating the corresponding θg ,t parameter has no effect on the likelihood.
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The ECM algorithm is employed when G > 1, in which case the CM-step for

λ̂(m+1) under a CC MEDseq mixture model with sampling weights is given by

∂`w
c (·)
∂λ

=
T (v − 1)

∑n
i=1

∑G
g=1 zi ,gwi

eλ + (v − 1)
−

n∑
i=1

G∑
g=1

zi ,gwidH

(
si , θ̂g

)
,

∴ λ̂(m+1) = max

(
0, log(v − 1) + log

(
T
∑n

i=1

∑G
g=1 ẑ

(m+1)
i ,g wi∑n

i=1

∑G
g=1 ẑ

(m+1)
i ,g widH

(
si , θ̂

(m+1)
g

) − 1

))
.

(3.8)

As per (3.7), this requires the current estimate of each component’s central se-

quence. Again, as each case has wi = 1 when there are no sampling weights,

one need only drop the wi and W terms from (3.7) and (3.8) to estimate the preci-

sion parameters of unweighted MEDseq models. The expressions for the weighted

complete data pseudo likelihoods and corresponding CM-steps for their precision

parameters are given for the remaining MEDseq model types in Appendix 3.B.

3.4.2 ECM Initialisation

The MEDseq models share relevant features with the k-medoids/PAM algorithm

based on the Hamming distance. Indeed, MEDseq models differ from PAM only

in that i) θg is estimated by the modal sequence rather than the medoid, ii) τ is

estimated, or even dependent on covariates via τg (xi), rather than constrained to

be equal, iii) λ is allowed to vary across clusters and/or time points, iv) a noise

component can be included, and v) the ECM algorithm rather than the classifi-

cation EM algorithm (CEM; Celeux and Govaert, 1992) is used. The C-step of

the CEM algorithm employed by PAM uses deterministic assignments z̃
(m+1)
i ,g =

arg maxg
(
ẑ
(m+1)
i ,g

)
, for which the denominator in (3.5) need not be evaluated.

In other words, it can be shown that a CC model fitted by CEM (albeit with

conditional maximisation steps), with equal mixing proportions and the central se-

quences estimated by the medoid rather than the modal sequence, is equivalent to

k-medoids based on the Hamming distance. Therefore, we apply the k-medoids

algorithm to the Hamming distance matrix to initialise the ECM algorithm by ob-

taining ‘hard’ starting values for the allocation matrix Z. In particular, we rely on a
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weighted version of PAM available in the R package WeightedCluster (Studer,

2013). This strategy is less computationally onerous than using multiple random

starts and in our experience also achieves better results than using Ward’s hierar-

chical clustering to inform starting values.

For models with an explicit noise component, it is necessary to supply an initial

guess of the prior probability τ0 that observations are noise, and initialise alloca-

tions, assuming the last component is the one associated with λg = 0, by multiply-

ing the initial Z matrix by 1− τ0 and appending a column in which each entry is τ0.

We caution that the initial τ0 should not be too large.

3.4.3 Model Selection

In the MEDseq setting, the notion of model selection refers to identifying the optimal

number of components G in the mixture and finding the best MEDseq model type in

terms of constraints on the precision parameters. Variable selection on the subset

of covariates included in the gating network can also improve the fit. For a given

set of covariates, one would typically evaluate all model types over a range of G

values and choose simultaneously both the model type and G value according to

some criterion. Thereafter, different fits with different covariates can be compared

according to the same criterion.

The Bayesian Information Criterion (BIC; Schwarz 1978) includes a penalty

term which depends on the number of free parameters. Notably, the penalty term

in our setting uses log(W ) rather than log(N). Preliminary analyses (e.g. Section

3.5.1) suggest that this penalty term is not strict enough. Moreover, it is infeasi-

ble to calculate an exact, non-asymptotic expression of this criterion due to the

difficulty in computing the marginal likelihood in the presence of discrete central

sequence parameters and a normalising constant which depends on the precision

parameter(s). Indeed, approaches relying on parameter counts may not be fruitful

in general for categorical sequence data, although this may simply be an artefact

of the (weighted) Hamming distance metrics employed. Nevertheless, the num-

ber of free parameters in the BIC penalty term under each MEDseq model type is

summarised in Appendix 3.A.
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We turn to silhouette analysis approaches to assess the quality of the clus-

tering in terms of internal cluster cohesion, where high cohesion indicates high

between-group distances and strong within-group homogeneity. Typically the sil-

houette width is defined for clustering methods which produce a ‘hard’ partition

(Rousseeuw, 1987), and the average silhouette width (ASW) or weighted aver-

age silhouette width (wASW; Studer 2013) is used as a model selection criterion.

However, Menardi (2011) introduces the density-based silhouette (DBS) for model-

based clustering methods. This allows the ‘soft’ assignment information to be used,

which would be discarded when using the MAP assignments in the computation of

the wASW. The empirical DBS for observation i is given by

d̂bs i =

log

(
ẑ0i

ẑ1i

)

max h=1,...,n

(∣∣∣∣∣log

(
ẑ0h

ẑ1h

)∣∣∣∣∣
). (3.9)

As observations are assigned to clusters based on the MAP classification, d̂bs i is

proportional to the log-ratio of the posterior probability associated with the MAP

assignment of observation i (denoted by ẑ0i ) to the maximum posterior probability

that the observation belongs to another cluster (denoted by ẑ1i ). Use of the MAP

classification implies 0 ≤ d̂bs i ≤ 1 ∀ i , with high values indicating a well-clustered

data point. Ultimately, the mean or the median of
{
d̂bs1, ... , d̂bsn

}
can be used

both as a global quality measure and as a model selection criterion.

We employ a version of this criterion which is modified in two ways, both to

identify optimal models and as a means of validating the chosen model. Firstly,

we identify a set of crisply assigned observations having ẑ1i lower than a tolerance

parameter ε, here set equal to 10−100. These observations are given d̂bs i values

of 1 and are excluded from the computation of the maximum in the denominator

of (3.9) for reasons of numerical stability. Secondly, we account for the sampling

weights by computing a weighted mean density-based silhouette criterion (wDBS).

However, neither the wDBS nor wASW criteria are defined for G = 1.

Greedy stepwise selection can be used to further refine the models, in terms

of guiding the inclusion/exclusion of gating covariates. We propose a bi-directional
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search strategy in which each step can potentially consist of adding or removing

a covariate or adding or removing a non-noise component. Every potential action

is evaluated over all possible model types at each step, rather than considering

changing the model type as an action in itself. Changing the gating covariates or

changing the number of components can affect the model type, as observed by

Murphy and Murphy (2019). While this makes the stepwise search more compu-

tationally intensive, it is less likely to miss optimal models as it explores the model

space. For steps involving both gating covariates and a noise component, models

with both the GN and NGN settings can be evaluated and potentially selected.

A backward stepwise search starts from the model including all covariates that

is considered optimal in terms of the number of components G and of the MEDseq

model type. On the other hand, a forward stepwise search uses the optimal model

with no covariates included as its starting point. In both cases, the algorithm ac-

cepts the action yielding the highest increase in the wDBS criterion at each step.

The computational benefits of upweighting unique cases and discarding redundant

cases are stronger for the forward search, as early steps with fewer covariates are

likely to have fewer unique cases across sequence patterns and covariates.

3.5 Analysing the MVAD Data

Results of fitting MEDseq models to the MVAD data are provided in Section 3.5.1.

All results were obtained via the associated R package MEDseq (Murphy et al.,

2019). A comparison against other approaches, including hierarchical, partitional,

and model-based clustering methods, is included in Section 3.5.2. A discussion of

the insights gleaned from the solution obtained by the optimal MEDseq model is

deferred to Section 3.6.

Due to the weighting scheme used by McVicar and Anyadike-Danes (2002),

all results are obtained on a version of the data with the first time point removed.

Similarly, the term ‘all covariates’ henceforth refers to all covariates in Table 3.1

except ‘Grammar’ and ‘Location’. While Murphy and Murphy (2019) show that the

same covariate can affect more than one part of a mixture of experts model, and

in different ways, removing the quantities used to define the weights eases the

interpretability of the results.
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3.5 Analysing the MVAD Data

3.5.1 Application of MEDseq

Weighted MEDseq models are fit across a range of G values, across all 8 model

types, with all covariates included in the gating network. The noise components,

where applicable, are treated using the GN setting. Figure 3.3 shows the behaviour

of the BIC for these models. Similar behaviour is observed for the ICL criterion

(Biernacki et al., 2000). Evidently the penalty terms based on parameter counts

for these criteria are not large enough. Values of both criteria do not start to de-

crease until the number of components is very large and models with too many

poorly populated components are identified. Thus, both are deemed inadequate

as a means of selecting optimal MEDseq models. The k-fold cross-validated like-

lihood, a model selection criterion which is free from parameter-counting (Smyth,

2000), also penalises insufficiently (with k = 10 folds). The Normalised Entropy

Criterion (Celeux and Soromenho, 1996), on the other hand, identifies a model

with too few components (G = 2).

However, using the wDBS criterion (see Figure 3.4), and again discarding so-

lutions with too few components, a reasonable G = 10 UCN model is identified as

optimal. Thus, the performance of the wDBS criterion in this setting is found to be

superior to the various criteria described above. The same model type and number

of components are identified as optimal according to the wDBS criterion when the

noise components are treated with the NGN setting, and when the same analysis

is repeated with no gating covariates at all. Notably, the wDBS criterion yields the

same optimal model in both the GN and NGN settings, and the setting with covari-

ates excluded entirely, regardless of whether the weighted mean or the weighted

median of
{
d̂bs1, ... , d̂bsn

}
is used. Interestingly, G = 10 appears to roughly coin-

cide with the elbow in Figure 3.3 where the BIC values begin to plateau. Hence,

the BIC can provide useful, if not rigorous, information.
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Figure 3.3: BIC values for weighted MEDseq models across a range of G values and model types.
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Figure 3.4: wDBS values for weighted MEDseq models across a range of G values and model
types.
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3.5 Analysing the MVAD Data

In refining the model further via greedy stepwise selection, both the forward

search (see Table 3.2) and backward search (see Table 3.3) begin with the same

number of components and the same model type. Covariates used to define the

sampling weights are excluded in both cases. Both searches converge to the same

G = 10 UCN model with the covariates ‘FMPR’, ‘GCSE5eq’, and ‘Livboth’ in the

GN gating network. Under this model, the probability of belonging to the noise com-

ponent also depends on the included covariates. Notably, the differences between

the respective clusterings produced by the models including no covariates, all co-

variates, and the subset of covariates obtained by stepwise selection are marginal.

This can be seen by computing the inner products between all pairs of Ẑ matrices

at convergence. For all three pairwise comparisons, the result, when normalised by

its row sums, differs only slightly from the 10-dimensional identity matrix. However,

the model uncovered by stepwise selection yields both the highest wDBS value

and highest BIC value. In any case, the inclusion of covariates helps inform the

interpretation of the clusters, even if not so much their construction.

Table 3.2: Summary of the steps taken to improve the wDBS criterion in the forward direction.

Optimal Step G Model Type Gating Covariates Gating Type wDBS

— 10 UCN — — 0.4699

Add ‘GCSE5eq’ 10 UCN GCSE5eq GN 0.4724

Add ‘Livboth’ 10 UCN FMPR, Livboth NGN 0.4731

Add ‘FMPR’ 10 UCN FMPR, GCSE5eq, Livboth GN 0.4745

Stop 10 UCN FMPR, GCSE5eq, Livboth GN 0.4745

Table 3.3: Summary of the steps taken to improve the wDBS criterion in the backward direction.

Optimal Step G Model Type Gating Covariates Gating Type wDBS

— 10 UCN Catholic, FMPR, Funemp, GN 0.4717

GCSE5eq, Gender, Livboth

Remove ‘Catholic’ 10 UCN FMPR, Funemp, GCSE5eq, Gender, Livboth GN 0.4735

Remove ‘Funemp’ 10 UCN FMPR, GCSE5eq, Gender, Livboth GN 0.4740

Remove ‘Gender’ 10 UCN FMPR, GCSE5eq, Livboth GN 0.4745

Stop 10 UCN FMPR, GCSE5eq, Livboth GN 0.4745

These results are not sensitive to the dropping of the first time point or the co-

variates used to define the sampling weights. Repeating the analysis above with

these quantities retained leads to identical inference on the number of components,

the MEDseq model type, and the gating covariates identified via stepwise selec-

tion. When repeating the analysis with the sampling weights discarded entirely, the
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3.5 Analysing the MVAD Data

results differ only in that ‘Funemp’ is identified by stepwise selection rather than

‘FMPR’. Finally, in order to ascertain the robustness of the results to a coarsening

of the sequences, the analysis was repeated once more with the data subsetted

into six-monthly intervals. Again, identical inference was obtained. The ECM al-

gorithm’s runtime was not greatly improved in doing so. Indeed, MEDseq models

scale more poorly with n rather than T (and also v ), as the number of (pseudo)

likelihood evaluations for large data sets is more computationally expensive than

the number of simple distance evaluations required for long sequences.

3.5.2 Other Clustering Methods

To contrast the MEDseq results with those obtained by other methods, MED-

seq models with no covariates and all covariates are compared, in Figure 3.5,

against weighted versions of k-medoids, using the R package WeightedCluster

(Studer, 2013), and Ward’s hierarchical clustering, both based on the Hamming

distance. Finite mixtures with first-order Markov components, fit via the R package

ClickClust (Melnykov, 2016b), are also included in the comparison. LCA and la-

tent class regression, fit via the R package poLCA (Linzer and Lewis, 2011), are not

included, as they encounter computational difficulties due to the explosion in the

number of parameters even for G = 3. As ‘soft’ cluster assignment probabilities

are not available for k-medoids or Ward’s hierarchical clustering, their wDBS values

cannot be compared. Thus, Figure 3.5 illustrates a comparison of the wASW val-

ues using the MAP classifications where necessary; in so doing, the soft clustering

information is discarded.

The ClickClust package allows the initial state probabilities to be either es-

timated or equal to 1/v for all categories; both scenarios were considered. Other

function arguments were set to their default values. Only the MEDseq models

accommodate gating covariates, while all models except the ClickClust models

accommodate the sampling weights. In all cases, the first time point was dropped.

Only the MEDseq model type with the highest wASW for each G value is shown,

for clarity. The wASW values for the ClickClust models are not shown; they are

approximately 0.11 for G ≤ 4, and negative thereafter. Across all G values, one of

the MEDseq model types always outperforms its competitors.
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Figure 3.5: Values of the wASW criterion, using Hamming distances, for the best MEDseq model
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3.6 Discussion of the MVAD Results

While the wASW values for the ClickClust models being close to zero or even

negative shows inferior clustering behaviour, this method also returns a Ẑ matrix

of cluster membership probabilities. Thus, these models can be compared to the

MEDseq models in terms of the wDBS criterion also. This is shown in Figure

3.6. Again, only the best model of each type is shown for each G value. The

MEDseq models again exhibit the best performance across the entire range of G

values. Notably, the optimal ClickClust model according to BIC has only G = 2

components. An advantage of ClickClust is that it allows sequences of unequal

lengths, but this is not a concern for the MVAD data.

The R package seqHMM (Helske and Helske, 2019) provides tools for fitting mix-

tures of hidden Markov models, with gating covariates influencing cluster member-

ship probabilities. However, the sampling weights are not accommodated. Such

models allow cluster memberships to evolve over time, similar to mixed member-

ship models (Airoldi et al., 2014). They thus cannot be directly compared to MED-

seq models. However, we note that the seqHMM package provides a pre-fitted model

for the MVAD data with 2 clusters — with 3 and 4 hidden states, respectively — and

no covariates. Replicating the same model with the first time point omitted and oth-

erwise using the same function arguments yields a model with wDBS=0.50 and

wASW=0.23. Otherwise identical seqHMM models, including either all covariates or

only those deemed optimal for the MEDseq model using stepwise selection, both

achieve wDBS=0.47 and wASW=0.23. Notably, these wDBS values are compara-

ble (albeit inferior) to those for MEDseq models with G = 2, while the wASW values

are much worse.

3.6 Discussion of the MVAD Results

The clusters uncovered by the G = 10 UCN model deemed optimal according to

the wDBS criterion for the MVAD data are shown in Figure 3.7. Seriation has been

applied using the overall Hamming distance matrix (Hahsler et al., 2008) to group

observations within clusters for visual clarity. To better inform a discussion of these

results, corresponding central sequence estimates are shown in Figure 3.8 and the

average time spent in each state by cluster — weighted by the estimated cluster

membership probabilities — is shown in Table 3.4, along with the cluster sizes.
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Figure 3.7: Clusters uncovered using the wDBS criterion for the optimal 10-component UCN model
with stepwise selection of covariates. Note that the duplicate observations previously discarded
during model fitting have been restored for the purposes of this visualisation.
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Figure 3.8: Central sequences of the optimal 10-component UCN model with stepwise selection of
covariates. The noise component’s central sequence is not shown, as it does not contribute to the
likelihood.

Table 3.4: Average time (in months) spent in each state by cluster, weighted by the estimated
cluster membership probabilities, for the optimal 10-component UCN model with stepwise selection
of covariates. Estimated cluster sizes n̂g correspond to the MAP partition.

Cluster (g ) n̂g EM FE HE JL SC TR

1 79 47.79 1.79 0.00 2.29 0.50 18.63

2 46 9.67 4.38 0.00 43.96 2.76 10.23

3 138 33.66 30.96 1.16 3.31 0.73 1.18

4 155 61.83 2.99 0.00 3.55 0.48 2.15

5 65 28.25 2.84 0.00 5.11 0.89 33.91

6 30 6.42 33.27 7.40 4.23 16.36 3.32

7 39 37.68 2.81 2.59 2.68 23.73 1.52

8 57 4.46 27.19 37.79 0.77 0.79 0.00

9 87 4.44 0.50 38.00 1.35 26.41 0.30

Noise 16 14.15 17.66 1.97 14.39 2.37 20.46
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3.6 Discussion of the MVAD Results

This solution tends to group individuals who experienced trajectories that are

similar or that differ only for relatively short periods. In particular, the dominating

combinations of states experienced over time are clearly identified, and differences

in durations and/or age at transition are quite limited in size. Within clusters, sub-

stantial reduction of misalignments and/or differences in the durations of states are

evident. Ultimately the partition is characterised not only by the sequencing (i.e.

the experienced combinations of states), but also by the durations of the states and

by the ages at transitions which appear mostly homogeneous within clusters. This

can be explained by the fact that cases in the identified groups tended to dedicate

the same period of time — 1, 2, or 3 years — to further/higher education and/or

training. This is interesting because one might expect the chosen dissimilarity met-

ric to attach higher importance to the sequencing.

The 10-cluster solution for the MVAD data separates individuals who prolonged

their studies after the end of compulsory education (clusters 3, 6, 7, 8, and 9) from

those who entered the labour market (clusters 1, 4, and 5). The clear division visi-

ble for some clusters in Figure 3.7 before and after Sept 1995, when new semesters

of further and higher education commenced and the majority of those still remain-

ing in school had eventually left, corresponds to the point in Figure 3.2 after which

the entropy declined. Interestingly, individuals who experienced prolonged peri-

ods of unemployment are mostly isolated in cluster 2; this is particularly important

because the Status Zero Survey originally aimed to identify such ‘at risk’ subjects.

Notably, the optimal model identified is a UCN model, i.e. one whose precision

parameters vary only across clusters, and not across time points. The estimated

precision parameters, given in Table 3.5, show that the model captures different

degrees of homogeneity in the cluster-specific sequence distributions. The se-

quences in clusters 1, 8, and 9, for instance, show greater heterogeneity than the

more uniformly distributed sequences in clusters 2, 3, and 6. Thus, model selection

favours a model based on the simple Hamming distance (albeit weighted differently

in each cluster) rather than a more flexible variant which allows different time pe-

riods to contribute differently to the overall distance via period-specific weights.

Note that the wDBS criterion used to identify the model is not based on parameter

counts, meaning the UCN model is not chosen over a more flexible alternative on

the basis of parsimony.

128



3.6 Discussion of the MVAD Results

Table 3.5: Precision parameters of the optimal 10-component UCN model with stepwise selection
of covariates. By definition, λg = 0 characterises the noise component.

Cluster (g ) 1 2 3 4 5 6 7 8 9 Noise

λ̂g 3.81 2.22 2.77 3.11 2.84 2.45 3.08 3.49 3.63 0

Clusters 6, 7 and 9 include subjects who continued school for about two years,

presumably to retake previously failed examinations or to pursue academic or vo-

cational qualifications. These individuals are split into three groups depending on

whether they continued their studies (further education: cluster 6, or higher edu-

cation: cluster 9) or were employed directly (cluster 7). Clusters 3 and 8 group

subjects who entered further education, for about two years (or more, in some

cases in the larger cluster 3). Most of the subjects in cluster 3 entered employ-

ment directly after further education, whereas the vast majority of those in cluster

8 continued in further education until the end of the observation period.

As for the clusters of individuals who moved quickly to the labour market after

the end of compulsory education, it is possible to distinguish between individuals

who immediately found a job and remained in employment for most of the observa-

tion period (the large cluster 4) and individuals who entered government-supported

training schemes (clusters 1 and 5). A further separation is between subjects who

were employed after about 2 years of training (cluster 1) and those who participated

in training for a much longer period (cluster 5). Importantly, most of the individuals

in these two clusters were able to find a job even if some respondents experienced

some periods of unemployment.

It is interesting to observe that the cluster of careers dominated by persistent

unemployment (cluster 2) is characterized by different experiences at the end of the

compulsory education period. Indeed, some subjects entered employment directly

after the end of compulsory education but left or lost their job after some months,

while some prolonged their education before becoming unemployed. However, the

majority entered a training period that did not evolve into steady employment.

The coefficients of the gating network with associated WLBS standard errors

are given in Table 3.6, from which a number of interesting effects can be identified.

The interpretation of the effects of the covariates is made clearer by virtue of the

lower number included after stepwise selection. For completeness, gating network
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coefficients and associated WLBS standard errors for the model with all covariates

included are provided in Appendix 3.C.

Table 3.6: Multinomial logistic regression coefficients and associated WLBS standard errors (in
parentheses) for the gating network of the optimal 10-component UCN model with stepwise selec-
tion of covariates.

Cluster (Intercept) FMPR GCSE5eq Livboth

2 −0.46 (0.45) −0.54 (0.56) −0.22 (0.70) 0.08 (0.51)

3 0.04 (0.39) 0.29 (0.45) 1.30 (0.46) −0.30 (0.42)

4 0.48 (0.38) −0.89 (0.43) −0.25 (0.53) −0.21 (0.37)

5 −0.16 (0.43) −0.27 (0.52) 0.17 (0.59) −0.07 (0.43)

6 −2.38 (0.91) 0.62 (0.63) 2.03 (0.75) 1.43 (0.72)

7 −0.19 (0.49) −0.66 (0.57) 1.37 (0.59) −0.03 (0.51)

8 −3.21 (0.50) 0.28 (0.47) 3.34 (0.55) 1.12 (0.49)

9 −1.76 (0.49) 0.71 (0.43) 3.85 (0.50) 0.35 (0.43)

Noise −1.96 (0.62) 0.37 (0.86) 1.70 (0.93) −1.07 (0.72)

Relative to the reference cluster (cluster 1), characterised by those who suc-

cessfully transitioned to stable employment after a short period of training, the pos-

itive ‘FMPR’ coefficients indicate that those whose father’s current or most recent

job is professional or managerial are more likely to belong to clusters 3, 6, 8, and 9.

These clusters are characterised by extended periods of higher education and/or

further education. Conversely, clusters 2, 4, 5, and 7 have negative ‘FMPR’ coeffi-

cients. The effect is particularly pronounced for cluster 4, which mostly comprises

subjects who immediately entered employment.

Those who achieved 5 or more high GCSE grades are less likely to experience

joblessness (cluster 2) or to immediately enter employment (cluster 4). This sug-

gests, as expected, that more academically inclined students tend to further their

education in order to improve their job prospects. The largest positive coefficients

for this covariate suggest that such students are more likely to pursue higher edu-

cation after an initial 2-year period in either school (cluster 9) or further education

(cluster 8). Additionally, such students are more likely to secure employment imme-

diately after periods of further education (cluster 3) or school (cluster 7), or enter

further education after prolonging their time in school (cluster 6).

Unlike the other covariates, ‘Livboth’ was not measured until June 1995. Ac-

cording to Figure 3.1, this coincides with the point by which most subjects had
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turned 18 and left school. Subjects who lived at home with both parents at this

point are more likely to have stayed in school beyond the compulsory period and

then pursued further education (cluster 6), or to have stayed in school or further

education and then pursued higher education (clusters 8 and 9, respectively). In-

terestingly, such subjects are also more likely to belong to cluster 2, characterised

by joblessness. This is the only covariate for which this is the case, perhaps sug-

gesting that subjects who are materially supported by their parents can afford to

endure extended periods of unemployment, possibly to research job opportunities

in line with their expectations. Conversely, subjects who do not live at home with

both parents are more likely to enter the job market sooner, either immediately

(cluster 4), after long periods of training (cluster 5), or after short periods in school

(cluster 7) or further education (cluster 3). However, the effects of the ‘Livboth’

coefficients appear to be slight.

Time

O
bs

er
va

tio
ns

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Aug.93 Apr.94 Dec.94 Aug.95 Apr.96 Dec.96 Aug.97 Apr.98 Dec.98

Employment
Further Education

Higher Education
Joblessness

School
Training

Figure 3.9: Observations assigned to the noise component of the optimal 10-component UCN
model with stepwise selection of covariates.
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The optimal G = 10 UCN model contains a noise component, which allows the

remaining non-noise clusters to be modelled more clearly. Figure 3.9 focuses on

this noise component, which soaks up subjects who don’t neatly fit into any of the

defined clusters and transition frequently between states. This includes transitions

in and out of education and in and out of employment. The only covariate with a

negative coefficient associated with the noise component is ‘Livboth’. It is likely

that subjects living at home are given a strong sense of direction by the influence

of their parents and benefit from familial stability in terms of a lack of disruption to

their parents’ marriage due to divorce or death.

3.7 Conclusion

In McVicar and Anyadike-Danes (2002), Ward’s hierarchical clustering algorithm

is applied to an OM dissimilarity matrix to identify relevant patterns in the data.

Notably, reference is not made to the associated covariates until the uncovered

clustering structure is investigated. In particular, MLR is used to relate the assign-

ments of the trajectories to clusters to a set of baseline covariates. It is also worth

noting that the sampling weights are incorporated only in the MLR stage and not

in the clustering itself. In other words, weights are incorporated only in the equiva-

lent of the gating network. This is arguably a three-stage approach, comprising the

computation of pairwise string distances using OM (or some other distance metric),

the hierarchical or partition-based clustering, and the MLR.

MEDseq models, on the other hand, represent a more coherent model-based

clustering approach. The sequences are modelled directly using a finite mixture of

exponential-distance models, with the Hamming distance and weighted generalisa-

tions thereof employed as the distance metric. A range of precision parameter set-

tings have been explored to allow different time points contribute differently to the

overall distance. Thus, varying degrees of parsimony are accommodated. Sam-

pling weights are accounted for by weighting each observation’s contribution to the

pseudo likelihood. Dependency on covariates is introduced by relating the clus-

ter membership probabilities to covariates under the mixture of experts framework.

Thus, MEDseq models treat the weights, the relation of covariates to clusters, and
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the clustering itself simultaneously. Model selection in the MEDseq setting iden-

tifies a reasonable solution for the MVAD data and shows that clustering the se-

quence trajectories in a holistic manner allows new insights to be gleaned from

these data.

Opportunities for future research are varied and plentiful. Co-clustering ap-

proaches could be used to simultaneously provide clusters of the observed se-

quence trajectories and the time periods. While this would require the use of the

CEM or stochastic EM algorithms (Govaert and Nadif, 2013), such an approach

could be especially useful for the MEDseq models (CU, UU, CUN, and UUN) which

weight the Hamming distance by period-specific precision parameters, as it could

reduce the number of within-cluster precision parameters required to 1 < T ? ≤ T .

Indeed, parsimony has been achieved in a similar fashion by Melnykov (2016a)

in the context of finite mixtures with Markov components. In particular, using co-

clustering approaches which respect the ordering of the sequences by restricting

the column-wise clusters to form contingent blocks would be desirable from an in-

terpretability point of view, though not strictly necessary due to the invariance of

the Hamming distance to permutations of the time periods.

It may also be of interest for other applications to extend the MEDseq models

to accommodate sequences of different lengths, for which the Hamming distance

is not defined. These different lengths could be attributable to missing data, ei-

ther by virtue of sequences not starting on the same date, shorter follow-up time

for some subjects, or non-response for some time points. While the Hamming dis-

tance is only defined for equal-length strings, adapting the MEDseq models to such

a setting would be greatly simplified if aligning the sequences of different lengths is

straightforward. Another limitation of MEDseq models is that time-varying covari-

ates are not accommodated. However, neither of these concerns are relevant for

the MVAD data.

MEDseq models implicitly assume substitution-cost matrices with zero along

the diagonal and a single value common to all other entries. The relationship

between the exponent of an exponential-distance model based on the Hamming

distance and the Hamming distance itself (which has a single substitution cost, typ-

ically equal to 1) is apparent from the fact that multiplying the substitution-cost ma-

trix by any scalar — as per normalised variants of the Hamming distance (Elzinga,
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2007; Gabadinho et al., 2011) — yields the same model, because its value is ab-

sorbed into the precision parameter. This is also the case for models employing

weighted Hamming distance variants under which the precision parameters, and

hence the otherwise common substitution costs, vary across clusters and/or time

points. However, all model types in the MEDseq family cannot account for situa-

tions in which some states are more different than others — e.g. one where the

cost associated with moving from employment to joblessness is assumed to be

greater than the cost associated with moving from school to training — as they

assume that substitution costs are the same between each pair of states. Such

concerns are most pronounced when there is an explicit ordering to the states, e.g.

education levels (Studer and Ritschard, 2016).

Hence, another potential extension is to consider MEDseq models with an al-

ternative distance measure, particularly OM. This would require the subjective

specification, or estimation, of the v(v − 1)/2 off-diagonal entries of symmetric

substitution-cost matrices. Potentially, as per the range of precision parameter

settings in the MEDseq model family, the substitution-cost matrices could also

be allowed to vary across clusters and/or time points. However, the normalis-

ing constant under an exponential-distance model using OM depends both on the

heterogeneous substitution costs and on θ and is not available in closed form,

thereby greatly complicating model fitting. Indeed, the dependence on θ renders

even offline pre-computation of the normalising constant infeasible for even moder-

ately large T or v . Considering insertions and deletions also would present further

challenges. Truncation of the sum over all sequences or an importance sampling

approach could be used to address the intractability. In any case, some level of

approximation would be required, while the ECM algorithm for MEDseq models

based on the Hamming distance is exact.

As well as removing the normalising constant’s dependence on θ, another pos-

itive consequence of the homogeneity of substitution costs with respect to pairs of

states under the Hamming distance is that the ECM algorithm used for parameter

estimation scales well with v , the size of the alphabet. Though restrictive, having

only one parameter associated with each substitution-cost matrix, regardless of its

dimensions, helps address concerns about overparameterisation, especially when

the substitution costs implied by the precision parameter(s) vary across clusters
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and/or time points (Studer and Ritschard, 2016). A complete characterisation of

the implicit substitution costs for the various weighted Hamming distance variants

in the MEDseq model family, as well as OM and the DHD, is given in Appendix 3.D.

Furthermore, it is likely that results on the MVAD data would not differ greatly

with OM (with state-dependent substitution costs) used in place of the Hamming

distance, particularly for models where λ varies across clusters and/or time points,

save for a solution with potentially fewer clusters being found. Ultimately, the

weighted Hamming distance variants preserve the timing of transitions, by virtue

of prohibiting insertions and deletions, but amount to improved substitution costs

reflecting replacements of states.

Overall, the MEDseq models appear promising from the perspective of recon-

ciling the distance-based and model-based cultures within the SA community. The

results on the MVAD data are encouraging; they seem to suggest that the different

precision parameter settings of different MEDseq models adequately address the

misalignment problem inherent in the use of the Hamming distance. It remains

to be seen if this holds for more turbulent sequence data, e.g. those related to

employment activities tracked over longer periods.
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The MEDseq Model Family: Parameter Counts

The models in the MEDseq family differ only in their treatments of the precision

parameters, which differentiate the Hamming distance and the weighted variants

thereof. While the BIC has been shown to be inadequate as a means of selecting

MEDseq models, Table 3.A.1 nevertheless summarises the number of free pa-

rameters under each MEDseq model type, in order to demonstrate the increasing

level of complexity in moving from the most parsimonious CCN model to the most

heavily parameterised UU model. The number of estimated parameters for each

component’s central sequence is treated as the sequence length T , leading to the

strictest possible penalty. Note that central sequence parameters corresponding to

time points with estimated or fixed precision parameter values of 0 are not counted.

Note also that estimated precision parameter values of 0 are counted, but precision

parameters fixed at 0 associated with the noise component are not counted. The

number of gating network parameters is not accounted for in Table 3.A.1; when

there are gating covariates, there are (r + 1)× G extra parameters, where r + 1 is

the dimension of the associated design matrix, including the intercept term. When

mixing proportions are constrained to be equal, there are no additional parameters

for models without a noise component and one additional parameter for models

with a noise component; otherwise there are G − 1 additional parameters.

Table 3.A.1: Number of estimated parameters under each MEDseq model type. Models with names
ending with the letter N, indicating the presence of a noise component for which the single precision
parameter is fixed to 0, behave like the corresponding model without this component for all other
components. Thus, λ and all subscript variants thereof refer to the non-noise components only.

Model Precision λg (Clusters) λt (Time Points)
Number of Parameters

Central Sequence(s) Precision

CC
λg ,t = λ Constrained Constrained

GT1(λ 6= 0) 1

CCN (G − 1)T1(λ 6= 0) 1(G > 1)

UC
λg ,t = λg Unconstrained Constrained

T
∑G

g=1 1(λg 6= 0) G

UCN T
∑G−1

g=1 1(λg 6= 0) G − 1

CU
λg ,t = λt Constrained Unconstrained

G
∑T

t=1 1(λt 6= 0) T

CUN (G − 1)
∑T

t=1 1(λt 6= 0) 1(G > 1)T

UU
λg ,t = λg ,t Unconstrained Unconstrained

∑G
g=1

∑T
t=1 1(λg ,t 6= 0) GT

UUN
∑G−1

g=1

∑T
t=1 1(λg ,t 6= 0) (G − 1)T
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Further Details on Estimating MEDseq Models

Weighted complete data pseudo likelihood functions for all model types in the MED-

seq family are given in Table 3.B.1. Table 3.B.2 outlines the corresponding CM-

steps for the precision parameter(s). The sampling weights are accounted for in all

cases. The CM-step formulas can be simplified somewhat for unweighted models.

Recall that the first letter of the model name denotes whether the precision param-

eters are constrained/unconstrained across clusters, the second denotes the same

across time points (i.e. sequence positions), and model names ending with the let-

ter N include a noise component. All models are written as though gating network

covariates xi are included. Moreover, models with a noise component are written

in the GN rather than NGN form, i.e. it assumed that the covariates affect the mix-

ing proportions of the noise component rather than τ0 being constant (see Section

3.4.1). All derivations closely follow the same steps as in Section 3.4.1.3 for the

CC model. We note again that the corresponding central sequence parameters

θg ,t must be estimated when λ̂g ,t is non-zero. In particular — taking the UU model

as an example — all state values in the t-th sequence position within component g

are identical to θ̂g ,t when the corresponding denominator in Table 3.B.2 evaluates

to zero, such that λ̂g ,t →∞.
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Table 3.B.1: Weighted complete data pseudo likelihood functions for all MEDseq model types, which
differ according to the constraints imposed on the precision parameters across clusters and/or time
points. The expressions for the various weighted Hamming distance metric variants employed are
given in full.

Model Weighted Complete Data Pseudo Likelihood

CC
∏n

i=1

[∏G
g=1

(
τg (xi )

exp
(
−λ

∑T
t=1 1(si ,t 6=θg ,t)

)
((v−1)e−λ+1)T

)zi ,g
]wi

UC
∏n

i=1

[∏G
g=1

(
τg (xi )

exp
(
−λg

∑T
t=1 1(si ,t 6=θg ,t)

)
(
(v−1)e−λg +1

)T
)zi ,g

]wi

CU
∏n

i=1

[∏G
g=1

(
τg (xi )

exp
(
−
∑T

t=1 λt1(si ,t 6=θg ,t)
)

∏T
t=1((v−1)e−λt+1)

)zi ,g
]wi

UU
∏n

i=1

[∏G
g=1

(
τg (xi )

exp
(
−
∑T

t=1 λg ,t1(si ,t 6=θg ,t)
)

∏T
t=1

(
(v−1)e−λg ,t+1

)
)zi ,g

]wi

CCN
∏n

i=1

[∏G−1
g=1

(
τg (xi )

exp
(
−λ

∑T
t=1 1(si ,t 6=θg ,t)

)
((v−1)e−λ+1)T

)zi ,g (
τ0(xi )

vT

)zi ,0]wi

UCN
∏n

i=1

[∏G−1
g=1

(
τg (xi )

exp
(
−λg

∑T
t=1 1(si ,t 6=θg ,t)

)
(
(v−1)e−λg +1

)T
)zi ,g (

τ0(xi )

vT

)zi ,0]wi

CUN
∏n

i=1

[∏G−1
g=1

(
τg (xi )

exp
(
−
∑T

t=1 λt1(si ,t 6=θg ,t)
)

∏T
t=1((v−1)e−λt+1)

)zi ,g (
τ0(xi )

vT

)zi ,0]wi

UUN
∏n

i=1

[∏G−1
g=1

(
τg (xi )

exp
(
−
∑T

t=1 λg ,t1(si ,t 6=θg ,t)
)

∏T
t=1

(
(v−1)e−λg ,t+1

)
)zi ,g (

τ0(xi )

vT

)zi ,0]wi

Table 3.B.2: CM-steps for the precision parameter(s) for all MEDseq model types, which differ
according to the constraints imposed across clusters and/or time points.

Model Precision Parameter CM-steps

CC λ̂(m+1) = max

(
0, log(v − 1) + log

(
T
∑n

i=1

∑G
g=1 ẑ

(m+1)
i ,g wi∑n

i=1

∑G
g=1 ẑ

(m+1)
i ,g wi dH

(
si ,θ̂

(m+1)
g

) − 1

))

UC λ̂
(m+1)
g = max

(
0, log(v − 1) + log

(
T
∑n

i=1 ẑ
(m+1)
i ,g wi∑n

i=1 ẑ
(m+1)
i ,g wi dH

(
si ,θ̂

(m+1)
g

) − 1

))

CU λ̂
(m+1)
t = max

(
0, log(v − 1) + log

( ∑n
i=1

∑G
g=1 ẑ

(m+1)
i ,g wi∑n

i=1

∑G
g=1 ẑ

(m+1)
i ,g wi1

(
si ,t 6=θ̂

(m+1)
g ,t

) − 1

))

UU λ̂
(m+1)
g ,t = max

(
0, log(v − 1) + log

( ∑n
i=1 ẑ

(m+1)
i ,g wi∑n

i=1 ẑ
(m+1)
i ,g wi1

(
si ,t 6=θ̂

(m+1)
g ,t

) − 1

))

CCN λ̂(m+1) = max

(
0, log(v − 1) + log

(
T
∑n

i=1

∑G−1
g=1 ẑ

(m+1)
i ,g wi∑n

i=1

∑G−1
g=1 ẑ

(m+1)
i ,g wi dH

(
si ,θ̂

(m+1)
g

) − 1

))

UCN λ̂
(m+1)
g = max

(
0, log(v − 1) + log

(
T
∑n

i=1 ẑ
(m+1)
i ,g wi∑n

i=1 ẑ
(m+1)
i ,g wi dH

(
si ,θ̂

(m+1)
g

) − 1

))

CUN λ̂
(m+1)
t = max

(
0, log(v − 1) + log

( ∑n
i=1

∑G−1
g=1 ẑ

(m+1)
i ,g wi∑n

i=1

∑G−1
g=1 ẑ

(m+1)
i ,g wi1

(
si ,t 6=θ̂

(m+1)
g ,t

) − 1

))

UUN λ̂
(m+1)
g ,t = max

(
0, log(v − 1) + log

( ∑n
i=1 ẑ

(m+1)
i ,g wi∑n

i=1 ẑ
(m+1)
i ,g wi1

(
si ,t 6=θ̂

(m+1)
g ,t

) − 1

))
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MVAD Data: Gating Network Coefficients

Multinomial logistic regression coefficients and associated WLBS standard errors

for the gating network of a G = 10 UCN model with stepwise selection of covari-

ates are provided in Table 3.6. For completeness, coefficients and WLBS stan-

dard errors for an otherwise equivalent model with all covariates included (except

those used to define the sampling weights) are given in Table 3.C.1. Such a model

achieves a wDBS value of 0.4717 (see Table 3.3), compared to 0.4745 for the op-

timal model with only a subset of covariates detailed in Section 3.5.1. Notably,

G = 10 and the UCN model type are both also optimal according to the wDBS

criterion for the model with all covariates included.

Table 3.C.1: Multinomial logistic regression coefficients and associated WLBS standard errors (in
parentheses) for the gating network of the 10-component UCN model with all covariates included.

Cluster (Intercept) Gender Catholic Funemp GCSE5eq FMPR Livboth

2 −1.29 (0.58) −0.57 (0.54) 1.10 (0.43) 1.50 (0.59) −0.06 (0.68) 0.36 (0.65) −0.04 (0.53)

3 0.10 (0.49) −0.55 (0.39) 0.21 (0.40) 0.50 (0.54) 1.25 (0.49) 0.50 (0.47) −0.27 (0.38)

4 0.66 (0.50) −0.19 (0.39) −0.23 (0.39) −0.09 (0.51) −0.29 (0.51) −0.86 (0.42) −0.16 (0.39)

5 −1.16 (0.57) 1.24 (0.49) 0.39 (0.42) −0.17 (0.59) 0.24 (0.61) −0.26 (0.56) −0.14 (0.44)

6 −2.52 (1.09) −0.57 (0.61) 0.65 (0.70) 0.41 (1.10) 1.97 (0.77) 0.83 (0.70) 1.46 (0.64)

7 0.10 (0.63) −0.76 (0.54) −0.05 (0.53) 0.26 (0.72) 1.32 (0.59) −0.50 (0.63) 0.03 (0.53)

8 −2.86 (0.63) −0.60 (0.46) −0.04 (0.47) −0.24 (0.71) 3.24 (0.55) 0.31 (0.54) 1.17 (0.48)

9 −1.82 (0.63) −0.40 (0.42) 0.58 (0.43) −0.35 (0.70) 3.77 (0.53) 0.82 (0.48) 0.41 (0.46)

Noise −1.76 (0.67) 0.40 (1.02) −0.93 (0.97) 0.48 (0.85) 1.34 (0.99) 0.03 (0.98) −0.65 (0.86)
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Comparison of Distance Measures in Terms of Their

Implicit Substitution Costs

The implicit substitution cost matrices for the CC, UC, CU, and UU MEDseq mod-

els are given in Table 3.D.1, Table 3.D.2, Table 3.D.3, and Table 3.D.4, respectively.

Each table is represented by an array of subtables, with rows of subtables corre-

sponding to components and columns of subtables corresponding to time periods.

Within each symmetric subtable, rows and columns correspond to states 1, 2, ... , v .

The non-noise components of the corresponding CCN, UCN, CUN, and UUN mod-

els behave in a similar fashion, with all precision parameters equal to zero for the

uniform noise component. While the precision parameters vary across components

and/or time points, there is only a single cost associated with each substitution cost

matrix in all cases. Recall, however, that the inclusion of sampling weights further

scales the precision parameters for each observation. See Table 3.A.1 for the total

numbers of precision parameters under each model type.

Table 3.D.1: Implicit substitution cost matrices for the CC MEDseq model and the non-noise com-
ponents of the CCN model, such that λg ,t = λ.

t = 1 t = 2 t = T

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 1

1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1

2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 2

1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1

2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0

...
...

. . .
...

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = G

1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1

2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0
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Table 3.D.2: Implicit substitution cost matrices for the UC MEDseq model and the non-noise com-
ponents of the UCN model, such that λg ,t = λg .

t = 1 t = 2 t = T

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 1

1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1 1 0 λ1,1 ... λ1,1

2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1 2 λ1,1 0 ... λ1,1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0 v λ1,1 λ1,1 ... 0

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 2

1 0 λ2,1 ... λ2,1 1 0 λ2,1 ... λ2,1 1 0 λ2,1 ... λ2,1

2 λ2,1 0 ... λ2,1 2 λ2,1 0 ... λ2,1 2 λ2,1 0 ... λ2,1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ2,1 λ2,1 ... 0 v λ2,1 λ2,1 ... 0 v λ2,1 λ2,1 ... 0

...
...

. . .
...

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = G

1 0 λG ,1 ... λG ,1 1 0 λG ,1 ... λG ,1 1 0 λG ,1 ... λG ,1

2 λG ,1 0 ... λG ,1 2 λG ,1 0 ... λG ,1 2 λG ,1 0 ... λG ,1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λG ,1 λG ,1 ... 0 v λG ,1 λG ,1 ... 0 v λG ,1 λG ,1 ... 0

Table 3.D.3: Implicit substitution cost matrices for the CU MEDseq model and the non-noise com-
ponents of the CUN model, such that λg ,t = λt .

t = 1 t = 2 t = T

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 1

1 0 λ1,1 ... λ1,1 1 0 λ1,2 ... λ1,2 1 0 λ1,T ... λ1,T

2 λ1,1 0 ... λ1,1 2 λ1,2 0 ... λ1,2 2 λ1,T 0 ... λ1,T
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,2 λ1,2 ... 0 v λ1,T λ1,T ... 0

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 2

1 0 λ1,1 ... λ1,1 1 0 λ1,2 ... λ1,2 1 0 λ1,T ... λ1,T

2 λ1,1 0 ... λ1,1 2 λ1,2 0 ... λ1,2 2 λ1,T 0 ... λ1,T
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,2 λ1,2 ... 0 v λ1,T λ1,T ... 0

...
...

. . .
...

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = G

1 0 λ1,1 ... λ1,1 1 0 λ1,2 ... λ1,2 1 0 λ1,T ... λ1,T

2 λ1,1 0 ... λ1,1 2 λ1,2 0 ... λ1,2 2 λ1,T 0 ... λ1,T
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,2 λ1,2 ... 0 v λ1,T λ1,T ... 0
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Table 3.D.4: Implicit substitution cost matrices for the UU MEDseq model and the non-noise com-
ponents of the UUN model, such that λg ,t = λg ,t .

t = 1 t = 2 t = T

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 1

1 0 λ1,1 ... λ1,1 1 0 λ1,2 ... λ1,2 1 0 λ1,T ... λ1,T

2 λ1,1 0 ... λ1,1 2 λ1,2 0 ... λ1,2 2 λ1,T 0 ... λ1,T
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ1,1 λ1,1 ... 0 v λ1,2 λ1,2 ... 0 v λ1,T λ1,T ... 0

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 2

1 0 λ2,1 ... λ2,1 1 0 λ2,2 ... λ2,2 1 0 λ2,T ... λ2,T

2 λ2,1 0 ... λ2,1 2 λ2,2 0 ... λ2,2 2 λ2,T 0 ... λ2,T
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λ2,1 λ2,1 ... 0 v λ2,2 λ2,2 ... 0 v λ2,T λ2,T ... 0

...
...

. . .
...

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = G

1 0 λG ,1 ... λG ,1 1 0 λG ,2 ... λG ,2 1 0 λG ,T ... λG ,T

2 λG ,1 0 ... λG ,1 2 λG ,2 0 ... λG ,2 2 λG ,T 0 ... λG ,T
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

v λG ,1 λG ,1 ... 0 v λG ,2 λG ,2 ... 0 v λG ,T λG ,T ... 0

The substitution costs for OM (Abbott and Forrest, 1986; Abbott and Hrycak,

1990) are given in Table 3.D.5. While OM also assigns costs to insertions and

deletions, recall that such operations are not permitted when the sequence length

T is common to all sequences. Notably, the substitution costs under OM are state-

dependent. For the DHD (Lesnard, 2010) in Table 3.D.6, the state-dependent sub-

stitution costs also vary across time. We denote state-dependent substitution costs

by λ(a,b)g ,t , where the superscript (a, b) reflects the dependence on a particular pair

of states a and b. Note that λ(a,b)g ,t = λ
(b,a)
g ,t , by symmetry. Recall that the assumption

of homogeneous substitution costs between pairs of states leads to a closed-form

expression for the normalising constant when the Hamming distance or weighted

variants thereof are employed. For both OM and DHD, there are v(v − 1)/2 pa-

rameters per substitution cost matrix, hence there are Tv(v − 1)/2 parameters for

the DHD. Neither OM nor the DHD permit the substitution costs to vary across

clusters, in contrast to the UC, UCN, UU, and UUN MEDseq models. Of course,

the use of OM or DHD in the MEDseq setting is purely hypothetical at present.
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Table 3.D.5: State-dependent substitution cost matrices for OM distances, such that λ(a,b)g ,t = λ(a,b).

t = 1 t = 2 t = T

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 1

1 0 λ
(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,1 ... λ

(1,v)
1,1

2 λ
(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,1 0 ... λ

(2,v)
1,1

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

v λ
(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,1 λ

(2,v)
1,1 ... 0

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 2

1 0 λ
(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,1 ... λ

(1,v)
1,1

2 λ
(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,1 0 ... λ

(2,v)
1,1

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

v λ
(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,1 λ

(2,v)
1,1 ... 0

...
...

. . .
...

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = G

1 0 λ
(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,1 ... λ

(1,v)
1,1

2 λ
(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,1 0 ... λ

(2,v)
1,1

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

v λ
(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,1 λ

(2,v)
1,1 ... 0

Table 3.D.6: State-dependent substitution cost matrices for the DHD, such that λ(a,b)g ,t = λ
(a,b)
t .

t = 1 t = 2 t = T

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 1

1 0 λ
(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,2 ... λ

(1,v)
1,2 1 0 λ

(1,2)
1,T

... λ
(1,v)
1,T

2 λ
(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,2 0 ... λ

(2,v)
1,2 2 λ

(1,2)
1,T

0 ... λ
(2,v)
1,T

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

v λ
(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,2 λ

(2,v)
1,2 ... 0 v λ

(1,v)
1,T

λ
(2,v)
1,T

... 0

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = 2

1 0 λ
(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,2 ... λ

(1,v)
1,2 1 0 λ

(1,2)
1,T

... λ
(1,v)
1,T

2 λ
(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,2 0 ... λ

(2,v)
1,2 2 λ

(1,2)
1,T

0 ... λ
(2,v)
1,T

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

v λ
(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,2 λ

(2,v)
1,2 ... 0 v λ

(1,v)
1,T

λ
(2,v)
1,T

... 0

...
...

. . .
...

1 2 ... v 1 2 ... v

· · ·

1 2 ... v

g = G

1 0 λ
(1,2)
1,1 ... λ

(1,v)
1,1 1 0 λ

(1,2)
1,2 ... λ

(1,v)
1,2 1 0 λ

(1,2)
1,T

... λ
(1,v)
1,T

2 λ
(1,2)
1,1 0 ... λ

(2,v)
1,1 2 λ

(1,2)
1,2 0 ... λ

(2,v)
1,2 2 λ

(1,2)
1,T

0 ... λ
(2,v)
1,T

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...

v λ
(1,v)
1,1 λ

(2,v)
1,1 ... 0 v λ

(1,v)
1,2 λ

(2,v)
1,2 ... 0 v λ

(1,v)
1,T

λ
(2,v)
1,T

... 0
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The optimal MEDseq model for the MVAD data is a UCN model, i.e. one with

substitution costs of the form λg ,t = λg , according to Table 3.D.2. Given that the

substitution costs under this particular weighted variant of the Hamming distance

are further restricted to be common with respect to each pair of states, which

makes model-fitting feasible, it is of interest to investigate how restrictive exactly

this assumption may be. As the substitution costs do not vary across time, the

closest comparator among the considered distance metrics with state-dependent

substitution costs — leaving aside that the costs under a UCN model vary across

clusters and an additional noise component is included — is OM, under which

λ
(a,b)
g ,t = λ(a,b) according to Table 3.D.5.

Hence, as but one illustrative example, we demonstrate a method of estimating

state-dependent substitution costs from the data which is often used in OM anal-

yses. The method relies on the estimated probabilities of transitioning between

states, such that

λ̂(a,b) = C − Pr
(
si ,(t+`) = a | si ,t = b

)
− Pr

(
si ,(t+`) = b | si ,t = a

)
,

where C is a constant and ` is the time lag. Table 3.D.7 gives the costs, estimated

thusly with C = 2 and ` = 1, for the MVAD data with the first time point again

removed. Encouragingly, the costs do not appear to differ greatly across pairs of

states, which suggests that the assumption of state-independent costs under the

UCN MEDseq model may in fact not be too detrimental for this particular applica-

tion. Similar conclusions are drawn for different values of C and `.

Table 3.D.7: State-dependent substitution costs for the MVAD data, estimated using the observed
rates of transition between states.

EM FE HE JL SC TR

EM 0 1.967 1.987 1.951 1.984 1.959

FE 1.967 0 1.993 1.962 1.987 1.992

HE 1.987 1.993 0 1.996 1.982 1.999

JL 1.951 1.962 1.996 0 1.985 1.972

SC 1.984 1.987 1.982 1.985 0 1.995

TR 1.959 1.992 1.999 1.972 1.995 0
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3.E Appendix 5

MEDseq R Package Vignette

This appendix presents a reproduction of the package vignette5 of the associated

R package MEDseq for implementation of the proposed method.

Notably, this vignette also presents summarised results of a second application

of the MEDseq model family, to data (with n = 2000 cases, v = 8 categories,

and T = 16 equally spaced time periods) on yearly family life states from the

retrospective biographical survey conducted by the Swiss Household Panel in 2002

(Müller et al., 2007). This data set is available in the MEDseq package under the

name biofam. The fitted G = 10 UUN model was identified as optimal according to

the DBS rather than the wDBS criterion, as no sampling weights were used in the

analysis, by otherwise following the same steps as in Section 3.5.1 for the MVAD

data. However, the NGN rather than the GN setting was selected in this analysis.

5 cran.r-project.org/web/packages/MEDseq/vignettes/MEDseq.html
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MEDseq: Mixtures of
Exponential-Distance Models
with Covariates

Keefe Murphy

Introduction

MEDseq is an R package which fits a range of models introduced by Murphy et al.
(2019). These are finite mixtures of exponential-distance models for clustering
longitudinal/categorical life-course sequence data. A family of parsimonious
precision parameter constraints are accommodated. So too are sampling weights.
Gating covariates can be supplied via formula interfaces. Visualisation of the results
of such models is also facilitated.

The most important function in the MEDseq package is: MEDseq_fit, for fitting the
models via the EM or CEM algorithms. MEDseq_control allows supplying additional
arguments which govern, among other things, controls on the initialisation of the
allocations for the EM/CEM algorithm and the various model selection options. 
MEDseq_compare is provided for conducting model selection between different results
from using different covariate combinations &/or initialisation strategies, etc. 
MEDseq_stderr is provided for computing the standard errors of the coefficients for
the covariates in the gating network.

A dedicated plotting function exists for visualising various aspects of the results,
using new methods as well as some existing methods from the TraMineR package.
Finally, the package also contains two data sets: biofam and mvad.

If you find bugs or want to suggest new features please visit the MEDseq GitHub
issues page.

This vignette mostly aims to demonstrate the MEDseq models by reproducing the
analysis of the MVAD data in the Murphy et al. (2019) paper. However, an additional
example data set is also analysed.

Installing MEDseq

MEDseq will run in Windows, Mac OS X or Linux. To install it you first need to install
R. Installing Rstudio as a nice desktop environment for using R is also
recommended.
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Once in R you can type at the R command prompt:

install.packages('devtools') 
devtools::install_github('Keefe-Murphy/MEDseq')

to install the latest development version of the package from the MEDseq GitHub
page.

To instead install the latest stable official release of the package from CRAN go to R
and type:

install.packages('MEDseq')

In either case, if you then type:

library(MEDseq)

it will load in all the MEDseq functions.

The GitHub version contains a few more features but some of these may not yet be
fully tested, and occasionally this version might be liable to break when it is in the
process of being updated.

MVAD Data

Load the MVAD data. The data comes from a study by McVicar and Anyadike-Danes
(2002) on transition from school to work. The data consist of static background
characteristics (covariates and sampling weights) and a time series sequence of 72
monthly labour market activities for each of 712 individuals in a cohort survey. The
individuals were followed up from July 1993 to June 1999. Type ?mvad for more
information. We will drop the first sequence position (i.e. time point) as it (along
with the covariates Grammar and Location) were used to define the sampling weights.

Note that the data set must have equal sequence lengths, and the intervals are
assumed to be evenly spaced. The MVAD data meets these criteria. The TraMineR
function seqdef is used to convert the data to the appropriate format.

data(mvad, package="MEDseq") 
mvad$Location <- factor(apply(mvad[,5L:9L], 1L, function(x) which(x == "yes")),  
                        labels = colnames(mvad[,5L:9L])) 
mvad          <- list(covariates = mvad[c(3L:4L,10L:14L,87L)],  
                      sequences = mvad[,15L:86L], 
                      weights = mvad[,2L]) 
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mvad.cov      <- mvad$covariates 
mvad.seq      <- seqdef(mvad$sequences[,-1L], 
                        states = c("EM", "FE", "HE",  
                                   "JL", "SC", "TR"), 
                        labels = c("Employment", "Further Education",  
                                   "Higher Education", "Joblessness",  
                                   "School", "Training"))

The function MEDseq_control allows the algorithm used for model fitting, the method
used to initialise the allocations (e.g. k-medoids or Ward’s hierarchical clustering),
the criterion used to identify the optimal model (e.g. density-based silhouette (DBS),
average silhouette width (ASW), BIC, etc.), and more to be specified. By default, the
EM algorithm is employed, k-medoids is used to obtain starting values, and the
(weighted) mean density-based silhouette criterion is used to choose the optimal
model (if a range of models are fitted). In this vignette, we will mostly accept these
defaults.

The optimal model identified in the Murphy et al. (2019) paper has G=10
components, the UCN model type, sampling weights, and a subset of covariates
identified using a stepwise variable selection procedure. The UCN model has a
single precision parameter for each cluster. The gating covariates can be specified
via a formula interface. The argument covars tells the formula where to look for the
specified covariates. Thus, to fit such a model:

mod1 <- MEDseq_fit(mvad.seq, G=10,  
                   modtype="UCN", weights=mvad$weights,  
                   gating=~ fmpr + gcse5eq + livboth, covars=mvad.cov)

The names of the model types are CC, UC, CU, UU, CCN, UCN, CUN, and UUN. The
first letter denotes whether the precision parameters are constrained (C) or
unconstrained (U) across clusters, the second denotes the same across time
periods, and the third letter (N) indicates the precision of a noise component. In this
context, a noise component is one wherein the distribution of the sequences is
uniform.

Typically, a range of G values and modtype settings are supplied to a single call to 
MEDseq_fit and chosen from using some criterion. Thus, for a given set of covariates,
the model which is optimum in terms of the number of components and the
precision parameter configuration can be identified.

To compare different runs using different sets of covariates, the function 
MEDseq_compare can be used. First, let’s fit models with all covariates included (except 
Grammar and Location) and no covariates included. Let’s try different numbers of
components and different model types. Note that only the first model here includes
a noise component.
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# 9-component CUN model with no coviarates.
# CUN models have a precision parameter for each sequence position (i.e. time 
point),
# though each time point's precision is common across clusters. 
 
mod2 <- MEDseq_fit(mvad.seq, G=9,  modtype="CUN", weights=mvad$weights) 
 
# 11-component CC model with all coviarates.
# CC models have a single precision parameter across all clusters & time points. 
 
mod3 <- MEDseq_fit(mvad.seq, G=11, modtype="CC", weights=mvad$weights, 
                   gating=~. - Grammar - Location, covars=mvad.cov)

Confirm that the first model is indeed optimal according to the (weighted) mean
density-based silhouette. Examine the optimal model in greater detail. Observe
how the UCN model type explicitly includes a noise component.

(comp <- MEDseq_compare(mod1, mod2, mod3, criterion="dbs")) 
opt   <- comp$optimal

## --------------------------------------------------------------------- 
## Comparison of Mixtures of Exponential-Distance Models with Covariates 
## Data: mvad.seq 
## Ranking Criterion: DBS 
## Optimal Only: FALSE 
## --------------------------------------------------------------------- 
##  
##  rank MEDNames modelNames  G  df iters        bic        icl        aic   dbs 
##     1     mod1        UCN 10 684    10 -86876.197 -86887.052 -83752.045 0.474 
##     2     mod2        CUN  9 647    49 -89379.589 -89388.574 -86424.433  0.42 
##     3     mod3         CC 11 852     5 -84801.298 -84816.481  -80909.81 0.238 
##    asw     loglik                                               gating algo 
##  0.359 -41192.022                            ~fmpr + gcse5eq + livboth   EM 
##   0.37 -42565.217                                                 None   EM 
##  0.329 -39602.905 ~male + catholic + funemp + gcse5eq + fmpr + livboth   EM 
##  weights noise noise.gate equalPro 
##     TRUE  TRUE       TRUE          
##     TRUE  TRUE               FALSE 
##     TRUE FALSE

summary(opt)
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## ------------------------------------------------------ 
## Mixture of Exponential-Distance Models with Covariates 
## Data: mvad.seq 
## ------------------------------------------------------ 
##  
## MEDseq (UCN), with 10 components 
## Gating Network Covariates:  ~fmpr + gcse5eq + livboth 
## Noise Component:            TRUE 
## Noise Component Gating:     TRUE 
##  
##  log.likelihood   N  P V  df iters  DBS  ASW      BIC Algo 
##       -41192.02 712 71 6 684    10 0.47 0.36 -86876.2   EM 
##  
## Clustering table: 
##   0   1   2   3   4   5   6   7   8   9  
##  16  79  39  46 138 155  65  30  57  87

Examine the estimated gating network coefficients. Note that standard errors can
be computed by calling MEDseq_stderr on the opt object, to better inform the
interpretations of the covariate effects.

coef(opt$gating) 
##          (Intercept)    fmpryes gcse5eqyes  livbothyes 
## Cluster2 -0.18964080 -0.6574700  1.3740424 -0.02973523 
## Cluster3 -0.46305507 -0.5411090 -0.2235576  0.08432396 
## Cluster4  0.04433461  0.2864898  1.2954436 -0.30215444 
## Cluster5  0.48175311 -0.8935825 -0.2534328 -0.21066807 
## Cluster6 -0.15643676 -0.2713519  0.1693219 -0.07445400 
## Cluster7 -2.37938466  0.6215334  2.0301946  1.43157911 
## Cluster8 -3.21496893  0.2758460  3.3367901  1.12349106 
## Cluster9 -1.76413515  0.7124812  3.8529731  0.34858309 
## Noise    -1.95606029  0.3711763  1.7003713 -1.07290325

Visualise the clusters uncovered by the optimal model. Note that seriation is
applied for visual clarity. The legend indicates which colours correspond to which
state categories.

plot(opt, type="clusters")
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Many other plotting options exist, some of which are adapted from the TraMineR
package. Use the following code to examine the central sequence parameters. Note
that the central sequence of the noise component is not shown as it doesn’t
contribute to the likelihood.

plot(opt, type="mean")
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Use the following code to see the observation-specific (weighted) density-based
silhouette values (coloured by cluster). The (weighted) mean within each cluster is
also shown. Note that the low average for the noise component is as expected; we
do not expect this cluster to be internally coherent, rather it acts as a filter that
allows the other clusters to be captured more clearly.

plot(opt, type="dbsvals")
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Finally, we can quantify the type of observation characterising each cluster by
computing the mean time spent in each state within each cluster. By specifying 
MAP=TRUE here, we are computing the mean time based on the hard MAP partition
rather than the soft probabilistic assignments. By specifying norm=TRUE (which is the
default), the mean times are normalised to sum to the sequence length within each
cluster. The size of each cluster in terms of the number of observations assigned to
it is also reported.

MEDseq_meantime(opt,  
                MAP=TRUE,  
                norm=TRUE) 
##          Size        EM         FE        HE         JL         SC         TR 
## Cluster1   79 47.721519  1.7974684  0.000000  2.3037975  0.5569620 18.6202532 
## Cluster2   39 37.435897  2.7179487  2.769231  2.6923077 24.0000000  1.3846154 
## Cluster3   46  9.282609  4.0869565  0.000000 44.5652174  2.8260870 10.2391304 
## Cluster4  138 33.644928 30.9782609  1.166667  3.3188406  0.7318841  1.1594203 
## Cluster5  155 61.716129  2.9870968  0.000000  3.6387097  0.4967742  2.1612903 
## Cluster6   65 28.230769  2.8153846  0.000000  5.1076923  0.8923077 33.9538462 
## Cluster7   30  6.666667 33.3000000  7.366667  4.1666667 16.1333333  3.3666667 
## Cluster8   57  4.456140 27.1929825 37.789474  0.7719298  0.7894737  0.0000000 
## Cluster9   87  4.390805  0.5057471 38.034483  1.3563218 26.4137931  0.2988506 
## Noise      16 14.187500 17.7500000  1.687500 14.7500000  2.3125000 20.3125000

Biofam Data

As a second example, let’s consider data on  16 year-long family life
state sequences built from the retrospective biographical survey carried out by the
Swiss Household Panel (SHP) in 2002. Each of the  states are defined from a
combination of five basic states; namely, living with parents (Parent), left home
(Left), married (Marr), having children (Child), and Divorced. The data is available in
the MEDseq package as biofam. Type ?biofam for more information.

data(biofam, package="MEDseq") 
biofam     <- list(covariates = biofam[2L:9L],  
                   sequences = biofam[10L:25L] + 1L) 
biofam.cov <- biofam$covariates[,colSums(is.na(biofam$covariates)) == 0] 
biofam.seq <- seqdef(biofam$sequences, 
                     states = c("P", "L", "M", "L+M",  
                                "C", "L+C", "L+M+C", "D"), 
                     labels = c("Parent", "Left", "Married",  
                                "Left+Marr", "Child", "Left+Child",  
                                "Left+Marr+Child", "Divorced"))

N = 2000

v = 8
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While the data set contains weights, they are not appropriate for use; biofam is
merely a subsample of the original data so the weights are not properly adapted.
Thus, we will fit a model without supplying the weights argument. Secondly, the data
set also contain some baseline covariates. As many of them contain missing values,
let’s only consider the birthwt variable, which gives the birth year of each subject.

In the previous example, the model by default assumed that covariates also
influenced the mixing proportion of the noise component. We can override this by
specifying noise.gate=FALSE via MEDseq_control. Thus, the noise component’s mixing
proportion will be constant (though estimated) across all observed sequences and
covariate patterns.

# The UUN model includes a noise component.
# Otherwise, there are precision parameters for each time point in each cluster. 
 
bio <- MEDseq_fit(biofam.seq, G=10, modtype="UUN",  
                  gating=~ birthyr, covars=biofam.cov,  
                  control=MEDseq_control(noise.gate=FALSE))

Such a model was identified as optimal according to the weighted DBS criterion
following the same steps as the analysis of the MVAD data in the Murphy et al.
(2019) paper. Print the details of the model to the screen by typing print(bio):

## Call:    MEDseq_fit(seqs = biofam.seq, G = 10, modtype = "UUN", gating = 
~birthyr,  
##     covars = biofam.cov, control = MEDseq_control(noise.gate = FALSE)) 
##  
## Best Model: UUN, with 10 components and no weights (incl. gating network 
covariates) 
## DBS = 0.5 | ASW = 0.39 | BIC = -48455.12 | ICL = -48584.23 | AIC = -46741.24 
## Gating: ~birthyr

As before, let’s look at the clusters uncovered by the model. This time, 
seriate="both" means to order the clusters and the observations within clusters for
visual clarity.

plot(bio, type="clusters", seriate="both")
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Use the following code to examine the precision parameters. Note how we have a
full  matrix of precision parameters, one for each time point in each cluster.
Typically, we would not supply the argument log.scale=TRUE. However, in this case
there are many quite large precision parameter values which skew the colour scale.
Indeed, some are even infinite! Infinite precision under UU or UUN models implies
that all values for that time point are identical within the given cluster.

16 × G
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plot(bio, type="precision", log.scale=TRUE)

This time, rather than showing the weighted mean DBS values, let’s look at
observation-specific (unweighted) average silhouette-width values. Note that this
relies instead on the MAP partition rather than the soft cluster assignment
probabilities.

plot(bio, type="aswvals")
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As stated above, some plot types are adapted from TraMineR. Let’s first look at a
plot of the transversal Shannon entropies for the whole data set.

seqHtplot(biofam.seq)

Now let’s use the plot function from MEDseq to examine the transversal entropies
within each cluster defined by the MAP partition. Here we can see for instance that
subjects assigned to Cluster 9, corresponding to those individuals who left the
parental home to marry relatively early and had a child on average just one year
later, do indeed exhibit greater variability. Conversely, a postponement of the
transition to adulthood is evident for subjects in Cluster 5.

plot(bio, type="Ht")
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Other plot types adapted from TraMineR can be produced using type="d" (state
distribution plots), type="f" (state frequency plots), type="i" (selected sequence
index plots), and type="I" (whole set index plots). Each of these plots are shown on
a per-cluster basis. Clustering uncertainties, the gating network, and model
selection criteria can also be visualised.

References

Murphy, K., T. B. Murphy, R. Piccarreta, and I. C. Gormley (2019). Clustering
longitudinal life-course sequences using mixtures of exponential-distance models.
arXiv pre-print, 1908.07963.

McVicar, D. and M. Anyadike-Danes (2002). Predicting successful and unsuccessful
transitions from school to work by using sequence methods. Journal of the Royal

Statistical Society: Series A (Statistics in Society) 165 (2): 317-334.

Müller, N. S., M. Studer, and G. Ritschard (2007). Classification de parcours de vie à
l’aide de l’optimal matching. In XIVe Rencontre de la Société francophone de

classification (SFC 2007), Paris, 5-7 septembre 2007, pp. 157-160.

3.E Appendix 5

167



Chapter 4

Infinite Mixtures of Infinite Factor

Analysers

Abstract

Factor-analytic Gaussian mixtures are often employed as a model-based approach

to clustering high-dimensional data. Typically, the numbers of clusters and latent

factors must be fixed in advance of model fitting. The pair which optimises some

model selection criterion is then chosen. For computational reasons, having the

number of factors differ across clusters is rarely considered.

Here the infinite mixture of infinite factor analysers (IMIFA) model is introduced.

IMIFA employs a Pitman-Yor process prior to facilitate automatic inference of the

number of clusters using the stick-breaking construction and a slice sampler. Au-

tomatic inference of the cluster-specific numbers of factors is achieved using mul-

tiplicative gamma process shrinkage priors and an adaptive Gibbs sampler. IMIFA

is presented as the flagship of a family of factor-analytic mixtures.

Applications to benchmark data, metabolomic spectral data, and a handwritten

digit example illustrate the IMIFA model’s advantageous features. These include

obviating the need for model selection criteria, reducing the computational burden

associated with the search of the model space, improving clustering performance

by allowing cluster-specific numbers of factors, and uncertainty quantification.

Keywords: Model-based clustering, factor analysis, Pitman-Yor process, multi-

plicative gamma process, adaptive Markov chain Monte Carlo.
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4.1 Introduction

In cases where the number of variables p is comparable to or greater than the

number of observations N , many clustering techniques tend to perform poorly or

be intractable. Factor analysis (FA; Knott and Bartholomew, 1999) is a well-known

approach to parsimoniously modelling data. Bai and Li (2012) outline some com-

putational difficulties which arise when N � p. Model-based clustering methods

which rely on latent factor models have long been successfully utilised to cluster

high-dimensional data. Ghahramani and Hinton (1996) propose a mixture of factor

analysers model (MFA) with cluster-specific parsimonious covariance matrices and

estimate it via an expectation-maximisation algorithm; McLachlan and Peel (2000)

provide a succinct overview. Estimation of MFA models has also been considered

in a Bayesian framework (Diebolt and Robert, 1994; Richardson and Green, 1997).

McNicholas and Murphy (2008) develop a suite of similar parsimonious Gaussian

mixture models. Other related developments in this area include Baek et al. (2010)

and Viroli (2010), among others.

Clustering using a MFA model typically requires specifying the number of clus-

ters and factors in advance of model fitting. Generally, a range of MFA models

with different numbers of clusters and factors are fitted and then compared through

the use of information criteria, such as the Bayesian Information Criterion (BIC;

Kass and Raftery, 1995) or the Deviance Information Criterion (Spiegelhalter et al.,

2002, 2014). Within a Bayesian framework Fokoué and Titterington (2003) use a

stochastic model selection approach but do not simultaneously choose the optimal

number of clusters and factors. Conducting an exhaustive search of the model

space is computationally expensive; the cost is typically reduced by only consid-

ering models in which the number of factors is common across clusters. Regard-

less, even searching the reduced model space can be computationally onerous.

The problem of identifying the optimal model is exacerbated by the fraught task of

choosing among the range of model selection tools available, which often suggest

different optimal models. Moreover, enforcing a common number of factors across

clusters may lead to poor clustering performance due to a lack of flexibility.

The infinite mixture of infinite factor analysers (IMIFA) model is introduced here.

It theoretically allows infinitely many components and infinitely many factors within
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each component. The need to select a model selection criterion is obviated and

quantification of the uncertainty in the optimal numbers of non-empty clusters and

cluster-specific factors is facilitated. IMIFA relies on an infinite mixture model

through the use of a nonparametric Pitman-Yor process (PYP) prior (Perman et al.,

1992; Pitman and Yor, 1997), of which the well-known Dirichlet process (DP; Fer-

guson, 1973) is a special case. The infinite mixture model framework allows the

number of clusters present to be automatically inferred; here the stick-breaking

construction (Pitman, 1996) and an independent slice-efficient sampler (Kalli et al.,

2011) are employed to facilitate this.

By allowing infinitely many factors within each cluster, IMIFA addresses the

difficulty in choosing the optimal number of factors. This facilitates fitting factor-

analytic models which are more flexible, in the sense that the number of factors

may be cluster-specific, thereby potentially improving clustering performance. This

is achieved by assuming multiplicative gamma process (MGP) shrinkage priors

(Bhattacharya and Dunson, 2011; Durante, 2017) on the cluster-specific factor

loading matrices, thus generalising the MGP prior to the mixture setting. Such

a prior allows the degree of shrinkage of the factor loadings towards zero to in-

crease as the factor number tends towards infinity. The number of factors with

non-negligible loadings can be considered as the ‘active’ number of factors within

each cluster. Following Bhattacharya and Dunson (2011), a computationally ef-

ficient adaptive Gibbs sampling algorithm is employed for estimation. Thus, the

choice of the numbers of active factors in different clusters is automated.

The IMIFA model with its PYP-MGP priors thus offers a single-pass and there-

fore computationally efficient approach to clustering high-dimensional data. It can

be viewed as the most flexible model at the head of a family of Bayesian factor-

analytic mixture models. Section 4.2 develops the hierarchy of the IMIFA model

family, beginning with the MFA model and concluding with the flagship IMIFA model.

Between these extremes the novel finite mixture of infinite factor analysers model

(MIFA) is introduced. Overfitted factor-analytic mixtures (Papastamoulis, 2018)

also belong to the IMIFA family; the overfitted mixture of infinite factor analysers

(OMIFA) model is also introduced here.

Section 4.3 considers implementation of the IMIFA family of models. A bench-

marking experiment is conducted on the well-known Italian olive oil data set. A
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real data application follows through the cluster analysis of spectral metabolomic

data from an epilepsy study. Finally an illustrative application is provided through

clustering United States Postal Service handwritten digit data, a setting for which

fitting sub-models of the IMIFA family is practically infeasible. Comparisons against

other clustering methods are provided throughout. Simulation studies demonstrat-

ing the performance of IMIFA under different scenarios are deferred to Appendix

4.B. Section 4.4 concludes the article with a discussion of IMIFA and thoughts on

future research directions.

A software implementation for IMIFA and its family of sub-models is provided

by the associated R package IMIFA (Murphy et al., 2019), which is freely avail-

able from www.r-project.org (R Core Team, 2019), with which all results were

generated.

4.2 The IMIFA Model Family

The hierarchy of the IMIFA family of models is delineated herein, including a re-

view of extant methodologies, the introduction of novel sub-models, and conclud-

ing with the flagship IMIFA model. Prior specifications, Markov chain Monte Carlo

(MCMC) inferential procedures, approaches to posterior predictive model check-

ing, and model-specific implementation issues that arise in practice are addressed.

4.2.1 Mixtures of Factor Analysers

Mixtures of factor analysers are Gaussian latent variable models used for clus-

tering high-dimensional data. For each of G clusters in these finite mixtures, the

cluster-specific FA model in cluster g is given by xi − µg = Λgηi + εig . The ob-

served feature vector xi = (xi1, ... , xip)> with mean µg and covariance matrix Σg is

assumed to linearly depend on a q-vector (q � p) of latent common factor scores

ηi and additional sources of variation called specific factors εig . It is assumed that

ηi has a q-variate Gaussian distribution Nq(0,Iq), where Iq denotes the q × q

identity matrix, and that εig ∼ Np(0, Ψg ), where Ψg is a diagonal matrix with non-

zero elements ψ1g , ... ,ψpg known as uniquenesses. Here, Λg denotes the p × q

factor loadings matrix of cluster g and notably q = 0 is permitted.
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To facilitate estimation, a latent cluster indicator vector zi = (zi1, ... , ziG )> is in-

troduced such that zig = 1 if observation i belongs to cluster g and zig = 0 oth-

erwise. Hence, zi has a Mult(1,π) distribution where π = (π1, ... , πG )> are the

cluster mixing proportions which sum to 1. A symmetric uniform Dirichlet prior

π ∼ Dir(α = (α, ... ,α) = 1) is assumed. Upon marginalising out zi and ηi , MFA

yields a parsimonious finite sum covariance structure for the observed data

f (xi |θ) =
G∑

g=1

πgNp

(
xi ;µg , Σg = ΛgΛ>g + Ψg

)
, (4.1)

where Np(xi ; ·, ·) denotes the density of a p-variate Gaussian distribution evaluated

at xi and θg = {µg , Λg , Ψg} are the cluster-specific FA parameters for which infer-

ence is straightforward under a Gibbs sampling scheme. Imposing constraints on

Ψg (McNicholas and Murphy, 2008) and/or fixing πg = 1/G ∀ g may be useful in

some settings.

4.2.1.1 Prior Specification and Practical Issues

The conditionally conjugate nature of the various prior distributions detailed below

facilitates MCMC sampling via straightforward Gibbs updates. A multivariate Gaus-

sian prior is assumed for the factor loadings of the variable j across the q factors

of cluster g :
Λjg = (λj1g , ... ,λjqg ) ∼ Nq(0,Iq) .

Similarly, a diffuse multivariate Gaussian prior is assumed for the component means,

µg ∼ Np

(
µ̃,ϕ−1Ip

)
,

where µ̃ is the overall sample mean and the scalar ϕ controls the level of diffusion.

An inverse gamma prior ψjg ∼ IG(α0, βj) is assumed for the uniquenesses of

variable j in cluster g . Guided by Frühwirth-Schnatter and Lopes (2010), hyper-

parameters are chosen to ensure ψjg is bounded away from 0, thereby avoiding

Heywood problems. With a sufficiently large shape α0, variable-specific scales are

derived from the sample precision matrix S? = S−1 via βj = (α0 − 1)/S?jj . How-

ever, when N/p is close to or less than 1, or when S−1 is otherwise unavailable, S?

is replaced by a ridge-type estimator Ŝ−1 =
(
β0 + N/2

)(
β0Ip + 0.5

∑N
i=1 xix

>
i

)−1,
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which combines the the inverse Wishart prior S−1 ∼Wp (β0, β0Ip) with the sample

information, where β0 is a hyperparameter (Frühwirth-Schnatter and Lopes, 2018).

For unstandardised data, this estimator is constructed for the inverse correlation

matrix and then appropriately scaled using the diagonal entries of S (Wang et al.,

2015). When the variances are roughly balanced, constraining Ψg to ψgIp , and/or

using βj = β = (α0 − 1)/max(diag(S?)), provides additional parsimony. Notably,

the isotropic constraint provides the link between factor analysis and probabilistic

principal component analysis (Tipping and Bishop, 1999).

The rotational invariance property which makes FA models non-identifiable is

well known: most covariance matrices Σ cannot be uniquely factored as ΛΛ> + Ψ

when q > 1. Though identifiability of Λ is not strictly necessary for the purposes

of clustering or inferring Σ, addressing the identifiability problem offline using the

parameter expanded approach of Ghosh and Dunson (2008) in tandem with Pro-

crustean methods, as in McParland et al. (2014), yields interpretable posterior

summaries. Another practical issue is the label switching phenomenon (Frühwirth-

Schnatter, 2010) which is addressed offline using the cost-minimising permutation

given by the square assignment algorithm (Carpaneto and Toth, 1980). Finally,

optimal FA and MFA models are chosen using the BIC-MCMC criterion (Frühwirth-

Schnatter, 2011) where necessary in what follows.

4.2.2 Mixtures of Infinite Factor Analysers

To overcome the requirement to specify q, infinite factor analysis (IFA) models are

employed (Bhattacharya and Dunson, 2011). The IFA model is a factor analysis

model which assumes a multiplicative gamma process (MGP) shrinkage prior on

the loadings matrix. This prior allows the degree of shrinkage towards zero to

increase as the column index k → ∞, mitigating against the factor splitting phe-

nomenon. Here the IFA model is generalised to the mixture setting, leading to

the novel mixture of infinite factor analysers (MIFA) model. Under MIFA, the MGP

prior is placed on each parameter expanded Λg matrix with no restrictions on its

entries, thereby making the induced prior on Σg invariant to the ordering of the vari-

ables. The MGP prior is conditionally conjugate, facilitating block Gibbs updates of

the loadings and hence rapid mixing. Thus, the MGP prior in mixture settings is

given by
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λjkg |φjkg , τkg ,σg ∼ N1

(
0,φ−1jkgτ

−1
kg σ

−1
g

)
, φjkg ∼ Ga(ν1, ν2) ,

τkg =
k∏

h=1

δhg , σg ∼ Ga(%1, %2) ,

δ1g ∼ Ga(α1, β1) , δhg ∼ Ga(α2, β2) ∀ h ≥ 2,

where τkg is a column shrinkage parameter for the k-th column in the g -th cluster’s

loadings matrix Λg ∀ k = 1, ... ,∞, and Ga(α, β) denotes the gamma distribution

with mean αβ. The role of the local shrinkage parameters φ1kg , ... ,φpkg for the p

elements in column k of Λg is to favour sparsity while also preserving the signal

of non-zero loadings. Lastly, the cluster shrinkage parameter σg reflects the belief

that the degree of shrinkage is cluster-specific. A schematic illustration of the MGP

prior is given in Figure 4.1; note that loadings can shrink arbitrarily close, but not

exactly, to zero.

Bhattacharya and Dunson (2011) fix β1 = β2 = 1 and recommend that α2 > β2.

However, Durante (2017) elaborates on the cumulative shrinkage properties and

roles played by hyperparameters, showing in particular that α2 > β2 + 1 is neces-

sary in order to have column-specific variances τ−1kg that decrease in expectation

with growing k . It is also recommended that α2 be moderately large relative to α1

(to ensure that the cumulative shrinkage property for which the prior was devel-

oped holds) and to avoid excessively high values for α1 (to avoid over-shrinking

to increasingly low-dimensional factorisations). While Bhattacharya and Dunson

(2011) assume Ga(ν, ν) priors for the local shrinkage parameters, here more gen-

eral settings are used to allow control over prior non-informativity. In the spirit of

Durante (2017), the expectation ν2/(ν1 − 1) of the induced inverse gamma prior on

φ−1jkg is suggested to be ≤ 1 to induce sparsity on average. Furthermore, following

the guidelines of Durante (2017), it is generally advisable that all MGP hyperpa-

rameters are chosen such that the first two moments of the associated hyperprior

are defined, as this leads to superior performance in terms of the expected devi-

ation between the true and estimated covariance matrices. In the mixture setting,

α1 and α2 may need to be higher than the values suggested by Durante (2017)

to enforce a greater degree of shrinkage in clusters with few units; this aspect is

highlighted in simulation studies in Appendix 4.B.
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Figure 4.1: Density of a typical element in the first, second, and third columns of a cluster-specific
loadings matrix under the MGP shrinkage prior.

4.2.2.1 The Adaptive Gibbs Sampler

An adaptive Gibbs sampler (AGS) is employed when performing inference for MIFA.

This dynamically shrinks the loadings matrices (and the infinite scores matrix η)

to have finite numbers of columns, by selecting the number of ‘active’ factors.

This practically facilitates posterior computation while closely approximating the

IFA model, without requiring specification of Q = (q1, ... , qG )>. However, a strat-

egy is required for choosing appropriate truncation levels, q̂g , that strike a balance

between missing important factors and wasting computational effort. For com-

putational reasons, a conservatively high upper bound is used, such that q?g =

min
(
b3(p)e ,N − 1, p − 1

)
∀ g . The number of factors in each Λg is then adap-

tively tuned as the MCMC chain progresses. Adaptation can be made to occur only

after the burn-in period, in order to ensure the true posterior distribution is being

sampled from before truncating the loadings matrices.

At the t-th iteration, adaptation occurs with probability p(t) = exp(−b0 − b1t),

with b0 and b1 chosen so that adaptation occurs often at the beginning of the

chain but then decreases exponentially fast in frequency. Here b0 = 0.1 and

b1 = 5× 10−5 are used. With probability p(t), loadings columns having some pre-

specified proportion of elements ς in a small neighbourhood ε of zero are moni-

tored. If there are no such columns, an additional column is added by simulation

from the MGP prior. Otherwise redundant columns are discarded and the AGS

proceeds with all parameters corresponding to non-redundant columns retained.
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Choice of ς and ε can be delicate, as there is an implicit trade-off between these

two fixed tuning parameters; smaller ς and larger ε speed up the algorithm by

favouring the discarding of factors during the adaptation step, and vice versa. Typ-

ically, ς should be kept close to 1 and ε should be kept small, relative to the scale

of the data. Here, ς = b0.7 × pc/p and ε = 0.1 are found to strike an appropriate

balance. The dimension of the matrix η of factor scores at a given iteration are set

to p× q = p×max (Q (t)); rows corresponding to observations currently assigned

to a cluster with fewer latent factors than q are padded with zeros. Notably, here q̂g

may shrink to 0 thus allowing diagonal covariance structure within a component. If

this occurs, the decision to simulate a new column is based on a binary trial with

probability 1− ς as there are no loadings columns to monitor.

The numbers of active factors in each cluster for each retained posterior sample

can be used to construct a barchart approximation to the posterior distribution of qg .

The posterior mode is used to estimate each qg , with credible intervals quantifying

uncertainty. Another strategy, which circumvents the need to pre-specify ς and ε,

is to forego adaptation (provided the computational burden of doing so is tolerable)

and estimate q̂g from the number of non-redundant columns in the posterior mean

loadings matrices. However, this approach is not considered further here.

In any case, the main advantages of MIFA are that different clusters can be

modelled by different numbers of factors and that the model search is reduced to

one for G only, as qg is estimated automatically during model fitting. Here, for MIFA

models, the optimal G is chosen via the BICM (BIC-Monte (Carlo)) proposed by

Raftery et al. (2007), with BICM = 2 ln
(
L
)
− 2s2l (ln(N)− 1), where L and s2l are

the sample mean and sample variance, respectively, of the log-likelihood values

calculated for each retained posterior sample. This criterion is particularly useful

in the context of nonparametric models where the number of free parameters is

difficult to quantify, though we caution that it may be biased in favour of G = 1

models, under which the log-likelihoods tend to exhibit less variability, and that a

large number of posterior samples are required to ensure stable estimation of s2l .
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4.2.2.2 Other Infinite Factor Models

This work offers an extension of the MGP prior and its related AGS routine to the

mixture modelling context. Wang et al. (2016) develop a related model employing

a multiplicative exponential process prior. Other nonparametric approaches to in-

ferring the number of factors include Knowles and Ghahramani (2007), in which

a two-parameter Indian Buffet Process (IBP) prior is assumed on an infinite bi-

nary matrix underlying the factor scores, thus selecting features of interest, with

associated standard Gaussian weights. A closely related approach using the Beta

process (BP) is provided by Paisley and Carin (2009). In Knowles and Ghahramani

(2011) and Ročková and George (2016), an IBP prior is instead assumed for spar-

sifying the loadings. These models assume a single sparse infinite factor model

for the whole data set. However, embedding them in a mixture modelling setting,

similar to the IMIFA framework, is intuitively feasible.

Indeed, Chen et al. (2010) employ the BP prior, coupled with a Dirichlet process

prior, to perform clustering in a manifold learning setting. While the BP and IBP

priors achieve exact sparsity, which may be advantageous in certain applications,

the MGP prior has a weaker notion of sparsity by virtue of cumulatively shrinking an

infinite series arbitrarily close to zero, thereby preserving small signals. The block

updates of each row of Λg facilitated by the MGP prior and parameter expansion

mean the AGS approach is a simpler, more computationally efficient alternative to

the BP and IBP priors.

4.2.3 Overfitted Mixtures of (Infinite) Factor Analysers

While MIFA obviates the need to pre-specify Q, the issue of model choice is not

yet fully resolved. Overfitted mixtures (Rousseau and Mengersen, 2011; van Havre

et al., 2015) are one means of extending MIFA; indeed Papastamoulis (2018) pro-

poses an overfitted mixture of factor analysers (OMFA), albeit with finite factors.

Here, the overfitted mixture of infinite factor analysers (OMIFA) model is introduced.

In overfitted mixtures the symmetric Dirichlet prior on π plays an important role.

Estimation is approached by initially overfitting the number of clusters expected to

be present. Small values of the hyperparameter α encourage emptying out ex-
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cess components in the posterior distribution; the uniform prior with α = 1 is

rather indifferent in this respect. The sampler is initialised with a conservatively

high number of components: G ? = max
(
d3 ln(N)e , 25,N − 1

)
, though this may be

too high if it is close to N . While G̃ = G ? remains fixed throughout the MCMC chain,

the number of non-empty clusters is recorded at each iteration of the sampler as

G0 = G̃ −
∑G̃

g=1 1
(∑N

i=1 zig = 0
)

where 1(·) is the indicator function. The true G is

estimated by Ĝ , the G0 value visited most often. Cluster-specific inference is con-

ducted only on samples corresponding to those visits. For the OMIFA model, the

AGS is modified to handle empty components: the MGP-related parameters are

simulated from the relevant priors and each corresponding Λg matrix is restricted

to having q factors, i.e. the same number of columns currently in the matrix of

factor scores η, either by truncation or by padding with zeros, as required.

4.2.4 Infinite Mixtures of (Infinite) Factor Analysers

Embedding MFA and MIFA in an infinite mixture setting leads, respectively, to the

infinite mixture of finite factor analysers model (IMFA) and the flagship infinite mix-

ture of infinite factor analysers model (IMIFA). These models employ a nonpara-

metric Pitman-Yor process (PYP) prior which is easily incorporated into the MCMC

sampling scheme.

The PYP is a stochastic process whose draws are discrete probability mea-

sures, whereby H ∼ PYP(α, d ,H0) denotes a PYP probability distribution H ,

with base distribution H0 interpreted as the mean of the PYP, discount parame-

ter d ∈ [0, 1), and concentration parameter α > −d . For the PYP mixture model

IMFA and the PYP-MGP mixture model IMIFA H0 comes from the factor-analytic

mixture (4.1), hence

f (xi |θ) =
∞∑
g=1

πgNp

(
xi ;µg , ΛgΛ>g + Ψg

)
. (4.2)

The stick-breaking representation of the PYP (Pitman, 1996) is used as a prior

process for generating the mixing proportions in (4.2). This construction views

{π1, π2, ...} as pieces of a unit-length stick that is sequentially broken in an infinite

process, with stick-breaking proportions Υ = {υ1, υ2, ...}, summarised as
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υg ∼ Beta(1− d ,α + gd) , θg ∼ H0 ,

πg = υg

g−1∏
l=1

(1− υl) , H =
∞∑
g=1

πgδθg ∼ PYP(α, d ,H0) ,

where δθg is the Dirac delta centred at θg , such that draws are composed of a sum

of infinitely many point masses. The PYP reduces to the DP when d = 0, in which

case mass shifts to the right with increasing dispersion as α increases, implying

an a priori larger number of components. However, some important distributional

features fundamentally differ when d 6= 0 (De Blasi et al., 2015). The PYP exhibits

heavier tail behaviour and allows the stick-breaking distribution to vary according

to the component index g , without sacrificing much in the way of tractability. In

particular, increasing d values have the effect of flattening the prior, controlling its

degree of non-informativity (see Appendix 4.E).

Slice sampling (Walker, 2007; Kalli et al., 2011) is used here to yield samples

from the PYP by adaptively truncating the number of components needed to be

sampled at each iteration. By introducing an auxiliary variable ui > 0 which pre-

serves the marginal distribution of the data, and denoting by ξ = {ξ1, ξ2, ...} a

positive sequence of infinite quantities which sum to 1, the joint density of (x, u)

is given by f (x, u |θ, ξ) =
∑∞

g=1 πgUnif(u; 0, ξg ) f (x |θg ). Since only a finite num-

ber of ξg are greater than u, the conditional density of x |u can be written as a

finite mixture with G̃ = max{1≤i≤N} (|Aξ(ui)|) ‘active’ components at each iteration,

where | · | denotes cardinality and Aξ(u) = {g : u < ξg}. Though G is infinite in

theory, G̃ can be at most equal to N . Thus, the infinite mixture of (infinite) factor

analysers models can be sampled from.

Typical implementations of the slice sampler arise when ξg = πg (Walker, 2007)

but independent slice-efficient sampling (Kalli et al., 2011) allows for a deterministic

decreasing sequence, e.g. geometric decay, given by ξg = (1− ρ) ρg−1 where ρ ∈
[0, 1) is a fixed value to be chosen with care. Higher values generally lead to better

mixing but longer run-times, as the average cardinality of Aξ(u) increases, and

vice versa. Setting ρ = 0.75, in line with the recommendations of Kalli et al. (2011),

appears to strike an appropriate balance in the applications considered here.
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4.2.4.1 Inference for Infinite Mixtures of Factor Analysers Models

For clarity, what follows focuses on the IMIFA model where inference proceeds via

the independent slice-efficient sampler with geometric decay. Inference for other

models in the IMIFA family is closely related. The joint density of the IMIFA model is

f (X,η, Z, u, Υ,θ) ∝ f (X |η, Z, u, Υ,θ) f (η) f (Z, u |Υ,π) f (Υ |α, d) f (θ)

=

{
N∏
i=1

∏
g∈Aξ(ui )

Np

(
xi ;µg + Λgηi , Ψg

)zig}{ N∏
i=1

Nq

(
ηi ; 0,Iq

)}
{

N∏
i=1

∞∏
g=1

(
πg
ξg
1
(
ui < ξg

))zig
}{

∞∏
g=1

(1− υg )α+gd−1

υdg B(1− d ,α + gd)

}
f (θ),

where B(·) is the Beta function and f (θ) is the product of the previously defined

collection of conditionally conjugate priors with additional layers for hyperparam-

eters. Only the parameters of the G̃ active components are sampled at each it-

eration. The algorithm is initialised with the same G ? value detailed in Section

4.2.3, typically above the anticipated number to which the algorithm will converge,

in the spirit of Hastie et al. (2014). Here, however, G̃ can theoretically exceed

this value. For computational reasons, a finite upper limit is placed on G̃ with

max(G ?, min(N − 1, 50)) found to be sufficiently large. However, G̃ is only regarded

as a set of proposals as to where to allocate observations; as in Section 4.2.3, it is

the subset of non-empty clusters G0 that is of inferential interest.

Bayesian approaches to clustering are known to be sensitive to initial cluster

allocations. While starting values for zi can be obtained by any means, model-

based agglomerative hierarchical clustering (Scrucca et al., 2016) is used here.

Though this is fast and intuitive given that IMIFA models are initialised at a con-

servatively high number of components, which are then merged as the sampler

proceeds, heavily imbalanced initial cluster sizes are cautioned against. By exten-

sion, initial cluster means and mixing proportions are computed empirically. Other

parameter starting values are simulated from their relevant prior distributions. The

adaptive inferential algorithm for IMIFA then proceeds mostly via Gibbs updates.

For those which are multivariate Gaussian, using the Cholesky factor of the co-

variance matrices and employing block updates speeds up the algorithm (Rue and
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Held, 2005). The allocations zi are sampled in a fast, numerically stable fashion,

using the Gumbel-Max trick (Yellott, 1977). Finally, state spaces for applications

of IMIFA to real data can be highly multimodal with well-separated regions of high

posterior probability coexisting, corresponding to clusterings with different num-

bers of components. Thus, label switching moves (Papaspiliopoulos and Roberts,

2008) are incorporated in order to improve mixing. Details of the Gibbs updates,

Gumbel-Max trick, and label switching moves are provided in Appendix 4.A.

4.2.4.2 Assessing Model Fit and Mixing

As is good statistical practice, posterior predictive model checking (Gelman et al.,

2004) is employed. Sampled model parameters from the MCMC chain are used

to generate replicate data from the posterior predictive distribution. Valid posterior

samples, after conditioning on Ĝ , are those for which max(Q (t))≥ max
(
q̂1, ... , q̂Ĝ

)
such that the dimension of the estimated scores matrix η̂ is preserved. To assess

model fit, histograms of the modelled data X are compared to histograms of the

replicate data in a global sense using the Posterior Predictive Reconstruction Error

(PPRE), calculated as follows:

1. Gather the histogram bin counts of each variable in X into the h × p matrix

H, where h is the maximum number of bins across all variables and H is

padded with zeros as required.

2. Generate r ∈ {1, ... ,R} data sets X (r) from the posterior predictive distribu-

tion.

3. Create a similar matrix of histogram bin counts H(r) for each X (r) using

the same break-points with which H was constructed (with endpoint bins

extended to ±∞).

4. Compute the Frobenius norm ‖·‖F between H and H(r), standardising to

the 0-1 scale using the triangle inequality:∣∣∣∥∥H∥∥F − ∥∥H(r)
∥∥
F

∣∣∣ ≤ ∥∥H−H(r)
∥∥
F ≤

∥∥H∥∥F +
∥∥H(r)

∥∥
F .
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The distribution of PPRE values can be visualised using boxplots and summarised

by the median, with credible intervals quantifying uncertainty. This discrepancy

measure is well-suited to assessing model adequacy for mixtures of multivariate

data: it accounts for inherent multimodality and gives a global quantitative mea-

sure of agreement between the distributions of the observed variables and their

posterior predictive counterparts.

Convergence of the MCMC chains is assessed using the potential scale re-

duction factor (PSRF; Brooks and Gelman, 1998; Plummer et al., 2006). Random

allocations of the initial cluster labels, resulting in different draws from the relevant

priors for parameter initialisation, are used to construct the multiple overdispersed

chains required. The MAP labels of each chain are matched to the main chain prior

to computing the diagnostics; Λg matrices are also rotated to a common template

for each cluster. Good convergence is indicated by upper PSRF 95% confidence

interval limits close to 1; this is a stricter requirement than the PSRF values them-

selves being near 1.

4.2.4.3 Comparing the IMIFA Family Models

Though IMIFA and OMIFA come with the computational complexities inherent in

nonparametric methods, diminishing adaptation, and extra tuning parameters, their

advantages over other models in the IMIFA family are numerous: i) flexibility, in the

sense that models where qg 6= q′g can be fitted, ii) computational efficiency, in the

sense that the burden is reduced relative to searching over a range of fitted MFA or

MIFA models, iii) removing the need for model selection criteria, and iv) the ability

to quantify the uncertainty in Ĝ and q̂g . Both methods offer simpler alternatives

to reversible jump MCMC (Richardson and Green, 1997) and birth-death MCMC

(Stephens, 2000). Hence, among the IMIFA family, the infinite factor models are

recommended over the finite factor models and the infinite and overfitted mixtures

are recommended over the finite mixtures. However, the MIFA model is appropriate

if one wishes to fix G but infer qg .

While infinite mixtures are often used for density estimation, they are also em-

ployed to infer the number of components in cluster analyses (e.g. Kim et al. 2006;

Xing et al. 2006; Yerebakan et al. 2014). However, Miller and Harrison (2013,
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2014) raise concerns about the guarantee of posterior consistency for the number

of non-empty clusters, showing the number uncovered is typically greater than or

equal to the truth, often with several vanishingly small clusters inferred. These

concerns highlight the need for practitioners to pay due consideration to the un-

certainty in the number of clusters offered by IMIFA models. Relatedly, Frühwirth-

Schnatter and Malsiner-Walli (2019) compare infinite mixtures to overfitted (‘sparse

finite’) mixtures. They highlight that overfitted mixtures are useful for applications

in which the data arise from a moderate number of clusters, even as the sample

size increases, whereas infinite mixtures are suited to cases where the number of

clusters also increases. However, they show that clustering results are driven less

by the assumption of whether the data arose from a finite or infinite mixture, but

by the hyperprior on the DP parameters or the sparseness of the Dirichlet prior in

the overfitted setting. Indeed, they show that overfitted and infinite mixtures yield

comparable clustering performance on the observed data when these hyperpriors

are matched. This matching leads to ‘sparse’ infinite mixtures that avoid overfit-

ting the number of clusters. Similar behaviour is observed for the PYP prior in the

applications in Section 4.3, where the IMIFA and OMIFA models, with matched

hyperpriors, give comparable results.

The issue of choosing α can make implementing overfitted models challeng-

ing. With fixed α = γ/G?, the prior approximates a DP with concentration pa-

rameter γ as G ? tends to infinity (Green and Richardson, 2001). Here, follow-

ing Frühwirth-Schnatter and Malsiner-Walli (2019), a Ga(a, bG ?) hyperprior is as-

sumed for α. This favours small values and allows α to be updated via Metropolis-

Hastings. In the infinite mixture setting, learning the PYP parameters (which also

requires Metropolis-Hastings steps) and adopting the label-switching moves en-

ables accurate inference on G0. A joint hyperprior p(α, d) = p(α | d) p(d) is as-

sumed (Carmona et al., 2019) where p(α | d) = Ga(α + d ; a, b); choosing a large

b encourages clustering (Müller and Mitra, 2013). A spike-and-slab hyperprior

d ∼ κδ0 + (1− κ)Beta(a′, b′) is assumed. The estimated proportion κ̂ can then be

used to assess whether the data arose from a DP or a PYP at little extra computa-

tional cost. See Appendix 4.A for further details.
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4.3 Illustrative Applications

The flexibility and performance of the IMIFA model and its related model family

are demonstrated below through application to benchmark and real data sets. All

results are obtained through the IMIFA R package; code to reproduce many of

the results is available in the associated vignette6. Appendix 4.B reports on sim-

ulation studies demonstrating the performance of IMIFA under different scenarios,

including effects of the N/p ratio, the PYP parameters, imbalanced cluster sizes,

uncommon qg and the degree of loadings sparsity, while Appendix 4.C explores

the robustness of IMIFA.

MCMC chains were run for 50, 000 iterations, except for Section 4.3.3 in which

20, 000 were run. Every 2nd sample was thinned and the first 20% of iterations

were discarded as burn-in. All computations were performed on a Dell Latitude

5491 laptop, equipped with a 6-core 2.60 GHz Intel Core i7-8850H processor and

16 GB of RAM. Where necessary, the optimal finite and infinite factor models are

chosen by the BIC-MCMC and BICM criteria, respectively. Throughout, ·̂ denotes

the posterior mode, posterior mean, or relevant optimal value. Unless otherwise

stated, data were mean-centred and unit-scaled and no constraints were imposed

on the uniquenesses. Hyperprior specifications are detailed in Table 4.1. While

there are many hyperparameters to select, the choices are all reasonably standard.

However, poor settings may introduce additional factors or clusters to maintain

flexibility and so care in specifying hyperparameters is advised.

Table 4.1: Hyperparameter specifications for the IMIFA model. Note that the specification of the
beta distribution in the prior for d amounts to a standard uniform.

Parameter(s) Hyperparameter(s) Value(s)

µg ϕ 0.01

Ψg (α0,β0) (2.5, 3)

φjkg (ν1, ν2) (3, 2)

δ1g (α1,β1) (2.1, 1)

δkg (α2,β2) (3.1, 1)

σg (%1, %2) (3, 2)

α (a, b) (2, 4)

d (a′, b′,κ) (1, 1, 0.5)

6 https://cran.r-project.org/web/packages/IMIFA/vignettes/IMIFA.html
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4.3.1 Benchmark Data: Italian Olive Oils

The Italian olive oil data (Forina and Tiscornia, 1982; Forina et al., 1983) is often

clustered using factor-analytic models, e.g. McNicholas (2010). The data detail the

percentage composition of 8 fatty acids in 572 Italian olive oils, known to originate

from three areas: southern and northern Italy and Sardinia. Each area is com-

posed of different regions: southern Italy comprises north Apulia, Calabria, south

Apulia, and Sicily; Sardinia is divided into inland and coastal Sardinia; and north-

ern Italy comprises Umbria and east and west Liguria. Hence, the true number of

clusters is hypothesised to correspond to either 3 areas or 9 regions.

The full family of IMIFA models is fitted to the olive oil data with results detailed

in Table 4.2. Models relying on pre-specification of finite ranges of G and/or q are

based on G = 1, ... , 9 and q = 0, ... , 6. Clustering performance is evaluated using

the adjusted Rand index (ARI; Hubert and Arabie, 1985) and the misclassification

rate, compared to the 3 area labels. The α parameter is reported as its fixed value

or posterior mean, as appropriate. Table 4.2 shows the flexibility and accuracy of

the developed model family, and of the IMIFA model in particular which has the

best clustering performance. Additionally, IMIFA is the most computationally effi-

cient model considered, among those in the IMIFA family achieving clustering, as it

requires only one run. This speed improvement would be exacerbated with larger

data sets. However, methods requiring fitting of multiple models were run here in

series; parallel implementations would reduce runtimes. Finally, models with dif-

ferent numbers of cluster-specific factors show improved clustering performance

compared to the corresponding finite factor model in every case.

Table 4.2 also shows that the performance of the IMIFA model compares favour-

ably to the best parsimonious Gaussian mixture model, fit via the pgmm R package

(McNicholas et al., 2018) and the best mixture of factor mixture analysers (MFMA)

model (Viroli, 2010), evaluated with 1, ... , 5 components in both layers. Models with

zero factors were not considered in either case. IMIFA also outperforms the best

constrained Gaussian mixture model fitted using mclust (Scrucca et al., 2016).

These finite mixtures are fit via maximum likelihood and use the BIC for model

selection after fitting a large number of candidate models.
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Table 4.2: Results of fitting a range of models, including the full IMIFA family, to the Italian olive
oil data, detailing the number of candidate models explored, the run-time relative to the IMIFA run
(approx. 782 seconds), the posterior mean or fixed value of α, the posterior mean of d , modal
estimates of G and Q, and the ARI and misclassification rate as evaluated against the known area
labels, under the optimal or modal model as appropriate.

Model # Models Relative Time α d G Q ARI Error (%)

IMIFA 1 1.00 0.48 0.01 4 6, 3, 6, 2 0.94 8.39

IMFA 7 4.14 0.62 0.01 5 6, 6, 6, 6, 6 0.91 14.86

OMIFA 1 1.19 0.02 — 4 6, 3, 6, 4 0.93 9.97

MIFA 9 3.41 1 — 5 6, 3, 6, 6, 4 0.92 10.31

MFA 63 13.86 1 — 2 5, 5 0.82 17.13

IFA 1 0.11 — — 1 6 — —

FA 7 0.37 — — 1 6 — —

mclust† 115 0.01 — — 6 — 0.56 38.64

MFMA† 1, 350 4.68 — — 4 5, 5, 5, 5 0.68 20.28

pgmm†,‡ 588 4.46 — — 5 6, 6, 6, 6, 6 0.53 35.84

† Due to the various covariance matrix decompositions considered, the results for mclust, MFMA, and pgmm are reported

for the unstandardised data, for which superior clustering performance in terms of the ARI was achieved in each case.

‡ The optimal pgmm model uses the UCU constraints on the uniquenesses (i.e. Ψg = Ψ). Among the more directly

comparable unconstrained UUU models, the optimal one according to BIC has G = 6 components, each with 5 factors,

and achieves an ARI of 0.43. Notably, the pgmm models chosen by BIC both have more components than the IMIFA model.

It is also notable that within the set of IMIFA models relying on information

criteria, those deemed optimal were not necessarily optimal in a clustering sense.

For instance, the 4-cluster MIFA model yields an ARI of 0.94 and a misclassification

rate of 6.99%, with respect to the 3 area labels, despite its sub-optimal BICM.

Similarly, the BICM and BIC-MCMC criteria suggest different optimal MFA models.

For the IMIFA model κ̂ ≈ 0.89, suggesting similar inference would have resulted

under a DP prior. Indeed, the results obtained by the OMIFA and OMFA models

are similar to those of their infinite mixture counterparts, though the latter provide

a better fit to the data (see Figure 4.5).

Figure 4.2 shows a barchart approximation to the posterior distribution of G un-

der the IMIFA model. The modal value of 4, visited in ≈ 90% of posterior samples,

is used as the estimate of the true number of clusters (with 95% credible interval

[4, 5]). Table 4.3a tabulates the MAP clustering against the 3 area labels and sug-

gests this solution makes geographic sense, in that northern oils are cleanly split

into two sub-clusters. Cluster 1 contains all of the 323 southern Italy oils: this large
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cluster requires the largest number of factors (q̂1 = 6 [5, 6], with 95% credible in-

tervals in brackets). Some of the other clusters require notably fewer (q̂2 = 3 [1, 6],

q̂3 = 6 [3, 6], and q̂4 = 2 [1, 4]). Table 4.3b gives the confusion matrix with oils

from the north labelled by their associated region(s), yielding an ARI of 0.994 and a

misclassification rate of 0.52%. Figure 4.3 shows the uncertainty in the allocations

to these clusters. Only three oils have large probability of belonging to a cluster

other than the one to which they were assigned by the IMIFA model.
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Figure 4.2: Posterior distribution of G under the
IMIFA model for the olive oil data. The number of
clusters is estimated by the modal value, Ĝ = 4.
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Figure 4.3: Clustering uncertainties for the IMIFA
model for the olive oil data. Oils misclassified ac-
cording to the labels in Table 4.3b are highlighted
in red.

Table 4.3: Confusion matrices of the MAP IMIFA clustering of the Italian olive oils against (a) the
known 3 area labels and (b) the new labelling in which northern Italy is split into its constituent
sub-regions.

(a) 3 area cross tabulation

1 2 3 4

Southern Italy 323 0 0 0

Sardinia 0 98 0 0

Northern Italy 0 0 103 48

(b) 4 area cross tabulation

1 2 3 4

Southern Italy 323 0 0 0

Sardinia 0 98 0 0

East Liguria & Umbria 0 0 100 0

West Liguria 0 0 3 48

To assess sensitivity to starting values, the IMIFA model was re-fitted using

multiple random initial allocations, implying also different random draws from the
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priors for parameter starting values. These runs led to identical inference about Ĝ

and Q̂ and equivalent clustering performance. These overdispersed chains were

used to compute the upper 95% PSRF confidence limits depicted in Figure 4.4,

which indicate good convergence. The PPRE boxplots in Figure 4.5 demonstrate

the superior fit of the IMIFA model (with a median PPRE of 0.10) to the olive oil

data, compared to the other IMIFA family models. Histograms comparing the bin

counts between the modelled and replicate data sets for each variable, under the

IMIFA model, are given in Appendix 4.D.
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Figure 4.4: Boxplots of the upper PSRF limits for
all cluster means, uniquenesses, loadings, and
mixing proportions in the overdispersed IMIFA
chains fit to the olive oil data, with red reference
line at 1.
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Figure 4.5: Boxplots of the PPRE values for the
full family of IMIFA models fit to the olive oil data.
Values close to zero indicate good model fit.

4.3.2 Spectral Metabolomic Data

IMIFA is employed to cluster spectral metabolomic data for which N � p (Figure

4.6). The data are nuclear magnetic resonance spectra consisting of p = 189 spec-

tral peaks from urine samples of N = 18 participants, half of which are known to

have epilepsy (Carmody and Brennan, 2010; Nyamundanda et al., 2010). Interest

lies in uncovering any underlying clustering structure given the N � p setting.
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Figure 4.6: Raw spectral metabolomic data.

Data were mean-centred and Pareto scaled (van den Berg et al., 2006). Al-

though N � p, no restrictions are imposed on the uniquenesses as the sample

variances are quite imbalanced. Fitting MIFA models for G = 1, ... , 5 is feasible as

N is small. The BICM criterion chooses Ĝ = 2 as optimal and one participant is

misclassified. IMIFA, however, unanimously visits a 2-cluster model and perfectly

uncovers the group structure.

The modal estimates of the number of factors in each IMIFA cluster are q̂1 =

3 [2, 9] and q̂2 = 5 [4, 13] (see Figure 4.7). Cluster 1 corresponds to the control

group and Cluster 2 to the epileptic participants. Figure 4.8 illustrates the p × q̂g

posterior mean loadings matrices, based on retained samples with q̂g or more

factors, after Procrustes rotation to a common template for both clusters. The

sparsity and shrinkage induced by the MGP prior is apparent, as is the greater

complexity in Cluster 2, given the greater variation in colour and larger number of

factors. For instance, many elevated loadings are visible for chemical shift values

between 8 and 10 for the first two factors in Cluster 2; this activity is not present

for other factors in either cluster. In general, the distributions of the loadings within

a factor exhibit narrow spread around zero, particularly for the cluster of control

participants, with the exception of the regions of the spectrum corresponding to

the large peaks between chemical shifts of 3 and 5 in Figure 4.6.
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Figure 4.7: Posterior distribution of qg under the IMIFA model fit to the metabolomic data.

Cluster 1: q̂1 = 3

1 2 3

1
2

3
4

5
6

7
8

9
1

0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Factors

C
h
e
m

ic
a
l 
S

h
if
t 
(p

p
m

)

Cluster 2: q̂2 = 5

1 2 3 4 5

1
2

3
4

5
6

7
8

9
1

0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Factors

C
h
e
m

ic
a
l 
S

h
if
t 
(p

p
m

)

Figure 4.8: Heat maps, calibrated to a common colour scale, of posterior mean loadings matrices
in the clusters uncovered by fitting IMIFA to the spectral metabolomic data.

IMIFA outperforms the optimal Ĝ = 3 mclust model and the optimal Ĝ = 2,

q̂ = 5 pgmm model, with respective ARI values of 0.73 and 0.27. The clustering

performance of the optimal MFMA model is identical to the optimal MIFA model

described above. Given the N � p nature of the data, spectral clustering with
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the Gaussian kernel (Ng et al., 2001) is also considered. The eigengap heuris-

tic suggests Ĝ = 2 and a perfect clustering is achieved almost instantaneously.

However, the approach does not characterise the uncovered clusters in an inter-

pretable manner, nor provide estimates of cluster membership uncertainty as given

by model-based clustering approaches such as IMIFA.

The median PPRE for the IMIFA model of 0.21 [0.18, 0.24] shows good model

fit, given the size and dimensionality of the data. The median PSRF upper 95%

confidence limits, using three randomly initialised auxiliary chains, for the clus-

ter means, uniquenesses, loadings, and mixing proportions of 1.01 (0.01), 1.00 (<

0.01), 1.01 (0.08), and 1.00 (< 0.01) respectively, show good mixing also (standard

deviations in parentheses). Notably, all chains yield the same inference about Ĝ

and Q̂. So too, again, does the OMIFA model, although its model fit is inferior

(median PPRE=0.26).

4.3.3 Handwritten Digit Data

A final illustration of IMIFA is given through its application to handwritten digit data

from the United States Postal Service (USPS; Hastie et al., 2001). Here N = 7, 291

images of the digits 0, ... , 9 are considered, taken from handwritten zip codes. The

data are not balanced in terms of digit labels. Each image is a 16 × 16 grayscale

grid concatenated into a p = 256-dimensional vector; data were mean-centred but

not scaled. Such data are often considered in the context of manifold learning,

positing that the data dimensionality is artificially high.

Given N and p, fitting a range of MFA or MIFA models is practically infeasible.

Results of a single IMIFA run are presented here. For these data, it is reasonable

to expect the number of components to grow as the sample size grows. It is antic-

ipated that the flexibility afforded by having cluster-specific numbers of factors will

help characterise digits with different geometric features.

The IMIFA model visited a Ĝ = 21 cluster solution in all posterior samples;

Table 4.4 cross-tabulates the MAP clustering against the known digit labels and

achieves an ARI of 0.33. The median PPRE of 0.05 [0.04, 0.06] indicates good

model fit. The overdispersed chains used to compute the PSRF diagnostics lead

to identical inference about the number of clusters but slightly different inference
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about the modal numbers of cluster-specific factors. The ARI values between each

resulting pair of MAP partitions are all in excess of 0.93. As before, good mixing

is indicated by median PSRF upper 95% confidence limits for the cluster means,

uniquenesses, and mixing proportions of 1.01 (0.01), 1.01 (0.01), and 1.01 (< 0.01),

respectively. In computing the diagnostic for the loadings (1.14 (0.35)), only the

first factor (common to all loadings matrices across all clusters in all chains) was

considered, for reasons of fairness and computational resource constraints.

Table 4.4: Cross tabulation of the IMIFA model’s MAP clustering (rows) against true digit labels
(columns) for the USPS data. Cells that are 0 are blank for clarity. Posterior means π̂g and modal
estimates q̂g , with associated 95% credible intervals, are also given.

0 1 2 3 4 5 6 7 8 9 π̂g q̂g

1 359 0.05 4 [2, 8]

2 58 12 3 2 0.01 3 [2, 7]

3 108 0.01 2 [1, 4]

4 9 0.00 16 [3, 16]

5 95 0.01 4 [1, 8]

6 308 3 0.04 7 [4, 10]

7 844 2 0.12 2 [0, 4]

8 133 1 0.02 1 [0, 4]

9 2 392 10 1 0.05 7 [5, 12]

10 59 121 93 19 91 13 2 25 4 0.06 12 [9, 16]

11 136 64 0.03 5 [2, 9]

12 38 1 1 0.01 2 [0, 8]

13 25 3 7 98 51 2 36 59 28 0.04 8 [5, 12]

14 48 73 61 62 135 32 1 16 6 0.06 8 [6, 12]

15 1 83 0.01 3 [1, 7]

16 1 74 0.01 2 [1, 5]

17 2 4 19 381 2 0.06 2 [1, 6]

18 207 0.03 4 [1, 8]

19 123 8 129 348 247 184 77 26 420 84 0.23 6 [3, 9]

20 16 1 3 120 1 338 19 451 0.13 2 [1, 6]

21 62 3 34 71 0.02 3 [1, 6]

Generally, IMIFA assigns images of the same digit, albeit written differently, to

different clusters. Posterior mean images for each cluster are shown in Figure 4.9,

ordered, as is Table 4.4, from 0 to 9 according to the digit most frequently assigned

to the related cluster. Cluster 7 and the smaller cluster 8 capture the digit 1 written
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in a straight and slanted fashion, respectively. Clusters 15, 16, and 17 represent

the digit 6 written with extended, medium, and compact loop curvature, respec-

tively. Notably, cluster 15 requires more factors than clusters 16 and 17. A similar

interpretation follows for clusters 20 and 21 (q̂20 = 2, q̂21 = 3), mostly capturing the

digit 9 with a small and large loop, respectively. Cluster 19 appears to mostly rep-

resent the digit 8 and has a large number of factors (q̂19 = 6) in comparison, say,

to clusters 7 and 8 (q̂7 = 2, q̂8 = 1) which capture the digit 1. This is intuitive, as

8 is a more geometrically complex digit than 1. However, some clusters appear

to be diluted by the confusion of the so-called ‘closed’ 4, in contrast to the ‘open’

4 in cluster 12, with the digits 3, 5, and 8 (cluster 19) and the digits 7 (written

with a horizontal bar) and 9 (clusters 20 and 21). Many clusters capture the most

common digit 0, with differing degrees of elongation and border thickness. Of con-

cern here is cluster 4, containing just 9 observations; the fact that q̂4 = 16, the

upper AGS limit, suggests that the model struggles to shrink the number of factors

in poorly populated clusters. This difficulty is highlighted further in the simulation

studies in Appendix 4.B. Finally, Table 4.4 indicates that clusters 10, 13, and 14

also capture several other digits, all of which are reflected in the blurriness of the

resulting posterior mean images and in q̂10, q̂13, and q̂14 being quite large. The

cluster-membership uncertainties are visualised in Appendix 4.D.

q̂1 = 4 [2,8] q̂2 = 3 [2,7] q̂3 = 2 [1,4] q̂4 = 16 [3,16] q̂5 = 4 [1,8] q̂6 = 7 [4,10] q̂7 = 2 [0,4]

q̂8 = 1 [0,4] q̂9 = 7 [5,12] q̂10 = 12 [9,16] q̂11 = 5 [2,9] q̂12 = 2 [0,8] q̂13 = 8 [5,12] q̂14 = 8 [6,12]

q̂15 = 3 [1,7] q̂16 = 2 [1,5] q̂17 = 2 [1,6] q̂18 = 4 [1,8] q̂19 = 6 [3,9] q̂20 = 2 [1,6] q̂21 = 3 [1,6]

Figure 4.9: Posterior mean images for clusters uncovered by fitting IMIFA to the USPS data. Plots
are ordered according to Table 4.4 and labelled with the modal q̂g .
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It is computationally infeasible to run mclust, pgmm, or MFMA on these large

data, as an exhaustive model search would be too vast. For comparative purposes,

a DP-BP model (Chen et al., 2010) is fitted; this approach also simultaneously

assumes infinitely many components and factors. It finds 43 clusters, each with

around 14 factors, and achieves an ARI of 0.32. Cross tabulating this clustering

against the 21 clusters of the IMIFA model shows that some of the DP-BP clusters

are encapsulated by the larger IMIFA clusters. IMIFA is thus the more parsimonious

approach and affords greater cluster-specific factor flexibility. Additionally, a finite

mixture of matrix-normal distributions (Viroli, 2011) is also fitted. This approach

accounts for the grid nature of the data, but is computationally infeasible for G > 15

and requires a model selection strategy. The optimal model according to BIC yields

Ĝ = 12 and ARI = 0.38. While neither IMIFA nor the DP-BP model account for the

spatial structure in the data, they demonstrate comparative performance without

the need for a computationally expensive model search.

4.4 Discussion

The proposed IMIFA model is a Bayesian nonparametric approach clustering high-

dimensional data using factor-analytic mixture models. By extending the MGP prior

(Bhattacharya and Dunson, 2011) to the PYP-MGP setting, the model sidesteps

the fraught and computationally intensive task of determining the optimal number

of clusters and factors using model selection criteria. Thus, the IMIFA model is

recommended when fitting factor-analytic mixtures in settings where an exhaustive

model search is computationally infeasible. Though IMIFA is not entirely choice-

free, it achieves improved clustering results by allowing factor-analytic models of

different dimensions in different clusters. If small clusters are inferred, one may

wish to prune or merge small clusters with the larger clusters (West et al., 1994)

or assess whether the small clusters are in fact of domain-specific interest. While

comparative performance can be achieved by the IMIFA and OMIFA models, one

may wish to fit a MIFA or OMIFA model when the expectation is that the number of

clusters is fixed or unlikely to grow with N , respectively.
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Future research directions are varied and plentiful. Incorporating covariates, in

the spirit of Bayesian factor regression models (West, 2003; Carvalho et al., 2008),

would allow for direct inclusion of the weight and urine pH covariates available with

the metabolomic data, for example. Furthermore, the models could be extended

to the (semi-)supervised model-based classification setting where all (or some)

of the data are labelled. While constraints on the uniquenesses across variables

and/or clusters are allowed, there is scope for also constraining the loadings across

clusters. Though the number of factors would no longer be cluster-specific, the

common number of loadings columns would be estimated in a similarly automatic

fashion. However, incorporating covariance matrix constraints in the IMIFA model

family problematically reintroduces the need for model selection strategies, in order

to choose between them, though the BICM criterion could feasibly be used for this

purpose also.

As proposed by Bhattacharya and Dunson (2011), the MGP hyperparameters

could be learned via Metropolis-Hastings, and thus also be made cluster-specific.

This could help combat some difficulties identified in the simulation studies in

Appendix 4.B. For example, learning those related to local shrinkage may help

when loadings are notably dense. Learning those related to column shrinkage

may help in settings with many small clusters, where IMIFA struggles to adap-

tively truncate loadings columns. In principle, a further global shrinkage parameter

$ could be added to the MGP prior to borrow information across clusters, i.e.

λjkg | ... ∼ N1

(
0,φ−1jkgτ

−1
kg σ

−1
g $−1

)
. Alternatively, the infinite factor prior of Legra-

manti et al. (2019) could be employed, which decouples control over the shrinkage

rate and the active loadings terms. Finally, the IMIFA family can in fact be consid-

ered as wider than the range of models presented here. For example, the IBP prior

(Knowles and Ghahramani, 2007, 2011; Ročková and George, 2016) could be ex-

tended to the infinite mixture setting, as per the DP-BP model of Chen et al. (2010).

For applied problems, a mismatch between the assumed model and the data

distribution will impact inference. Miller and Harrison (2013, 2014) highlight that

posterior consistency for the number of non-empty clusters in infinite mixtures is

contingent on correct specification of the component distributions. While they do

not discourage the use of infinite mixtures for clustering, they show that a few tiny

extra clusters are typically fitted and suggest robustifying inference. If the data dis-
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tribution is close to but not exactly a finite mixture of Gaussians, an infinite Gaus-

sian mixture will introduce more components as the amount of data increases.

Potential avenues of exploration thus include considering the IMIFA model with

the heavy tailed multivariate t-distribution (Peel and McLachlan, 2000). Similarly,

modelling of complex component distributions can be achieved by considering the

MFMA approach in the context of infinite factor models. Defining robust inference

functions as in Lee and MacEachern (2014) or using nonparametric unimodal com-

ponent distributions as in Rodriguez and Walker (2014) may also prove fruitful.

Another means of robustifying inference is to explicitly include a noise component

with zero factors to capture outliers which depart from the component multivariate

normality assumption. Finally, a ‘coarsened’ posterior (Miller and Dunson, 2018)

could be used for addressing misspecification, by conditioning on the event that

the model generates data close to the observed data in a distributional sense.
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Posterior Conditional Distributions:

Technical details for sampling from the IMIFA model

The structure of the Metropolis-within-Gibbs sampler to conduct inference for the

IMIFA model and the exact forms of the required conditional distributions are de-

tailed below. Note that Ga(α, β) refers throughout to the gamma distribution with

mean α/β. The number of observations in a component is denoted by ng , where

n =
(
n1, ... , nG̃

)> sums to N , and q̃g is the current sample of the cluster-specific

number of active factors. Algorithms for sampling other models in the IMIFA fam-

ily can all be considered as special cases of what follows. The algorithm is imple-

mented in the associated R package IMIFA (Murphy et al., 2019). For g = 1, ... , G̃ ,

where G̃ is the current number of active components (of which some may be

empty):

µg | ... ∼ Np

(
Ω−1µ

(
Ψ−1g

( ∑
i : zig=1

xi −
∑

i : zig=1

Λgηi

)
+ ϕIpµ̃

)
, Ω−1µ

)
,

ηi | zig = 1, ... ∼ Nq̃g

(
Ω−1η Λ>g Ψ−1g

(
xi : zig=1 − µg

)
, Ωη

)
for i = 1, ... , ng ,

ψjg | ... ∼ IG

(
α0 +

ng
2

, βj +
Sjg
2

)
for j = 1, ... , p,

Λjg | ... ∼ Nq̃g

(
Ω−1λ η

>
i : zig=1ψ

−1
jg

(
x(j)
i : zig=1 − µjg

)
, Ω−1λ

)
for j = 1, ... , p,

φjkg | ... ∼ Ga

(
ν1 +

1

2
, ν2 +

σgτkgλ
2
jkg

2

)
for j = 1, ... , p and k = 1, ... , q̃g ,

δ1g | ... ∼ Ga

α1 +
pq̃g

2
, β1 +

σg
2

q̃g∑
h=1

τ
(1)
hg

p∑
j=1

φjhgλ
2
jhg

 ,

δkg | ... ∼ Ga

(
α2 +

p

2
(q̃g − k + 1) , β2 +

σg
2

qg∑
h=k

τ
(k)
hg

p∑
j=1

φjhgλ
2
jhg

)
for k = 2, ... , q̃g ,
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σg | ... ∼ Ga

(
%1 +

pq̃g
2

, %2 +

∑q̃g
k=1 τkg

∑p
j=1 φjkgλ

2
jkg

2

)
,

υg | ... ∼ Beta
(

1− d + ng ,α + gd + N −
g∑

l=1

nl
)

,

ui | zig = 1, ... ∼ Unif(0, ξg ) for i = 1, ... ,N ,

where

Ωµ = ϕIp + ngΨ−1g ,

Ωη = I q̃g + Λ>g Ψ−1g Λg ,

Ωλ = diag
(
φj1gτ1gσg , ... ,φj q̃ggτq̃ggσg

)
+ ψ−1jg η

>
i : zig=1ηi : zig=1 ,

τ
(k)
hg =

h∏
t=1

δtg
δkg

,

πg = υg

g−1∏
l=1

(1− υl) ,

and

Sjg =
∑

i : zig=1

(
xij − µjg − Λjgηi

)>(
xij − µjg − Λjgηi

)
.

Here x(j) denotes the j-th column of the data matrix, λ2jkg denotes a single squared

loading, and τkg =
∏k

h=1 δhg is updated after every update of δhg .

Parsimonious parameterisations of the component covariance matrices are eas-

ily incorporated. Uniquenesses can be constrained to be isotropic, with Ψg =

diag(ψg , ... ,ψg ), leading to a model that corresponds to an infinite mixture and

infinite-dimensional extension of probabilistic principal components analysers (Tip-

ping and Bishop, 1999). Uniquenesses can also be constrained across clusters,

with or without the isotropic constraint across variables. These restrictions de-
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fine the models in the pgmm family (McNicholas and Murphy, 2008) named UUC,

UCU, and UCC, respectively, to which the following Gibbs updates are Bayesian

analogues

ψg | ... ∼ IG

(
α0 +

png
2

, β +
tr (Sg )

2

)
,

ψj | ... ∼ IG

(
α0 +

N

2
, βj +

∑G
g=1 Sjg

2

)
,

ψ | ... ∼ IG

(
α0 +

pN

2
, β +

∑G
g=1 tr (Sg )

2

)
.

In the contexts of finite and overfitted mixtures (i.e. MFA, MIFA, OMFA, and

OMIFA) zi | xi , ... ∼ Mult
(
1, pi1, ... , pi G̃

)
, with

pig = Pr(zig = 1 | xi , ...) =
πgNp

(
xi ;µg , ΛgΛ>g + Ψg

)
∑G̃

g=1 πgNp

(
xi ;µg , ΛgΛ>g + Ψg

) ,

whereas under the IMIFA and IMFA models

pig ∝ Np

(
xi ;µg , ΛgΛ>g + Ψg

)πg
ξg
1
(
ui < ξg

)
. (4.3)

The allocations zi are sampled in a fast, numerically stable fashion, using the un-

normalised log-probabilities and independent draws from the standard Gumbel dis-

tribution (Yellott, 1977) via sig = − ln(mig ), with mig ∼ Exp(λ = 1). Observation i

is assigned the label g satisfying

arg max
g∈{1,...,G̃}

(
ln(pig ) + sig

)
.

For the IMIFA and IMFA models, the sampler need only find the maximum over,

and only draw Gumbel noise for, log-probabilities for which the indicator function in

(4.3) evaluates to 1.
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Sampling the parameters of the PYP for non-zero d values requires the intro-

duction of Metropolis-Hastings steps within the Gibbs sampler. A joint hyperprior

of the form p(α, d) = p(d) p(α | d) is assumed, as per Jara et al. (2010). Firstly, the

hyperprior for the discount parameter d is similar to the one assumed by Carmona

et al. (2019); a mixture of a point-mass at zero and a continuous beta distribu-

tion, in order to consider the DP special case with d = 0 with positive probability,

i.e. d ∼ κδ0 + (1− κ)Beta(a′, b′). This facilitates explicit comparison between

DP models and encompassing PYP alternatives. Secondly, the hyperprior for α is

given conditionally on d , s.t. (α | d) ∼ Ga(α + d ; a, b), and includes the constraint

α > −d by shifting the support of the gamma density to the interval (−d ,∞);

choosing a large b value is particularly relevant as it encourages clustering (Müller

and Mitra, 2013).

The likelihood for α and d is given by the exchangeable partition probability

function induced by the PYP (Pitman, 1995). Thus, the required conditional poste-

rior distributions are

α | d , ... ∝ Γ (α + 1)

Γ (α + N)

{
G0−1∏
g=1

(α + gd)

}
p (α | d) , (4.4)

d |α, ... ∝

{
G0−1∏
g=1

(α + gd)

}{
G0∏
g=1

Γ (ng − α)

Γ (1− α)

}
p (d) . (4.5)

Sampling from the distributions in (4.4) and (4.5), while always considering the

support α > −d , proceeds as per Carmona et al. (2019); a Metropolis-Hastings

step is implemented for the discount parameter with independent proposal distri-

bution 0.5δ0 + 0.5Beta(d ; 1, 1), and a random walk Metropolis-Hastings step with

proposal distribution given by α? |α ∼ Unif(α− ζ,α + ζ) is implemented for the

concentration parameter, where ζ (= 2 in our implementation) is used to control the

acceptance rate. For d , the mutation rate is considered rather than the acceptance

rate, whereby a move is only considered accepted if the proposal differs from the

current value.
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However, when the DP prior is assumed, or when the sampled value of d is

exactly zero under the PYP prior, α is updated according to the auxiliary variable

routine of West (1992), with Gibbs updates by simulation from a weighted mixture

of two gamma distributions, via

α |G0,χ, ... ∼ ωχGa
(
a + G0, b − ln(χ)

)
+ (1− ωχ)Ga

(
a + G0 − 1, b − ln(χ)

)
,

where G0 denotes the current number of non-empty clusters,

(χ |α,G0) ∼ Beta(α + 1,N) ,

and the mixing weights ωχ are defined by

ωχ
1− ωχ

=
(a + G0 − 1)

N
(
b − ln(χ)

) .

The complementary label switching moves of Papaspiliopoulos and Roberts

(2008), which are effective at swapping similar and unequal clusters, respectively,

are also incorporated. Firstly, the labels of two randomly chosen non-empty clus-

ters g and h are swapped with probability

min
(
1, (πh/πg )ng−nh

)
.

Secondly, the labels of neighbouring active components l and l + 1 are swapped

with probability
min

(
1, (1− υl+1)nl/ (1− υl)nl+1

)
;

if accepted, υl and υl+1 are also swapped. Cluster-specific parameters are re-

ordered accordingly after each accepted move. Finally, for updating α under the

sparse finite OMIFA or OMFA models, a random walk Metropolis-Hastings step is

implemented, with a Gaussian proposal distribution, where

α |Z, G̃ , ... ∝
Γ
(
αG̃
)

Γ
(
N + αG̃

){ ∏
g : ng>0

Γ (ng + α)

Γ (α)

}
p (α) .

Further details of this update can be found in Malsiner-Walli et al. (2016) and

Frühwirth-Schnatter and Malsiner-Walli (2019).
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Simulation Studies

The performance of the novel IMIFA model with its PYP-MGP priors, in terms of

inferring both the number of clusters and the cluster-specific numbers of factors,

is assessed here through simulation studies. Section 4.B explores sensitivity to

the PYP parameters in a range of dimensionality scenarios, with balanced cluster

sizes and a common number of factors. The simulation study in Section 4.B is more

challenging; a larger number of clusters (many of which are small) are simulated

for N < p data, with different numbers of cluster-specific factors (some of which

are large). The final simulation study in Section 4.B mirrors the design in Section

4.B, only here the true Λg matrices used to generate the data are sparse.

Simulation Study 1

Firstly, data with G = 3 clusters and p = 50 variables are simulated with qg =

4 ∀ g , and with π = (1/3, 1/3, 1/3) so that clusters are roughly equally sized.

Other model parameters are simulated, with ηi ∼ Nq(0,Iq), ψjg ∼ IG(2, 1),

and Λjg ∼ Nq(0,Iq). Notably, loadings are not drawn from the MGP prior (Bhat-

tacharya and Dunson, 2011) underpinning the IMIFA model. To ensure clusters

are reasonably closely located, µg ∼ Np((2g − G − 1) 1,Ip). The data are then

simulated according to the conditional mixture model

f
(
xi |ηi ,θ

)
=

G∑
g=1

πgNp

(
xi ;µg + Λgηi , Ψg

)
.

To evaluate performance in different settings, sample sizes less than, equal to,

and greater than p are considered, i.e. N = 25, 50, and 300. Sensitivity to the PYP

and DP parameters is explored by firstly assuming a DP prior with various values

of α less than, equal to, and greater than 1, and by allowing α to be learned as

per West (1992), and secondly by incorporating Metropolis-Hastings steps to learn

both α and d , assuming a PYP prior.
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Results, provided in Table 4.B.1, are based on 10 replicate data sets, standard-

ised prior to model fitting, for each scenario. MCMC chains were run for 25, 000

iterations, with every 2nd sample thinned and the first 20% of iterations discarded

as burn-in. Cluster labels were initialised using mclust (Scrucca et al., 2016),

as hierarchical clustering gave poor, heavily imbalanced starting values. As the

cluster-specific Λg and Ψg parameters could still induce separation among clus-

ters, pairwise scatterplots from one randomly chosen raw replicate data set under

the N > p scenario are shown in Figure 4.B.1 to demonstrate the extent of the

overlap; for visual clarity, only 5 randomly chosen variables are depicted.

Table 4.B.1: Aggregated simulation study results for the IMIFA model under different dimensionality
scenarios and settings of the concentration and discount parameters α and d (posterior mean
estimates thereof in parentheses where appropriate). The modal estimates of G and associated
estimates of qg ∀ g are reported (with 95% credible intervals in brackets). Clustering performance
is assessed through the average percentage error rate against the known cluster labels.

Dimension α d G q1 q2 q3 Error (%)

N = 25

(N < p)

0.5 0 3 [3, 3] 5 [3, 9] 5 [3, 9] 5 [3, 9] 0

1 0 3 [3, 3] 5 [3, 9] 5 [3, 9] 5 [3, 9] 0

5 0 3 [3, 4] 5 [3, 9] 5 [3, 9] 5 [3, 9] 6.4

(0.57) 0 3 [3, 3] 5 [3, 9] 5 [3, 9] 5 [3, 9] 0

(0.51) (0.05) 3 [3, 3] 5 [3, 9] 5 [3, 9] 5 [3, 9] 0

N = 50

(N = p)

0.5 0 3 [3, 3] 5 [4, 7] 5 [4, 7] 5 [4, 7] 0

1 0 3 [3, 3] 5 [4, 7] 5 [4, 7] 5 [4, 7] 0

5 0 3 [3, 3] 5 [4, 7] 5 [4, 7] 5 [4, 7] 0

(0.52) 0 3 [3, 3] 5 [4, 7] 5 [4, 7] 5 [4, 7] 0

(0.48) (0.03) 3 [3, 3] 5 [4, 7] 5 [4, 7] 5 [4, 7] 0

N = 300

(N > p)

0.5 0 3 [3, 3] 5 [4, 6] 5 [4, 6] 5 [4, 6] 0

1 0 3 [3, 3] 5 [4, 6] 5 [4, 6] 5 [4, 6] 0

5 0 3 [3, 3] 5 [4, 6] 5 [4, 6] 5 [4, 6] 0

(0.42) 0 3 [3, 3] 5 [4, 6] 5 [4, 6] 5 [4, 6] 0

(0.39) (0.02) 3 [3, 3] 5 [4, 6] 5 [4, 6] 5 [4, 6] 0

Table 4.B.1 clearly demonstrates that the IMIFA model performs well overall for

these data, exhibiting capability to uncover the structure within the simulated data

sets regardless of dimensionality. The modal estimate of G is equal to the truth in

all cases, with only the N < p, α = 5 scenario showing some deviation in the 95%

credible interval. Perhaps surprisingly, given the closeness of the cluster means,

and the equality of the clusters in terms of their mixing proportions and numbers

of factors, G is never underestimated. Indeed, clustering performance is mostly
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perfect. Furthermore, in every case, the true value of qg = 4 is within the limits

of the associated credible intervals, which intuitively become narrower as more

data accumulates. While the modal estimates q̂g are consistently greater than the

truth throughout Table 4.B.1, overestimation should be preferred to underestima-

tion; a less parsimonious model which nevertheless fits well and uncovers the true

clustering structure is better than one which loses information and fits poorly due

to having too few factors. Recall that the loadings were drawn from a standard

multivariate Gaussian, rather than the MGP prior underpinning the IMIFA model,

i.e. entries in the true Λg matrices did not shrink with the column index, nor were

the loadings sparse. Thus, there is evidence to suggest the model is liable to

overestimate the number of factors when the Λg matrices, and by extension the

cluster-specific marginal covariance matrices, are dense. This is explored further

in the subsequent simulation studies.

Var 13

−
5

0
5

1
0

−
1

0
−

5
0

5

−10 −5 0 5

−5 0 5 10

Var 24

Var 45

−5 0 5

−10 −5 0 5

Var 31

−
1

0
−

5
0

5
−

5
0

5

−5 0 5 10

−
5

0
5

1
0

Var 6

Figure 4.B.1: Pairwise scatterplots of 5 randomly chosen variables from one of the raw replicate
data sets under the N > p scenario in Table 4.B.1, demonstrating the overlap between the 3
clusters.
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Simulation Study 2

Results of a more challenging simulation study are presented in Figure 4.B.3; here,

N < p data (N = 200, p = 250) are simulated with a large number of clusters and

uncommon numbers of cluster-specific factors. In particular, many of the G = 10

clusters are small (a setting often studied in Bayesian nonparametric modelling),

with π = (0.25, 0.2, 0.15, 0.1, 0.05, ... , 0.05)>. The numbers of factors q1, ... , qg are

drawn randomly from 0, ... , min (15, ng − 1), where the upper limit ensures that no

cluster has more factors than observations. Otherwise, the same parameter set-

tings as Simulation Study 1 above (Section 4.B) were used to generate the data.

Results of fitting an IMIFA model assuming a PYP prior, allowing both α and

d to be learned, and otherwise using the same sampler settings as in Section

4.B above, are given for 5 replicates of this scenario, with the π vector ordered

randomly for each data set. To demonstrate the extent of the challenge these

settings represent, pairwise scatterplots are again shown for 5 randomly chosen

variables for the first replicate data set in Figure 4.B.2.

Figure 4.B.3 shows that the model over-estimates the number of clusters, though

in some cases the ARI values are nonetheless quite good, as the larger clusters

are generally uncovered well. However, the smaller clusters are further divided,

albeit cleanly, into smaller sub-clusters with, in some cases, just 1 or 2 units inside.

In these cases, the modal q̂g estimates are close or equal to the upper limit of the

adaptive Gibbs sampler (3 ln(p)), and hence or otherwise greater than the corre-

sponding estimated cluster sizes n̂g . Thus, there is evidence that the model has

difficulty in adaptively shrinking the Λg matrices when there are many clusters with

few units.
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Figure 4.B.2: Pairwise scatterplots of 5 randomly chosen variables from the first raw replicate data
set in Simulation Study 2 (Section 4.B), demonstrating the overlap between the 10 clusters.
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(a) Replicate 1: Ĝ = 19 [19, 19], ARI=0.94, α̂ = 0.80, d̂ = 0.26.
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(b) Replicate 2: Ĝ = 21 [21, 22], ARI=0.66, α̂ = 1.20, d̂ = 0.20.
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(c) Replicate 3: Ĝ = 19 [19, 24], ARI=0.90, α̂ = 1.06, d̂ = 0.21.
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(d) Replicate 4: Ĝ = 23 [20, 25], ARI=0.56, α̂ = 1.16, d̂ = 0.23.
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(e) Replicate 5: Ĝ = 23 [23, 23], ARI=0.68, α̂ = 0.92, d̂ = 0.26.

Figure 4.B.3: Barplots of the true number of cluster-specific factors qg (left) and estimates q̂g
(right) for each replicate data set and corresponding fitted IMIFA model comprising Simulation Study
2. Bars are sorted in descending order of ng and n̂g , respectively, and labelled above with these true
and estimated cluster sizes. The plots on the left are also labelled below with the cluster indices.
Vertical red lines in the plots on the right show 95% credible intervals for q̂g . Modal Ĝ estimates
(with 95% credible intervals in brackets), ARI values, and posterior mean estimates α̂ and d̂ are
given for each replicate.
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Simulation Study 3

In both previous simulation studies, the true loadings were dense, having been

drawn from a standard multivariate Gaussian, rather than the MGP prior under-

pinning the model. The design of this final simulation study exactly mirrors the

parameter and sampler settings used in Section 4.B with the sole exception that,

as per the simulation study design in Bhattacharya and Dunson (2011), the true

loadings matrices used to generate the data are sparse.

Specifically, the number of non-zero loadings in each Λg matrix begins at p in

column 1, and successively decays by 10% for each subsequent column. The lo-

cations of the zeros in each column are allocated randomly and non-zero elements

are drawn from a standard multivariate Gaussian. Again, pairwise scatterplots are

shown for 5 randomly chosen variables for the first of the five replicate data sets in

Figure 4.B.4, to demonstrate the extent of the overlap between clusters.
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Figure 4.B.4: Pairwise scatterplots of 5 randomly chosen variables from the first raw replicate data
set in Simulation Study 3 (Section 4.B), demonstrating the overlap between the 10 clusters.
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Results are presented in Figure 4.B.5. Performance is comparable to the results

of Simulation Study 2, in the sense that, again, the number of clusters is over-

estimated. ARI values are nonetheless acceptable. Small clusters are divided into

even smaller sub-clusters for which the model struggles to adaptively shrink the

number of factors. The comparability of the results of these experiments suggests

that performance is being driven not by whether the loadings used to generate the

data exhibit increasing levels of sparsity across columns, in line with the MGP prior

underpinning the model, but by the presence of many small clusters.

The over-estimation of q̂g in the small clusters in simulation studies 2 and 3

suggests that the hyperparameters α1 and α2 related to the MGP column shrinkage

parameters may need to be higher in mixture settings to enforce a greater degree

of shrinkage as there will be fewer data in each cluster from which local and global

shrinkage parameters can be learned, compared to fitting an IFA model on the full

data set. Introducing Metropolis-Hastings steps to allow these hyperparameters

be cluster-specific and learned from the data, rather than fixed, may also help in

this regard.
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(a) Replicate 1: Ĝ = 21 [21, 21], ARI=0.93, α̂ = 0.65, d̂ = 0.31.
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(b) Replicate 2: Ĝ = 19 [18, 19], ARI=0.94, α̂ = 0.91, d̂ = 0.23.
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(c) Replicate 3: Ĝ = 22 [22, 22], ARI=0.59, α̂ = 1.35, d̂ = 0.18.
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(d) Replicate 4: Ĝ = 22 [22, 22], ARI=0.69, α̂ = 1.22, d̂ = 0.21.
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(e) Replicate 5: Ĝ = 15 [14, 25], ARI=0.94, α̂ = 1.09, d̂ = 0.18.

Figure 4.B.5: Barplots of the true number of cluster-specific factors qg (left) and estimates q̂g
(right) for each replicate data set and corresponding fitted IMIFA model comprising Simulation Study
3. Bars are sorted in descending order of ng and n̂g , respectively, and labelled above with these true
and estimated cluster sizes. The plots on the left are also labelled below with the cluster indices.
Vertical red lines in the plots on the right show 95% credible intervals for q̂g . Modal Ĝ estimates
(with 95% credible intervals in brackets), ARI values, and posterior mean estimates α̂ and d̂ are
given for each replicate.
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Assessing Robustness of the IMIFA Model

In order to assess the robustness of the IMIFA model, N (0, 1) noise with no clus-

tering information was appended separately to the rows and columns of the olive

oil data set. Six new scenarios were generated with 10, 50, and 100 extra variables,

and the same numbers of extra observations. Cluster validity is evaluated in Table

4.C.1 with respect to the 4 area relabelling in Table 4.3b. In the case of extra ob-

servations, noise observations are labelled as though they belong to a fifth cluster.

Data were mean-centred and unit-scaled only after expansion.

As the number of irrelevant variables increases, the clustering structure can

still be uncovered quite well, however mixing becomes slower and there is increas-

ing support for clusters with only one or no factors as the signal-to-noise ratio

decreases. As such, variable selection, or at least data pre-processing, may still

be required. As rows of noise are appended, IMIFA generally has no difficulty in

assigning these observations to a cluster of their own. Interestingly, clusters corre-

sponding to noise observations correctly require no latent factor structure.

Table 4.C.1: Clustering performance of the IMIFA model on expanded noisy versions of the Italian
olive oil data. The run-time relative to running IMIFA on the original data, posterior mean of the PYP
parameters α and d , modal estimates of G and Q, ARI, and percentage error rate are all given.

Scenario Relative Time α d G Q ARI Error (%)

N = 572, p = 18 1.86 0.48 0.01 4 3, 4, 4, 3 0.85 12.59

N = 572, p = 58 3.14 0.47 0.01 4 1, 2, 2, 2 0.74 14.69

N = 572, p = 108 5.64 0.46 0.02 4 0, 1, 0, 2 0.73 17.66

N = 582, p = 8 1.10 0.57 0.01 5 6, 2, 2, 2, 0 0.94 6.87

N = 622, p = 8 1.09 0.56 0.01 5 4, 1, 1, 2, 0 0.95 6.59

N = 672, p = 8 1.07 0.53 0.01 5 4, 1, 2, 2, 0 1.00 0.45
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Additional Results and Visualisations

In this Section, some additional visualisations of the results of the illustrative ap-

plications are provided. Specifically, more details are provided on the posterior

predictive model fit assessment and the observation-specific cluster membership

uncertainties. All plots were produced using the associated R package IMIFA (Mur-

phy et al., 2019).

The Posterior Predictive Reconstruction Error (PPRE) has been proposed as a

posterior predictive checking strategy for models in the IMIFA family. In short, this

involves computing the standardised Frobenius norm of the difference between

a matrix of histogram bin counts for the modelled data set and similar matrices

constructed using replicate data drawn from the posterior predictive distribution.

While the median PPRE value or boxplots of the distribution of PPRE values have

been shown to yield useful global measures of model fit in multivariate settings, the

histograms themselves can also be studied on a variable-by-variable basis.

In high-dimensional settings, such as the spectral metabolomic (p = 189) and

USPS digits (p = 256) data sets, it is only feasible to examine the histograms

for a subset of the variables. Nonetheless, the global median PPRE measures

for these data sets are quite good (0.21 and 0.05, respectively). Hence, Figure

4.D.1 shows only the histograms comparing bin counts for the p = 8 variables in

the standardised Italian olive oil data, to which an IMIFA model was fitted, against

corresponding counts for the replicate data under the fitted IMIFA model. The true

bin counts are within the 95% credible intervals of the replicate data bin counts in

the vast majority of cases, indicating good model fit: recall that this IMIFA model

achieves a median PPRE of just 0.10.
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Figure 4.D.1: Histograms of the p = 8 variables in the standardised Italian olive oil data set. The
height of each bar corresponds to the modelled data set, while the black squares correspond to the
median bin counts of the replicate data sets drawn from the posterior predictive distribution of the
fitted IMIFA model (with associated 95% credible intervals given by vertical red lines).
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The IMIFA model fitted to the USPS digits data set uncovers Ĝ = 21 clusters.

Regarding the uncertainty in the allocations to these clusters, the model-based

nature of IMIFA facilitates estimation of the uncertainty with which observation i is

assigned to its cluster g via

Ûi = min
g∈{1,...,Ĝ}

(1− ẑig ) ,

where ẑig is the estimated probability that observation i belongs to cluster g . Fig-

ure 4.D.2 shows that the observation-specific cluster membership uncertainties are

generally quite low, with the mean uncertainty being just 0.02 and 92% of ob-

servations being assigned with uncertainty less than 1/Ĝ. A similar plot for the

olive oil data is shown in the main text (Figure 4.3); uncertainties for the spectral

metabolomic data are not shown, as there was no uncertainty in the assignments

under the fitted IMIFA model (i.e. Ûi = 0 ∀ i = 1, ... ,N).
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Figure 4.D.2: Uncertainty profile plot for the 21-cluster IMIFA model fitted to the USPS digits data,
showing observation-specific uncertainties in increasing order, most of which are below the line at
1/Ĝ .
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Comparing the PYP and DP Priors

The PYP and DP priors differ in their construction of the stick-breaking propor-

tions, with υg ∼ Beta(1− d ,α + gd) under the PYP prior (Pitman, 1996) and

υg ∼ Beta(1,α) under the DP prior (Sethuraman, 1994). While the DP can be

seen as a special case of the PYP with d = 0 (indeed, the PYP is often referred

to as the two-parameter Poisson-Dirichlet process), some important distributional

features differ for non-zero d values. Notably, the growth rate of E(G ) is logarithmic

in N under a DP prior (Antoniak, 1974), while it is Zipfian under a PYP prior.

Figure 4.E.1, adapted from De Blasi et al. (2015), illustrates the utility of the ex-

tra parameter in the IMIFA setting. In particular, note that the DP with d = 0 is also

included as a comparator in Figure 4.E.1b and exhibits a highly peaked distribu-

tion. In terms of prior specification, this implies the need for reliable prior informa-

tion on the number of clusters, which is often unavailable, as the high-peakedness

prevents the wrong prior information from being overruled. As stated, the joint hy-

perprior assumed on α and d in the IMIFA setting achieves further flexibility, by

allowing the PYP parameters to be learned from the data rather than fixed.
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Figure 4.E.1: DP and PYP priors when N = 50, under different concentration and discount param-
eter settings. Under the DP prior, mass shifts to the right with increasing dispersion as α increases.
Under the PYP prior, with parameters fixed so that E(G50) = 25, a heavier-tailed, less informative
prior is obtained as d increases.
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IMIFA R Package Vignette

This appendix presents a reproduction of the package vignette7 of the associated

R package IMIFA for implementation of the proposed method. Notably, some ad-

ditional results summaries and diagnostic plots are presented for the IMIFA model

fitted to the Italian olive oil.

7 cran.r-project.org/web/packages/IMIFA/vignettes/IMIFA.html
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IMIFA: Infinite Mixtures of
Infinite Factor Analysers and
Related Models

Keefe Murphy

Introduction

IMIFA is an R package that provides flexible and efficient functions for fitting Infinite
Mixtures of Infinite Factor Analysers (IMIFA) and related models. The main model,
IMIFA itself, conducts Bayesian nonparametric clustering via latent Gaussian
models. While the package offers a Bayesian implementation of the Factor Analysis
(FA) and Mixtures of Factor Analysers (MFA) models, among others, these require
pre-specification of the number of latent factors &/or the number of components,
which must remain fixed, the main advantages of the IMIFA model are that a) the
model search is dramatically reduced, b) these quantities are estimated
automatically, c) the number of latent factors is allowed to be cluster-specific, and
d) uncertainty in the number of clusters and numbers of cluster-specific factors can
be quantified.

Typically, one would run FA or MFA models over ranges of values for the numbers
of clusters and factors, with the pair which optimises some model selection
criterion typically chosen. IMIFA instead enables Bayesian nonparametric model-
based clustering with factor analytic covariance structures, without recourse to
model selection criteria, to automatically choose the number of clusters &/or
cluster-specific latent factors.

The main features of the IMIFA model are the multiplicative gamma process
shrinkage prior on the factor loadings, which allows theoretically infinitely many
factors (this can also be employed in a MIFA context, for instance, where the
number of clusters is fixed but cluster-specific factors are estimated), an adaptive
Gibbs sampler which dynamically truncates the infinite loadings matrices, and the
Dirichlet process prior, which utilises the stick-breaking construction and slice-
efficient sampling, and allows theoretically infinitely many clusters. Tools are
provided for soliciting sensible hyperparameters for these priors. As of IMIFA v1.2.0,
a Pitman-Yor process prior on the number of mixture components is assumed by
default, and its concentration and discount parameters are learned via Metropolis-
Hastings updates.
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Model-specific diagnostic tools are also provided, as well as many extensive options
for plotting results, conducting posterior inference on parameters of interest, and
quantifying uncertainty. The functions are typically verbose, offering plenty of
messages and warnings to the user where appropriate. Please see Murphy et al.
(2019) for more info.

If you find bugs or want to suggest new features please visit the IMIFA GitHub
issues page.

This vignette aims to reproduce some results in the Murphy et al. (2019) paper
using the mcmc_IMIFA() and get_IMIFA_results() functions and demonstrates how the
plots therein were created using the dedicated S3 plot method, while also
demonstrating how to fit other models in the IMIFA family.

Installing IMIFA

IMIFA will run in Windows, Mac OS X or Linux. To install IMIFA you first need to
install R. Installing Rstudio as a nice desktop environment for using R is also
recommended.

Once in R you can type:

install.packages('devtools') 
 
devtools::install_github('Keefe-Murphy/IMIFA')

at the R command prompt to install the latest development version of the package
from the IMIFA GitHub page.

To instead install the latest stable official release of the package from CRAN go to R
and type:

install.packages('IMIFA')

In either case, if you then type:

library(IMIFA)

it will load in all the IMIFA functions.

The GitHub version contains a few more features but some of these may not yet be
fully tested, and occasionally this version might be liable to break when it is in the
process of being updated.
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The three main functions

There exist several utility functions in the package to solicit good prior
hyperparameters (e.g. G_priorDensity(), psi_hyper(), MGP_check()) and to prepare
results for producing nice plots (e.g. mat2cols()), this vignette focuses only on the
three most important functions:

1.  mcmc_IMIFA()  
2.  get_IMIFA_results() 
3.  and a dedicated S3 plot() method for objects of class "Results_IMIFA"

While it is possible to simulate data from a factor analytic mixture using the 
sim_IMIFA_data() function, specifying, among other things, the sample size N, the
number of clusters G, and the number of variables P, with true parameters either
supplied or also simulated, e.g.

# Simulate 100 observations from 3 balanced clusters with cluster-specific 
numbers of latent factors 
psi      <- matrix(rgamma(60, 2, 1), nrow=20, ncol=3) 
mu       <- matrix(rnorm(60, -2 + 1:3, 1), nrow=20, ncol=3, byrow=TRUE) 
sim_data <- sim_IMIFA_data(N=100, G=3, P=20, Q=c(2, 2, 5),  
                           psi=psi, mu=mu)

the well-known Italian olive oil data set will be used throughout this vignette
instead. You can load this data set after loading the IMIFA package by typing

data(olive)

and learn more about this data set by typing

?olive

Fitting the model & running the MCMC chain

The mcmc_IMIFA function provides an adaptive Gibbs/Metropolis-within-Gibbs
sampler for nonparametric model-based clustering using models from the IMIFA
family. The function facilitates model-based clustering with dimensionally reduced
factor-analytic covariance structures, with automatic estimation of the number of
clusters and cluster-specific factors as appropriate to the method employed. Factor
analysis with one group (FA/IFA), finite mixtures (MFA/MIFA), overfitted mixtures
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(OMFA/OMIFA), infinite factor models which employ the multiplicative gamma
process (MGP) shrinkage prior (IFA/MIFA/OMIFA/IMIFA), and infinite mixtures which
employ Pitman-Yor / Dirichlet Process Mixture Models (IMFA/IMIFA) are all
provided. The function creates a raw object of class 'IMIFA' from which the
optimal/modal model can be extracted by get_IMIFA_results.

There are many, many options for specifying hyperparameters, specifying running
conditions and pre-processing the data. These are documented both within 
mcmc_IMIFA and within various control functions (mixfaControl, mgpControl, bnpControl,
etc.), are deferred, for brevity, to these functions’ help files. Great care was taken to
ensure the default function arguments governed by the control functions would be
appropriate in most applications, but you can nevertheless access further helpful
instructions by typing

?mcmc_IMIFA

and ?mixfaControl, ?mgpControl, ?bnpControl etc. as needed. Arguments to these
control functions can actually be supplied, provided they are named, directly to 
mcmc_IMIFA, and this convention is adopted throughout this document.

Be warned that the mcmc_IMIFA function calls in this section may take quite some
time to run. Let’s begin by fitting a Mixture of Factor Analysers model (MFA) to the
unit-scaled olive data. For this, we must specify sequences of values for range.G, the
number of clusters, and range.Q, the number of latent factors. Let’s assume that
uniquenesses are isotropic rather than unconstrained. This isotropic constraint
provides the link between factor analysis and the probabilistic principal component
analysis model (PPCA): note that we could also constrain uniqueness across clusters
(but still be diagonal within each cluster) by specifying uni.type="constrained" or
constrain uniquenesses to a single value (i.e. equal across all clusters and all
variables) by specifying uni.type="single". Let’s elect not to store the latent factor
scores, as this can be a huge drain on memory, with the caveat that posterior
inference on the scores won’t be possible. Let’s also allow diagonal covariance as a
special case where range.Q is 0, and accept all other defaults (for instance, cluster
labels will be initialised by mclust).

simMFA   <- mcmc_IMIFA(olive, method="MFA", n.iters=10000,  
                       range.G=3:6, range.Q=0:3,  
                       centering=FALSE, scaling="unit",  
                       uni.type="isotropic", score.switch=FALSE)

Now let’s instead have the numbers of cluster-specific latent factors be estimated
automatically using a Mixture of Infinite Factor Analysers model (MIFA). This time,
we’ll also mean-centre the data and initialise the cluster labels using kmeans instead.
Note that range.Q no longer needs to be specified, but it can be given as a
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conservatively high starting value and upper limit. Let’s accept the default, and also
include the Infinite Factor Analysis model (IFA) as a special case where range.G is 1.

simMIFA  <- mcmc_IMIFA(olive, method="MIFA", n.iters=10000, centering=TRUE,  
                       range.G=1:3, z.init="kmeans")

MIFA doesn’t entirely solve the issue of model choice, as you can see; range.G still
needs to be specified. We can allow the number of clusters to instead/also be
estimated automatically by fitting one of the overfitted mixture models
(OMFA/OMIFA) or one of the infinite mixture models (IMFA/IMIFA). Let’s fit an
Overfitted Mixture of Infinite Factor Analysers, and override the default value for
the starting value / upper limit for the number of clusters (range.G) and supply a
sufficiently small Dirichlet hyperparameter (alpha) for the cluster mixing
proportions. We can enforce additional shrinkage by varying other MGP
hyperparameters, using arguments from mgpControl().

simOMIFA <- mcmc_IMIFA(olive, method="OMIFA", n.iters=10000,  
                       range.G=10, alpha=0.8, alpha.d1=3.5, nu=3,  
                       alpha.d2=7, prop=0.6, epsilon=0.12)

Finally, let’s run the flagship IMIFA model, on which all subsequent demonstrations
and results will be based, for a greater number of iterations, accepting the defaults
for most arguments. Note that the verbose argument, which defaults to TRUE will
ordinarily print a progress bar to the console window. The default implementation
uses the independent rather than dependent slice-efficient sampler; we could
override the default for the parameter governing the rate of geometric decay by
specifying rho.

simIMIFA <- mcmc_IMIFA(olive, method="IMIFA", n.iters=50000, verbose=FALSE)

Postprocessing and extracting optimum results

In order to extract results, conduct posterior inference and compute performance
metrics for MCMC samples of models from the IMIFA family, we can pass the
output of mcmc_IMIFA to the function get_IMIFA_results(). If, for instance, simMFA
above was supplied, this function would find the pair of  and  values which
optimises a model selection criterion of our choosing and prepare results from that
model only. If simIMIFA is supplied, this function finds the modal estimates of  and
each  (the cluster-specific number of latent factors), and likewise prepares results
accordingly.

G Q

G
qg
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This function can be re-ran at little computational cost in order to extract different
models explored by the sampler used by mcmc_IMIFA, without having to re-run the
model itself. New results objects using different numbers of clusters and different
numbers of factors (if visited by the model in question), or using different model
selection criteria (if necessary) can be generated with ease. The function also
performs post-hoc corrections for label switching, as well as post-hoc Procrustes
rotation to ensure sensible posterior parameter estimates, computes error metrics,
and constructs credible intervals, the average similarity matrix, and the posterior
confusion matrix.

Please see the function’s help manual by typing ?get_IMIFA_results for further
assistance with the various function arguments.

If we wanted to choose the optimum MFA model, we would simply type

resMFA  <- get_IMIFA_results(simMFA)

If we instead wanted to explore the 3-cluster solution, construct 90% credible
intervals, and have the number of latent factors chosen by another criterion, we
could try

resMFA2 <- get_IMIFA_results(simMFA, G=3, criterion="aic.mcmc")

For now, let’s just extract results from our IMIFA run above so we can proceed to
visually examine them. Though the IMIFA model obviates the need for model
selection criteria, the syntax for extracting results is exactly the same. However, this
time, let’s also summarise the clustering via the N x N similarity matrix obtained by
averaging the adjacency matrices (admittedly at the expense of slightly slowing the
function down!), so that we can visualise it later.

resIMIFA <- get_IMIFA_results(simIMIFA, z.avgsim=TRUE)

Before we examine the results in great detail, we can quickly summarise the
solution as follows

summary(resIMIFA) 
## Call:    get_IMIFA_results.IMIFA(sims = simIMIFA, z.avgsim = TRUE, zlabels = 
olive$area) 
##  
## The chosen IMIFA model has 4 groups with 6, 3, 6 and 2 factors respectively: 
this Results_IMIFA object can be passed to plot(...)
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Visualing IMIFA results

The object resIMIFA above is of the class Results_IMIFA. We can call plot on objects of
this class to access a dedicated function for visualising output and parameters of
inferential interest for IMIFA and related models. The two most important
arguments, beyond the Results_IMIFA object itself, are plot.meth and param, where
the former dictates the type of plot to be produced (one of c("all", "correlation", 
"density", "errors", "GQ", "means", "parallel.coords", "trace", "zlabels"),
depending on the method employed originally by mcmc_IMIFA) for the parameter of
interest (one of c("means", "scores", "loadings", "uniquenesses", "pis", "alpha"),
depending on the method employed originally by mcmc_IMIFA). Note that "all" refers
here to the options "trace", "density", "means", and "correlation". Note also that
many of the function calls below will also print relevant output to the console
window that is not always shown here. Please see the function’s help manual by
typing plot.Results_IMIFA for further assistance with the various function
arguments.

Let’s examine the posterior distribution of  and the posterior distribution of  for
each of the 4 clusters. The third plot below, depicting the trace of the numbers of
active and non-empty clusters, allows us to examine mixing of the chain with
respect to . The true number of clusters is estimated by , the modal value.

plot(resIMIFA, plot.meth="GQ")

G qg

G G = 4
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Let’s examine clustering performance against the known cluster labels. Note that
the cluster labels could have been already supplied to get_IMIFA_results too, but
plotting allows clustering performance to be evaluated against new labels without
having to extract the full results object all over again. More specifically, the code
below allows us to visualise the clustering uncertainty (with or without the labels
being supplied, in fact; when they are supplied, misclassified observations are
highlighted, otherwise observations with uncertainty exceeding the inverse of the
number of clusters are highlighted).

plot(resIMIFA, plot.meth="zlabels", zlabels=olive$area, g=1) 
## confusion.matrix : 
##          Observed 
## Predicted Southern Italy Sardinia Northern Italy Sum 
##       1              323        0              0 323 
##       2                0       98              0  98 
##       3                0        0            103 103 
##       4                0        0             48  48 
##       Sum            323       98            151 572 
##  
## rand : 
## [1] 0.9697255 
##  
## crand : 
## [1] 0.9370795 
##  
## misclassified : 
##  [1] 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 
440 
## [20] 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 
459 
## [39] 461 462 463 464 465 467 469 470 471 472 
##  
## error.rate : 
## [1] "8.39%"
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We can also plot a clustering uncertainty profile, also highlighting misclassified
observations, with g=2. When plot.meth="zlabels", g=3 would mean to instead
visualise the uncertainties in the form of a histogram.

plot(resIMIFA, plot.meth="zlabels", zlabels=olive$area, g=2)
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With g=4, we can visualise the posterior confusion matrix. The benchmark matrix for
comparison is the identity matrix of order , corresponding to a situation with
no uncertainty in the clustering.

plot(resIMIFA, plot.meth="zlabels", g=4)

Finally, we can visualise the  similarity matrix by supplying g=5. Had we not
specified g, the function would cycle through the available plots.

plot(resIMIFA, plot.meth="zlabels", g=5)

G = 4

N ∗ N
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To examine the posterior mean estimates of the cluster means in a given cluster
(say the 1st), we can set both plot.meth and param to "means". If the cluster isn’t
specified using the argument g, the user will be prompted to hit <Return> at the
onset of each plot in order to cycle through similar plots for all clusters. In the code
below mat=TRUE means, in this case, to plot all variables simultaneously. By default,
credible intervals are also plotted. Note that the data were originally mean-centred
and unit-scaled when mcmc_IMIFA was called.

plot(resIMIFA, plot.meth="means", param="means", mat=TRUE, g=1)
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Had the factor scores been stored, we could examine the trace plots for them using
the code below, where mat=TRUE and by.fac=FALSE (the default) means, in this case, to
plot all factors simultaneously for a given observation: ind=1 specifies that the
observation of interest is the first (however this is not shown, as the scores were
not stored).

plot(resIMIFA, plot.meth="trace", param="scores", mat=TRUE, ind=1)

We could instead plot all observations simultaneously for a given factor, say the 2nd

(also not shown).

plot(resIMIFA, plot.meth="trace", param="scores", mat=TRUE, by.fac=TRUE, fac=2)

The code below will produce only a heatmap of the loadings matrix in the first
cluster: note, however, that heat.map=TRUE by default for loadings (whereas the
opposite is true for the scores). Darker colours correspond to entries which are
more negatively loaded and vice versa.

plot(resIMIFA, plot.meth="means", param="loadings", heat.map=TRUE, g=1)
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To examine posterior mean uniquenesses from all clusters in the form of a parallel
coordinates plot, type

plot(resIMIFA, plot.meth="parallel.coords", param="uniquenesses")
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We could have also used the argument show.last to visualise the last valid sample of
uniquenesses from all clusters instead. This argument can be used to replace the
posterior mean by the corresponding last valid sample for any combination of
arguments to plot.Results_IMIFA that shows a posterior mean.

Posterior predictive checking to assess the appropriateness of the fitted model is
also facilitated. The posterior predictive reconstruction error, obtained by
comparing bin counts of the data against bin counts of replicate draws from the
posterior distribution, can be visualised as follows. Setting g=2 allows individual
histograms to be depicted, while the PPRE offers an overall perspective across
variables.

plot(resIMIFA, plot.meth="errors", g=1) 
##              2.5%              Mean            Median Last Valid Sample  
##        0.08767887        0.10327357        0.10295660        0.08807199  
##             97.5%  
##        0.12035785
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Quantifying the error between the empirical and estimated covariance matrices -
and the uncertainty associated with those metrics - can also provide a useful
indicator of the validity of the solution. For models which achieve clustering, the
overall estimated covariance matrix is constructed from the cluster-specific
estimated covariance matrices. A visualisation can be produced as follows:

plot(resIMIFA, plot.meth="errors", g=3) 
##                                         MSE        MEDSE        MAE      
MEDAE 
## Medians                        0.0028070738 1.049235e-03 0.04029407 
0.03237337 
## Evaluated at Posterior Mean    0.0003993847 4.316984e-05 0.01124250 
0.00654860 
## Evaluated at Last Valid Sample 0.0058939475 1.232595e-03 0.05627498 
0.03494658 
##                                      RMSE      NRMSE 
## Medians                        0.05298182 0.02860113 
## Evaluated at Posterior Mean    0.01998461 0.01078827 
## Evaluated at Last Valid Sample 0.07677205 0.04144378
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Finally, inference can be conducted on the Pitman-Yor concentration parameter 
and discount parameter  (assuming learn.alpha and learn.d, respectively, were not

set to FALSE when mcmc_IMIFA was initially run using the IMFA/IMIFA methods), where 
all below refers to trace, density, posterior means, and ACF/PACF (correlation) plots.
The type of correlation plot can be toggled via the logical argument partial. Note
that the density for discount accounts for the point-mass at zero built into its prior.

plot(resIMIFA, plot.meth="all", param="alpha")

α

d
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plot(resIMIFA, plot.meth="all", param="discount", partial=TRUE)
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Chapter 5

Conclusions and Future Work

This final chapter summarises and discusses the novel model families introduced

in Chapters 2–4, outlining commonalities between the proposed approaches and

elaborating on general limitations and future research opportunities related to the

overall theme. For some extensions already suggested within the chapters, addi-

tional details of the proposals are provided. Firstly, however, the main contributions

of each chapter are briefly restated.

In this thesis, different parsimonious families of model-based clustering meth-

ods are described for addressing three main limitations of the standard finite Gaus-

sian mixture model. Namely, such a model does not incorporate covariates in any

way, its assumption that the underlying component distributions are multivariate

Gaussian is inappropriate for categorical sequence data, and the model is gener-

ally not well suited to high-dimensional data settings.

In Chapter 2, the MoEClust model family is developed in order to address the

equivalent aims of incorporating covariates in GPCMs and introducing parsimony

to the special cases of the (Gaussian) MoE framework. Applications to univariate

and multivariate data demonstrate improvements from both perspectives and richer

insights into the type of observations characterising each cluster are provided.

In Chapter 3, the MEDseq model family is proposed for reconciling the distance-

based and model-based approaches for clustering categorical sequence trajecto-

ries, guided by an application to data on the monthly employment activities of a

cohort of Northern Irish youths. Weighted variants of the Hamming distance are

employed as the distance measure, amounting to improved substitution costs re-
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flecting replacements of states. Sampling weights and concomitant variables are

included in the clustering process in a coherent manner.

In Chapter 4, the IMIFA model is presented as the flagship model in a family

of factor-analytic mixtures. In particular, the IMIFA model is a fully Bayesian non-

parametric approach to clustering high-dimensional data. A PYP prior is employed

which assumes infinitely many mixture components. The MGP shrinkage prior is

generalised to the mixture setting to allow infinitely many latent factors within each

component. An adaptive inferential MCMC algorithm is developed to enable auto-

matic estimation of these quantities. Hence, the need to select and employ model

selection criteria in a mixture of factor analysers is obviated and further flexibility is

achieved by allowing the number of factors to be cluster-specific.

Associated with each body of work are distributed software packages for the

statistical software platform R, namely the MoEClust, MEDseq, and IMIFA libraries.

Thus, the results in this thesis are reproducible and the proposed model families

are easily accessible to interested researchers.

By virtue of each chapter introducing a family of models, the issue of model

selection for identifying the one which best fits the data is an important common

theme throughout this thesis. In any unsupervised clustering problem, there is a

need to choose the optimal number of components G . In Chapters 2 and 3 there

is also a need to choose the optimal set of constraints, in terms of the component

covariance matrices and precision parameter settings, respectively.

As both the MoEClust and MEDseq model families are characterised as mix-

tures of experts frameworks, there is the further need in these chapters to identify

the optimal subset of covariates to include. While MEDseq models allow concomi-

tant variables to influence the cluster-membership probabilities, the issue is com-

plicated further for MoEClust models as different subsets of the related covariates

are also allowed to influence the component mean parameters.

Optimal MoEClust models are identified among a range of fitted models us-

ing the BIC or ICL criteria and a novel greedy forward stepwise variable selection

procedure. This procedure guides the inclusion of covariates and hence implicitly

guides the choice of the model type in terms of the special cases of the MoE frame-

work. Each step of the procedure considers several potential sub-steps, starting

from a model with G = 1 and no covariates; adding a component, adding a single
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covariate to the component mixing proportions, or adding a single covariate to the

component distributions. Each sub-step is evaluated over all available GPCM con-

straints and the step which yields the best improvement in the chosen criterion is

accepted until no step yields a further improvement. In comparison to exhaustively

searching over all possible models, the stepwise procedure is shown to converge

to the optimal model in both applications. Throughout Chapter 2, it sufficed to con-

sider only additions, rather than additions and removals, though this may not hold

true in settings with larger numbers of covariates. Presently, the MoE_stepwise

function in the MoEClust R package allows only additions; the searches with both

additions and removals were conducted manually, but automating this would be a

reasonably straightforward extension to the code. As an alternative approach to

stepwise covariate selection, a LASSO-like L1 penalty could be imposed in the gat-

ing and/or expert network regressions. This would allow covariate selection and

model estimation to be conducted simultaneously, albeit with the caveat that the

penalty parameter typically needs to be chosen via cross-validation, which brings

an associated computational burden of its own. Other future work involves imple-

menting this stepwise procedure in such a way that the sub-steps evaluated in each

step are done so in parallel rather than in series in order to speed up the algorithm.

Indeed, exhaustive searches could also be similarly parallelised.

Model selection criteria based on parameter count penalties such as the BIC

and ICL are shown to perform poorly for selecting optimal MEDseq models, either

by virtue of the discrete nature of the data or the properties of the distance metrics

employed. Moreover, calculating exact, non-asymptotic posterior model probabili-

ties is not feasible in this setting, due to the difficulties in computing the marginal

likelihood integrals. For MEDseq models, there is a need to choose the optimal

precision parameter settings, as well as the number of components and the sub-

set of covariates to include. To this end, a model-selection tool which is free from

parameter counts is used, namely the (weighted) mean DBS criterion, in tandem

with a stepwise selection strategy similar to that proposed for MoEClust models in

Chapter 2. The DBS criterion is comparable to the ASW criterion. The ASW cri-

terion uses the ‘hard’ cluster labels as one of its inputs, while the DBS criterion is

particularly apt in the model-based clustering context as it preserves the informa-

tion contained in the estimated matrix of ‘soft’ cluster-membership probabilities.
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The IMIFA model, on the other hand, obviates the need for model-selection

criteria entirely and requires only a single run to estimate both the number of com-

ponents and the numbers of component-specific factors, thus making it the most

computationally efficient model in the IMIFA family. This has the advantage of

circumventing the need to choose the model-selection criterion; indeed, in many

applications and settings, different criteria often suggest different optimal models.

For models in the IMIFA family which do rely on model-selection criteria, the BICM

criterion, a posterior simulation based version of the BIC, is used. Such models

include the MIFA model, for instance, which is appropriate in cases where one

wishes to fix the number of clusters but estimate the numbers of cluster-specific

factors. If one wishes to fit a range of MIFA models with different G values, the

BICM criterion is particularly useful for nonparametric models where the number of

free parameters is difficult to quantify.

The IMIFA model family can be expanded further by imposing constraints on

the elements of Λg and/or Ψg , as per McNicholas and Murphy (2008), to yield

additional parsimony. Indeed, imposing isotropic constraints on Ψg , leading to a

model that corresponds to an infinite mixture and infinite-dimensional extension

of probabilistic principal components analysers (Tipping and Bishop, 1999), has

been shown to be trivial in this setting. However, this naturally and problematically

reintroduces the need to employ model selection criteria — such as the BICM —

to identify the optimal model, as appropriate constraints must be chosen.

There is also scope for further expanding the MoEClust model family. In con-

trast to MEDseq models, which allow covariates to enter the gating network only,

covariates are additionally allowed to enter the component distributions of MoEClust

models. However, covariates only enter via the component means.Firstly, there-

fore, it is of potential interest to instead or also allow covariate-dependence in the

covariance matrices. Pouhramadi (1999) and extensions in Xu and MacKenzie

(2012) provide a framework for doing so, albeit with applications to longitudinal

data. While this would capture heterogeneity in the dependencies among response

variables with respect to the space of covariates, such an extension to MoEClust

would, again, further complicate the issue of model selection. Moreover, the issue

of how to allow the covariance matrices to depend on covariates across the full

range of constrained GPCM settings for Σg and σg remains an open question.
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Relatedly, it should be noted that the maximum likelihood estimates of the com-

ponent covariance matrices, i.e. the M-steps in the EM algorithm, are biased: the

divisor is n rather than n − 1. An investigation into the ramifications of this bias,

particularly for small data sets, is of interest despite unbiased estimation of Σg

by definition no longer maximising the likelihood. Furthermore, while on the sub-

ject of the MLE of the component covariance matrices, modifying the various M-

step functions in the MoEClust R package to implement the eigenvalue constraints

considered in García-Escudero et al. (2018) would be a valuable and reasonably

straightforward extension, which would mitigate against the problems of spurious

solutions and degenerate components.

A second potential expansion beyond the 6 special cases of the MoE frame-

work considered here is to allow different subsets of covariates to affect each de-

pendent variable. Such models have been recently introduced (Galimberti and

Soffritti, 2019), in a setting where the covariates only enter the parsimoniously pa-

rameterised Gaussian component densities, under the name ‘seemingly unrelated

clusterwise linear regression models’, and can be seen as a generalisation of the

expert network MoE model under which the same set of regressors is used for

each dependent variable. Compared to the expert network MoE model, further

parsimony can be achieved under this mixture of SUR models framework if a given

covariate is only relevant for fewer than G mixture components. It would thus be of

interest to also incorporate gating covariates in such a setting, to yield an analogue

of the full MoE model, or to constrain the mixing proportions across components

to yield an analogue of the equal mixing proportion MoE model. However, these

extensions would, as above, make the already difficult task of covariate selection

even more complicated. Galimberti and Soffritti (2019) also consider constraints

on the expert network regression coefficients, such that γg = γ ∀ g . This would be

of interest also in the existing MoEClust models with expert network covariates.

With regard to Appendix 2.D, in which MoEClust models are discussed from

the point of view of prediction rather than clustering, a number of limitations can be

identified. Firstly, as the noise component follows a uniform distribution, predictions

of new data may suffer if the new data falls outside the region used to define the

hypervolume. To this end, the approach in Leisch (2008), under which the noise

component instead follows an inflated Gaussian distribution with an intercept-only
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expert network, may prove fruitful. However, there may be some sensitivity to the

degree of inflation, especially for models which already omit covariates in the ex-

pert networks of the non-noise components. Secondly, the predictions of ŷ?i and

ẑ?ig are merely point estimates about which no uncertainty is provided. This raises

the issue of parameter uncertainty in general for MoEClust models. To this end,

the weighted likelihood bootstrap, already used for MEDseq models in Chapter 3,

though originally proposed for Gaussian mixture models by O’Hagan et al. (2019),

could be employed. Thirdly, it would be of interest to extend the validation mea-

sures proposed for finite mixtures of regressions by Ingrassia and Punzo (2019) —

particularly the local and global coefficients of determination and the normalised

explained sum of squares — to MoEClust models for multivariate response data

and/or MoEClust models with a noise component. Finally, it remains to assess

whether the CWM framework outperforms the MoEClust model family in terms

of prediction. We conjecture that this would typically be the case; as CWMs ex-

plicitly model the marginal density of the they covariates, they allow for assignment

dependence (in the sense that the distribution of xi affects the cluster assignment

of observation i ). This can only be achieved in the MoEClust paradigm for models

with gating network concomitants.

Throughout this thesis, maximum likelihood estimation via the EM and ECM al-

gorithms (Chapters 2 and 3, respectively) and Bayesian estimation (Chapter 4)

have been employed as appropriate to the task at hand. However, estimating

MoEClust and MEDseq models in a Bayesian fashion is entirely feasible. Firstly, it

may be necessary to do so if expanding the MEDseq model family to other, more

complicated distance metrics, namely OM. Secondly, sparsity-inducing LASSO-like

regularisation priors on the regression coefficients could help guide the inclusion of

covariates under both model families. For the gating network in particular, which re-

lates concomitant variables to the cluster mixing proportions, considering the probit

rather than logit link in the Bayesian setting could be beneficial, as the conditional

distributions for the regression parameters for the probit model achieve conjugacy,

which is not the case for the logit model (Geweke and Keane, 2007).

The issue of choosing the subset of covariates to include in the mixtures of

experts model families given by MoEClust and MEDseq is an issue of covariate

selection in terms of xi rather than an issue of variable selection in terms of the
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response variables yi or observed sequences si . Considering the ‘variables’ in

categorical sequence data as the sequence positions, some MEDseq models —

those for which the weighted Hamming distance metric allows specific precision

parameters for each time point — implicitly include variable selection, by virtue

of weighting the contribution of each time point to the overall distance differently.

However, no variable selection in terms of yi has been conducted for MoEClust

models. In situations where there exist some variables which carry no information

about the group structure, this may adversely affect overall clustering performance.

An excellent review of variable selection methods for model-based clustering is

provided by Fop and Murphy (2018), in which a distinction is drawn between so-

called filter approaches and wrapper approaches. The former set of approaches

amount to pre-screening (or post-screening) the variables before (or after) esti-

mating the model and are easy to implement and computationally efficient. Wrap-

per approaches, on the other hand, simultaneously conduct model estimation and

variable selection. A natural candidate strategy in the MoEClust setting, given the

stepwise approach already adopted for covariate selection, would be to adapt the

greedy search algorithms implemented in the R package clustvarsel (Scrucca

and Raftery, 2018) for GPCMs, without dependency in any way on covariates, to

the Gaussian MoE framework. This approach recasts variable selection as a model

selection problem, whereby the decision to include or exclude a response variable

is made on the basis of an information criterion (e.g. BIC). It is of particular interest

given the demonstration of its superiority over alternative methods in a comparison

conducted in Fop and Murphy (2018).

Variable selection for models in the IMIFA family is also of interest. While the

robustness study in Appendix 4.C shows that noisy observations are isolated in a

cluster of their own, noisy variables adversely affecting performance is also shown.

A clearer example of the need to incorporate variable selection in IMIFA models is

provided by the USPS data application. When discarding peripheral pixels around

the edges of the box bounding the digits with low standard deviations (< 0.7), a

cleaner Ĝ = 20 solution is obtained, which achieves an adjusted Rand index of

0.41, compared to the solution obtained on the full data set (Ĝ = 21, ARI=0.33).

While this approach — a filter approach in the terminology of Fop and Murphy

(2018) — is intuitive, as Bouveyron and Brunet-Saumard (2014) point out that such
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pixels are unlikely to be discriminatory given the geometry of the digits, a more

principled approach beyond a naïve pre-processing of the data is clearly desirable.

Indeed, despite the stated intention for models in the IMIFA family to be used

for clustering high-dimensional data, we must caution that factor-analytic mixture

models are not really suitable for very high-dimensional settings. While the number

of covariance parameters is admittedly greatly reduced, there can potentially still be

many loadings and uniqueness parameters to estimate when p is extremely large.

Moreover, there are still p component mean parameters in each cluster, regardless

of the covariance decomposition employed. One potential avenue of exploration

in such settings is to consider factor-analytic co-clustering models; in principle, a

PYP prior could be assumed for the row and/or column clusters. Secondly — in

the spirit of Bouveyron and Brunet-Saumard (2014), in which variable selection and

dimension reduction are achieved simultaneously by imposing a penalty term on

the component means — a shrinkage prior could be imposed on µg . If µjg = 0∀ g ,

the j-th variable would be deemed irrelevant. Relatedly, the link between the rows

of Λg and the variables in the data matrix could be exploited by extending the MGP

prior to include a row-wise variable-specific shrinkage parameter, in addition to the

current shrinkage parameters on the local, column, and cluster levels.

Beyond the notions of model selection and covariate selection, another com-

monality between Chapters 2 and 3 is the inclusion of a uniform noise compo-

nent for capturing outliers. In the MoEClust model family, the noise component

is conceived of as an ‘additional’ component in a mixture where the remaining

components are otherwise Gaussian, whereas with MEDseq models, the noise

component is considered as one of the G components as it arises naturally from

restricting all precision parameters in the component to be equal to zero. While

covariates are allowed to influence (or not influence) the probability of belonging

to the noise component in both cases, the noise component in MoEClust mod-

els does not otherwise account for observations being outliers with respect to the

covariates xi , i.e. leverage points. To this end, the aforementioned approach of

Leisch (2008) may again prove fruitful. Similarly, including an explicit noise com-

ponent in the IMIFA model family to robustify inference is also feasible. This could

be achieved using a mixture of mixtures approach, whereby
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f (xi) = π0Np(xi ;µ0, Ψ0) + (1− π0)
∞∑
g=1

πgNp

(
xi ;µg , ΛgΛ>g + Ψg

)
,

by imposing the restriction that q0 = 0 and inflating the entries of the hypercovari-

ance matrix Ψ0 a priori.

Including a noise component in IMIFA models is one sense in which the devel-

oped model families could be unified. Another step in this direction is to consider

IMIFA models with dependence on covariates or MoEClust models with factor-

analytic covariance structures. The former would amount to an infinite mixture

and infinite factor extension of the MFA model with covariates proposed by Fok-

oué (2005), under which the zero-mean assumption in the prior for each latent

factor score is replaced by a covariate-dependent non-zero hypermean. The latter

could be feasibly achieved using the same trick relying on the residuals from the

weighted multivariate linear regressions in the component densities already ex-

ploited by MoEClust for GPCM covariance structures. Thus, a mixtures of experts

equivalent to the model family of McNicholas and Murphy (2008) could be easily

developed. Indeed, this same trick could be used to consider an alternative to

the underlying multivariate Gaussian distribution in MoEClust models, namely the

multivariate t-distribution and the associated tEIGEN family of covariance matrix

constraints (Andrews and McNicholas, 2012). The assumption of a multivariate

t-distribution in each component is also of interest for the IMIFA model family.

Relatedly, considering MEDseq models with an alternative distance measure,

namely OM, could improve the results on the MVAD data. While the intractable

normalising constant under an exponential-distance model based on OM greatly

complicates model fitting, it remains a potential avenue of future exploration. OM

can accommodate sequences of unequal length by assigning costs to insertions

and deletions. However, there is potential for accommodating unequal lengths

in MEDseq models still based on the Hamming distance and weighted variants

thereof, provided the time points are temporally aligned. This would involve com-

puting the Hamming distance for the overlapping positions and adding the number

of non-overlapping positions, thus assuming the worst-case scenario for the non-

overlapping positions, i.e. that they are not equal. While it remains to be seen

how the normalising constant would be affected under such a model, estimating
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the precision parameters in this setting would be a straightforward extension. Esti-

mating the modal sequence(s) would require finding the mode for each sequence

position across only the partially overlapping set of available observations.

While unequal lengths are often attributable to missing data, missingness in

terms of internal gaps can still arise for sequences of equal length (though there is

no missing information for the MVAD data application considered). In this instance,

the naïve solution implemented in the TraMineR package (Gabadinho et al., 2011)

for computing pairwise dissimilarities using the Hamming distance or other mea-

sures — rendered feasible by the categorical nature of the data — may prove useful

in the MEDseq setting; namely, to add ‘missing’ to the alphabet as another distinct

state and increment v by 1. Depending on the level of missingness, this approach

could result in modal sequence position estimates θ̂g ,t which are ‘missing’.

An altogether more sophisticated approach for handling missing data in model-

based clustering analyses in general is suggested in the unpublished work of Bier-

nacki et al. (2019), which embeds management of the missing data mechanism into

the model by jointly modelling the observed data (here S = (si , ... , sn)) and its pat-

tern of missingness (C = (ci , ... , cn) ∈ {0, 1}T , where ci ,t = 1 when si ,t is missing

and ci ,t = 0 otherwise). The expected complete data log-likelihood separates into

a portion due to S and a portion due to C and can be maximised using a stochastic

variant of the EM algorithm. In particular, Biernacki et al. (2019) propose a missing

not-at-random mechanism (MNAR) using a logistic model for C which is allowed

to depend on either or both the data themselves and the latent cluster member-

ship indicator variables. The MNAR mechanism appears to be particularly apt for

life-course sequences given that missingness tends to be consecutive, particularly

volatile sequences are likely to exhibit more missingness, and missingness is often

attributable to shorter follow-up times for some study subjects (Halpin, 2016).

Another, related problem is when the intervals between time points are irregular.

Fortunately, MEDseq models can be used in such settings (by virtue of the Ham-

ming distance and the weighted variants thereof implicitly modelling sequences as

discrete, whole strings, rather than as time-to-event processes as per the Marko-

vian framework), as long as the time points are aligned, i.e. the intervals are ir-

regular but common for all observations. In essence, this amounts to a situation

in which information is missing for certain time periods for all subjects. In such
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instances, the MEDseq models with time-varying precision parameters are likely to

be especially appropriate and useful. However, accounting for intervals which are

different for different subjects remains an open problem in the sequence analysis

community, even if such situations are not typical of life-course data. A potentially

useful first step would be to appropriately pad out the data with missing values and

then treat the problem using the suggested strategies for accounting for missing-

ness using the Hamming distance and its weighted variants discussed above.

Moreover, as the exponent of an exponential-distance model based on the

Hamming distance, given by λ
∑T

t=1 1(si ,t 6= θg ,t), implies substitution costs of λ,

arguably none of the models in the MEDseq family actually employ the simple

matching Hamming distance. Thus, allowing λ to be fixed to 1, or indeed some

other value(s), may be of interest for researchers who wish to truly assume the

Hamming distance (or normalised variants thereof) or estimate substitution costs

by other means. This would greatly reduce the number of estimable parameters,

especially for versions of the model which allow the precision parameters to vary

across time points.

Another point related to the substitution costs, given that the use of sampling

weights induces an observation-specific rescaling of the precision parameter(s), is

that it may be of interest to allow random rather than fixed likelihood weights. This is

achieved in Gebru et al. (2016) by assuming a gamma distribution for each wi and

using two sequential E-steps, one for the cluster-membership probabilities zig and

one for the random weights wi .

Furthermore, the rescaling of the precision parameter(s) induced by wi raises

the prospect of allowing covariates to additionally (or instead) affect the precision

parameter(s), such that the MEDseq models would become — in the terminology

of the MoEClust model family — ‘full’ mixture of experts models (or expert network

mixture of experts models), rather than gating network mixture of experts models.

Allowing the precision parameter(s) to depend on covariates represents a more ap-

pealing alternative to allowing the central sequence parameters to depend on co-

variates, given that the latter would necessitate estimation of G×T weighted multi-

nomial logistic regressions. In so doing, there would be G
∑T

t=1 (d + 1) (vt − 1) re-

gression coefficients to estimate at each iteration — where vt is number of states in

the alphabet represented across all observations for the t-th time point and (d + 1)
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is the dimension of the associated design matrix (accounting also for the intercept)

— which would be computationally infeasible for even moderately long sequences.

In any case, however, it is usual in cluster analyses of life-course data to allow

only gating network concomitants, e.g. the Markovian methods and latent class

regression models considered as comparators in Section 3.5.2.

Another challenge in the area of clustering categorical sequences, which MED-

seq models could feasibly be extended to address, are so called ‘multichannel’

sequences; i.e. situations where different sequences arise from multiple different

domains on the same subjects. With regard to analyses of multichannel life-course

sequences, the standard approach is again to apply heuristic or partitional clus-

tering algorithms to a matrix of pairwise dissimilarities, with the difference in the

multichannel scenario being that the dissimilarities for the whole data set are com-

puted using a substitution cost matrix obtained by summing over the substitution

costs derived for the individual channels (Pollock, 2007). Thus, the cost of a par-

ticular multichannel sequence changing to another is calculated by summing each

of the relevant substitution costs. However, as this yields a v × v aggregate substi-

tution cost matrix with state-specific entries, this approach to constructing a com-

bined dissimilarity measure is not possible under the current MEDseq framework

— under which the precision parameters are assumed to be constant with respect

to pairs of states — because it would, again, render the normalising constant in-

tractable. Hence, our alternative proposal is to rely on the local independence

assumption, via

f
(
s1i , s2i , ... sMi | ...

)
=

G∑
g=1

τg (xi)
M∏

m=1

f (smi | ...),

whereby separate, tractable models based on the Hamming distance or one of its

weighted variants are fitted to each of M channels, such that, for a given obser-

vation, its individual channels are independent given its component membership.

For simplicity, the same set of precision parameter constraints could be employed

across each channel-specific model. Relatedly, the local independence assump-

tion could also be relied on to jointly cluster sequences and mixed-type covariates,

as discussed in the MoEClust setting in Appendix 2.E.
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Four penultimate comments relate to the IMIFA model family. Firstly, recall that

versions which overfit the number of components are included, having either infinite

or finite numbers of factors. Frühwirth-Schnatter and Malsiner-Walli (2019) show

that such sparse finite mixtures also elicit a stick-breaking representation, trun-

cated at G components. Thus, inferential tools used to estimate IMIFA and IMFA

models such as the independent slice-efficient sampler and the adopted label-

switching moves are feasible in the overfitted setting also. Frühwirth-Schnatter and

Malsiner-Walli (2019) also draw a distinction between the number of non-empty

clusters, which is of inferential interest, and the number of mixture components,

characterising sparse finite mixtures as having G components and infinite mixtures

as having infinitely many. This paper ultimately shows that sparse finite and infinite

mixture models under a DP prior differ only in their construction of the mixing pro-

portions. At least empirically, the comparability of the two model classes when the

PYP prior is assumed is borne out by the applications in Chapter 4. In particular,

matching the hyperpriors on the PYP parameters in the infinite mixture setting to

the prior on the mixing proportions in the overfitted setting is shown to yield ‘sparse’

infinite mixtures. This helps mitigate against concerns regarding posterior consis-

tency for the number of non-empty clusters in infinite mixtures assuming the PYP

or DP priors.

A graphical justification for the extension to a PYP prior with d ∈ [0, 1) and

α > 0 is provided in Appendix 4.E. However, De Blasi et al. (2015) describe an

alternative formulation of the PYP with d < 0 and α = m|d |, where m is a positive

integer, and characterises this formulation as one which concentrates mass on a

finite number of components such that the stick-breaking proportion vm = 1. Miller

and Harrison (2018) describe placing a prior on m in this scenario as equivalent to

assuming a symmetric Dirichlet prior of variable dimension on the mixing propor-

tions. Thus, this alternative formulation is of great interest in terms of bridging the

gap between overfitted (i.e. sparse finite) mixtures and infinite mixtures.

Secondly, with respect to the variant of the PYP adopted here, two recently pro-

posed sampling strategies, which exhibit superior mixing properties compared to

the independent slice-efficient sampler employed, have potential utility in the IMIFA

setting, namely the thresholded exchangeable slice sampler (Fall and Barat, 2014)

and the importance conditional sampler (Canale et al., 2019). The former is partic-
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ularly interesting as it overcomes the limitation of the stick-breaking prior not being

invariant to the ordering of the cluster labels (Papaspiliopoulos and Roberts, 2008;

Hastie et al., 2014). At present, the mixing proportions and their corresponding

cluster-specific parameters are reordered at each iteration, such that the mixing

proportions form a decreasing sequence, and label-switching moves are incorpo-

rated in order to improve mixing over the space of clustering labels. These steps

could be avoided with the use of the exchangeable slice sampler. More simply, in-

corporating the threshold of Fall and Barat (2014) in the independent slice-efficient

sampler, as they suggest themselves, is also of interest.

Thirdly, any potentially wider IMIFA model could not only include versions with

different priors on the number of components but also versions underpinned by

other infinite factor priors. A recent development in this area is provided by Sri-

vastava et al. (2017), in which a multiscale generalised double Pareto prior is pro-

posed. This elicits a soft-thresholding rule which estimates loadings entries in such

a way that those with small magnitude are automatically set to zero. Recall that the

MGP prior employed by the IMIFA model shrinks loadings entries arbitrarily close

but not exactly to zero. Another particularly attractive candidate for consideration

in the IMIFA setting is the cumulative shrinkage prior recently introduced by Legra-

manti et al. (2019). This prior effectively amounts to a spike-and-slab prior on the a

priori variances of the loadings entries. It achieves shrinkage in distribution as the

loadings’ dimensionality increases, whereas the MGP prior only achieves shrink-

age in expectation. The prior also decouples the parameters governing shrinkage

and sparsity from the parameters governing the non-zero loadings entries, while

the MGP does not. By virtue of achieving exact sparsity on the loadings, and by

extension the covariance matrix Σ = ΛΛ> + Ψ, these alternative priors could be

especially beneficial for the handwritten digits application, wherein the pixel repre-

sentation of the data themselves is notably sparse. At present, neither prior has

been generalised to the mixture setting, infinite or otherwise.

Fourthly, as per Roy et al. (2019), the prior on the factor scores, ηi ∼ Nq(0,Iq),

could be replaced by ηi ∼ Nq(0, H), where H is a general diagonal matrix with non-

identical entries following their own inverse gamma prior distributions, such that the

latent factors are assumed to be heteroscedastic. This yields a covariance matrix

decomposition of the form Σ = ΛHΛ> + Ψ and has the effect of removing the rota-
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tional ambiguity in the loadings matrix, except for permutations, thereby removing

the need for Procrustean post-processing to correct for non-identifiability. More-

over, Roy et al. (2019) demonstrate improved performance using heteroscedastic

factors in the context of an IFA model, compared to an otherwise identical model

with homoscedastic factors, in terms of more accurate estimation of Λ, as well as

the Σ matrix itself. In extending this approach to the mixture setting, however, it

may be advantageous to allow H be cluster-specific, particularly for infinite factor

models for which the MGP prior is assumed and the numbers of cluster-specific

factors are adaptively truncated, via ηi | zig = 1 ∼ Nq̃g (0, Hg ), where Hg
d
= Hg ′ .

Finally, an overarching limitation of this thesis is that all of the proposed parsi-

monious model families have only been considered in entirely unsupervised set-

tings. Hence, a principal area of future research is to extend these models to super-

vised settings, where all observations are labelled according to the group to which

they belong, as well as to semi-supervised settings, where only some proportion of

observations are labelled. While scenarios in which observations are labelled are

scarce in analyses of life-course sequences, model-based approaches to super-

vised or semi-supervised classification are feasible across all three model families.

Among other things, Appendix 2.D discusses various issues around predicting

the class labels of unseen data using MoEClust models when new covariates

are observed, with or without also observing associated new responses, under

the familiar framework of designating the labelled observations as a training data

set and the unlabelled observations as a test data set. In contrast, the model-

based classification paradigm instead jointly models both the labelled and un-

labelled data, while keeping the known labels fixed and estimating the unknown

labels (McNicholas, 2010). By virtue of the component-specific parameters being

learned from the entire data set, this approach often outperforms the training/test

split approach from the point of view of classification accuracy. Furthermore, a

model-based approach to predicting the unknown labels would certainly improve

on the out-of-sample prediction approaches discussed in Appendix 2.D for those

MoEClust model types which assume assignment dependence (i.e. those without

gating concomitants). Hence, the extension to the semi-supervised setting is of

particular interest for the MoEClust model family, given that only the training/test

split approach is presently implemented in the associated MoEClust R package.

259



With regard to the IMIFA model family, we note that the Italian olive oil data

analysed in Section 4.3.1 has previously been considered in a factor-analytic set-

ting under an artificially constructed semi-supervised scenario (McNicholas, 2010).

Impressive classification accuracy is achieved with even a moderate 50% level of

supervision. We also note that the USPS digits data analysed in Section 4.3.3

comes with a hitherto unused test data set. While the MIFA model might appear

to be a natural choice in a fully supervised analysis, given that the number of com-

ponents is explicitly defined by the known group labels, the IMIFA model could

be particularly useful in semi-supervised analyses. An issue which plagues many

semi-supervised analyses, discussed at length in Cappozzo et al. (2019) is that the

unlabelled data could suggest the presence of additional components. An infinite

mixture model, with the assignments of the labelled data fixed, could in principle

detect these extra components, if any, by virtue of allowing G to vary beyond the

number of components implied by the known labels. By jointly modelling both the

labelled and unlabelled data under an infinite factor mixture model (MIFA, OMIFA,

and IMIFA), both sets of data would contribute to the estimation of the component-

specific numbers of factors.

Overall, the parsimonious model-based clustering methods proposed in this

thesis address some key limitations of the standard finite mixture model in ways that

are evidently necessary and advantageous. Results of applications in each case

appear promising and the diversity of each model family is conjectured to be flex-

ibly adaptable to a wide range of situations. Finally, as shown in this concluding

chapter, there are many possible extensions representing fertile grounds for future

research which could potentially be incorporated into the published R packages.
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