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Actor-Oriented Model for Network Dynamics Network Panel Data

What kinds of data:

E.g.: Study of smoking initiation and friendship

(following up on earlier work by P. West, M. Pearson & others).

One school year group from a Scottish secondary school

starting at age 12-13 years, was monitored over 3 years,

3 observations, at appr. 1-year intervals,

160 pupils (with some turnover: 129 always present),

with sociometric & behaviour questionnaires.

Smoking: values 1–3;

drinking: values 1–5;
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Actor-Oriented Model for Network Dynamics Network Panel Data

wave 1 girls: circles

boys: squares

node size: pocket money

color: top = drinking

bottom = smoking

(orange = high)
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wave 2 girls: circles

boys: squares

node size: pocket money

color: top = drinking

bottom = smoking

(orange = high)
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Actor-Oriented Model for Network Dynamics Network Panel Data

wave 3 girls: circles

boys: squares

node size: pocket money

color: top = drinking

bottom = smoking

(orange = high)
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Actor-Oriented Model for Network Dynamics Network Panel Data

Questions:

⇒ how to model network dynamics from such data?

⇒ how to model joint dependence between networks

and actor attributes such as drinking and smoking?

The Glasgow cohort data set is a panel,

and it is natural to assume latent change going on

between the observation moments:

continuous time probability model,

discrete time observations.

Panel data sets are common for networks representing

relations between human actors like friendship, advice, esteem,

which can be regarded as states rather than events.

7 / 45



Actor-Oriented Model for Network Dynamics Network Panel Data

Questions:

⇒ how to model network dynamics from such data?

⇒ how to model joint dependence between networks

and actor attributes such as drinking and smoking?

The Glasgow cohort data set is a panel,

and it is natural to assume latent change going on

between the observation moments:

continuous time probability model,

discrete time observations.

Panel data sets are common for networks representing

relations between human actors like friendship, advice, esteem,

which can be regarded as states rather than events.

7 / 45



Actor-Oriented Model for Network Dynamics Network Panel Data

Continuous-time Markov chains: simplicity

Holland & Leinhardt (1977) framework for network dynamics:

1 continuous-time Markov models for panel data

(changes between observations being unobserved);

this allows expressing feedback: network builds upon itself;

2 decompose change in smallest constituents,

i.e., single tie changes.
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Actor-Oriented Model for Network Dynamics Actor-oriented

Simulations – actor orientation

A simulation approach allows to extend this

to include triadic and other complex dependencies.

Actor-oriented perspective (Snijders, 1996, 2001) (‘SAOM ’) :

in a directed network,

tie changes are modeled as resulting from

actions by nodes = actors to change their outgoing ties;

An alternative is a tie-oriented perspective (Koskinen & Snijders, 2013):

tie changes are modeled as dependent on the current network

without a specific process role for the nodes.
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Actor-Oriented Model for Network Dynamics Principles

Stochastic actor-oriented models: principles

⇒ process model for network dynamics;

⇒ estimation theory elaborated for panel data

(i.e., finitely many observation moments,

mostly just a few: ≥ 2);

⇒ elaborated also for network & behaviour panel data;

⇒ actor-oriented: in line with social science theories

that focus on choices by nodes = actors

(can be individuals or organizations) ;

⇒ estimation by R package RSiena .
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Actor-Oriented Model for Network Dynamics Notation

Notation

1 Actors i = 1, . . . , n (network nodes).

2 Array X of ties between them : one binary network X ;

Xij = 0 (or 1) if there is no tie (or there is a tie), from i to j .

Matrix X is adjacency matrix of digraph.

Can be extended to multiple networks

or discrete ordered values. Xij is a tie indicator or tie variable.

3 Exogenously determined independent variables:

actor-dependent covariates v , dyadic covariates w .

These can be constant or changing over time.

4 Continuous time parameter t,

observation moments t1, . . . , tM .
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Actor-Oriented Model for Network Dynamics Principles

Model assumptions

1 X (t) is a Markov process.

Strong assumption;

covariates and state space extensions may enhance plausibility.

2 Condition on the first observation X (t1) , do not model it:

no assumption of a stationary marginal distribution.

3 At any time moment, only one tie variable Xij can change.

This precludes swapping partners or coordinated group formation.

Such a change is called a micro-step.

4 Heuristic: Each actor “controls” her outgoing ties

collected in the row vector
(
Xi1(t), ...,Xin(t)

)
.

Actors have full information on all variables (can be weakened).
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Actor-Oriented Model for Network Dynamics Elaboration

Timing model: rate functions

‘how quick is change?’

At randomly determined moments t,

actors i get opportunity to change a tie variable Xij : micro step.

(Actors are also permitted to leave things unchanged.)

Each actor i has a rate function λi (α), with sum λ+(α) =
∑

i λi (α):

1 Waiting time until next micro-step ∼ Exponential
(
λ+(α)

)
;

2 P
{

Next micro-step is for actor i
}

=
λi(α)

λ+(α)
.

Rate functions may be constant between waves (∼ homogeneous Poisson

processes) or depend on actor characteristics or positions.
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Actor-Oriented Model for Network Dynamics Elaboration

Choice model: objective functions

‘what is the direction of change?’

The objective function fi (β, x
old, xnew) for actor i

models change probabilities, (cf. potential function).

xold and xnew are two consecutive network states.

When actor i gets an opportunity for change,

s/he has the possibility to change one outgoing tie variable Xij ,

or leave everything unchanged.

By x (±ij) is denoted the network obtained from x

when xij is changed (‘toggled’) into 1− xij .

Formally, x (±ii) is defined to be equal to x .
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Actor-Oriented Model for Network Dynamics Elaboration

Probabilities in micro-step

Conditional on actor i being allowed to make a change,

i.e., i taking a micro-step,

the probability that Xij changes into 1− Xij is

pij(β, x) =
exp

(
fi (β, x , x

(±ij))
)

n∑
h=1

exp
(
fi (β, x , x

(±ih))
) ,

and pii is the probability of not changing anything.

Higher values of the objective function indicate

the preferred direction of changes.
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Actor-Oriented Model for Network Dynamics Algorithm

Simulation algorithm network dynamics

Generate

∆ time

λ

Choose

actor i

λ

Choose

tie change i → j

i , f

Effectuate changes

t, x
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Actor-Oriented Model for Network Dynamics Specification

Model specification :

Objective function fi reflects network effects

(endogenous) and covariate effects (exogenous).

Convenient specification of objective function is a linear combination.

In basic model specifications,

objective function does not depend on the ‘old’ network:

fi (β, x
old, xnew = x) =

L∑
k=1

βk sik(x) ,

where the weights βk are statistical parameters

indicating strength of ‘effect’ sik(x).

Dependence on actor-dependent covariates (vi )

or dyad-dependent (wij) is left out of the notation.
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Actor-Oriented Model for Network Dynamics Specification

Examples of effects (1)

Some possible network effects for actor i , e.g.:

1 out-degree effect, controlling the density / average degree,

si1(x) = xi+ =
∑

j xij

2 reciprocity effect, number of reciprocated ties

si2(x) =
∑

j xij xji
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Actor-Oriented Model for Network Dynamics Specification

Examples of effects (2)

Various effects related to network closure:

3 transitive triplets effect,

number of transitive patterns in i ’s ties

(i → j , i → h, h→ j)

si3(x) =
∑

j ,h xij xih xhj

i

h

j

transitive triplet
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Actor-Oriented Model for Network Dynamics Specification

Examples of effects (3)

4 GWESP effect (cf. ERG models)

(geometrically weighted edgewise shared partners)

which gives a more moderate contribution of transitivity

GWESP(i , α) =
∑
j

xij e
α
{

1 −
(
1− e−α

)∑
h xihxhj

}
.

0 1 2 3 4 5 6

0

2

4

6

s

G
W

E
S

P
w

ei
gh

t α =∞
α = 1.2
α = 0.69
α = 0

Figure: Weight of tie i → j for s =
∑

h xihxhj two-paths.
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Actor-Oriented Model for Network Dynamics Specification

Examples of effects (4)

Various objective function effects associated with actor covariate v .

Those to whom ‘ego’ i is tied are called i ’s ‘alters’.

1 covariate-related popularity, ‘alter’

sum of covariate over all of i ’s alters

si1(x) =
∑

j xij zj ;

2 covariate-related activity, ‘ego’

i ’s out-degree weighted by covariate

si2(x) = zi xi+;

3 covariate-related interaction, ‘ego × alter’

si3(x) = zi
∑

j xij zj ;
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Actor-Oriented Model for Network Dynamics Estimation

Estimation

For estimating the parameters, if there are complete continuous-time data

(all ministeps known), we could use maximum likelihood.

For panel data, estimation is less straightforward.

Estimation methods have been developed using

Method of Moments, Generalized Method of Moments,

Bayes, and Maximum Likelihood methods.

Method of Moments is used the most:

statistical efficiency quite good, time efficiency good.
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Actor-Oriented Model for Network Dynamics Method of moments

Estimation: Method of moments

Method of moments (‘estimating equations’) :

Choose a suitable statistic Z = (Z1, . . . ,ZK ),

the statistic Z must be sensitive to the parameter θ in the sense that

∂Eθ(Zk)

∂θ
> 0 ;

determine value θ̂ of θ for which

observed and expected values of Z are equal:

Eθ̂ {Z} = z .

23 / 45



Actor-Oriented Model for Network Dynamics Method of moments

Statistics for MoM

Assume that there are 2 observation moments, and rates are constant:

λi (x) = ρ.

ρ determines the expected “amount of change”.

A sensitive statistic for ρ is the Hamming distance,

C =

g∑
i , j=1
i 6=j

| Xij(t2)− Xij(t1) | ,

the “observed total amount of change”.
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Actor-Oriented Model for Network Dynamics Method of moments

For the weights βk in the objective function

fi (β, x) =
L∑

k=1

βk sik(x) ,

a higher value of βk means that all actors

strive more strongly after a high value of sik(x),

so sik(x) will tend to be higher for all i , k .

This leads to the statistic

Sk =
n∑

i=1

sik
(
X (t2)

)
.

This statistic will be sensitive to βk :

a higher βk will tend to lead to higher values of Sk .
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Actor-Oriented Model for Network Dynamics Method of moments

This can be extended

1 for more waves

2 for objective functions depending on xold and xnew

3 for non-constant rate functions.
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Actor-Oriented Model for Network Dynamics Stochastic approximation

How to solve the moment equation?

Moment equation Eθ̂{Z} = z is difficult to solve, as

Eθ{Z}

cannot be calculated explicitly.

However, the solution can be approximated, e.g., by the

Robbins-Monro (1951) method for stochastic approximation.

Iteration step (cf. Newton-Raphson) :

θ̂N+1 = θ̂N − aN D−1(zN − z) , (1)

where zN is a simulation of Z with parameter θ̂N ,

D is a suitable matrix, and aN → 0 .

This yields a surprisingly stable algorithm.
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Example Glasgow data

Example: Glasgow data

The following page presents estimation results for the Glasgow data:

friendship network between 160 pupils, observed at 3 yearly waves.

The model was the result of an extensive goodness of fit exercise,

considering distributions of outdegrees, indegrees, and triad motifs.

Transitive closure is represented by two effects:

i j

k1

k2

k3

•
•
•
•
•
•
•

GWESP

i j

k1

k2

k3

•
•
•
•
•
•
•

reciprocity × GWESP
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Example Glasgow data

Effect par. (s.e.)

rate (period 1) 11.404 (1.289)

rate (period 2) 9.155 (0.812)

outdegree (density) –3.345∗∗∗ (0.229)

reciprocity: creation 4.355∗∗∗ (0.485)

reciprocity: maintenance 2.660∗∗∗ (0.418)

GWESP: creation 3.530∗∗∗ (0.306)

GWESP: maintenance 0.315 (0.414)

reciprocity × GWESP –0.421 (0.347)

indegree – popularity –0.068∗ (0.028)

outdegree – popularity –0.012 (0.055)

outdegree – activity 0.109∗∗ (0.036)

reciprocated degree – activity –0.263∗∗∗ (0.066)

sex (F) alter –0.130† (0.076)

sex (F) ego 0.056 (0.086)

same sex 0.442∗∗∗ (0.078)
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Example Glasgow data

Some conclusions:

Evidence for reciprocity; transitivity;

less reciprocity in transitive groups;

friendships mainly same-sex;

reciprocity and transitivity more important for creating

than for maintaining ties;

those with many reciprocated ties are less active

in establishing new ties or maintaining existing ties.

Definition of reciprocated degree – activity:

sik(x) =
∑
j

xij x
rec
i+

where

x rec
i+ =

∑
j

xij xji .
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Co-evolution Principles

2. Co-evolution

In the SAOM for a single network,

the actors change their network neighbourhoods :

these co-evolve as the common changing environment.

This can be extended to a system with multiple variables:

other networks, discrete actor-level variables, two-mode networks.

The basic ideas remain the same:

continuous-time Markov chain, now with larger state space;

actors can change outgoing ties and their own variables;

at times of change, only one variable can change;

behavior is discrete, changes –1 / 0 / +1 .

rate functions, objective functions, specified for each dependent variable.
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Co-evolution Principles

Computer simulation algorithm

The co-evolution Markov chain is a succession of ministeps;

variables can be networks or actor-level variables.

Generate

∆ time

λ

Choose

variable h

λ

Choose

actor i

h, λ

Choose

tie change x
(h)
ij

or behavior change x
(h)
i

h, i , f

Effectuate changes

t, x
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Co-evolution Networks and behaviour

Networks and Behaviour Studies

Co-evolution of a network and one or more actor variables

representing behavioural tendencies of actors

are Networks and Behaviour Studies that can be used to

study mechanisms of social influence and social selection.

E.g.: network of adolescents,

co-evolution friendship network ⇔ smoking behaviour.
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Co-evolution Multivariate networks

Multivariate Networks Studies

Co-evolution of several networks

allows studying how these networks influence each other.

E.g.: studies of bullying in schools,

relevant networks are friendship – bullying – defending

(also like – dislike, but complications should be limited...)

Networks may also be two-mode networks

i.e., affiliation of actors with activities, meeting places

which can represent further contextual aspects.
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Co-evolution Multivariate networks

The procedures are implemented in the R package

R

S imulation

I nvestigation for

E mpirical

N etwork

A nalysis

which is available from CRAN and (up-2-date) R-Forge

http://www.stats.ox.ac.uk/siena/

Material, papers, can be found on SIENA website.
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Discussion

Overview / Discussion

The model is an exponential family with missing data:

order and timing of changes is not observed.

The continuous-time basis implies that the model specification and

parameter values do not depend on the timing of the observations.

This is not the case for discrete-time models.

The model has been extended to more complex data structures:

multiple and valued networks,

two-mode networks, networks & behaviour.

For panel data, simulation-based frequentist estimation is available.

In the case of 1 dependent network, MoM performs well.

For more dependent variables (networks / behavior),

MoM is OK but not fully efficient;

ML possible but time-consuming; GMoM under development.
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Discussion

Developments – Open Questions

1 Goodness of fit (Josh Lospinoso).

2 Effect sizes.

3 Algorithms, software (Felix Schönenberger).

4 Continuous dependent actor variables (Nynke Niezink).

5 Relax assumption of complete information for actors:

Settings Model, suitable for larger networks.

6 Random effects multi-group models (Johan Koskinen).

7 Consistency and asymptotic normality as ] waves is bounded (e.g., 2)

and average degree is bounded, while ] actors →∞ : ???

8 Some kind of optimality for MoM statistics: ???

9 Robustness for deviations from assumptions: ???
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Discussion

Some references (time-ordered)

Tom A.B. Snijders (2001). The Statistical Evaluation of Social Network Dynamics.

Sociological Methodology, 31, 361–395.

Johan H. Koskinen and Tom A.B. Snijders (2007).

Bayesian inference for dynamic social network data.

Journal of Statistical Planning and Inference, 13, 3930–3938.

Tom Snijders, Christian Steglich, and Michael Schweinberger (2007),

Modeling the co-evolution of networks and behaviour.

Pp. 41–71 in Longitudinal models in the behavioral and related sciences,

eds. Kees van Montfort, Han Oud and Albert Satorra; Lawrence Erlbaum.

Steglich, C.E.G., Snijders, T.A.B. and Pearson, M. (2010).

Dynamic Networks and Behavior: Separating Selection from Influence.

Sociological Methodology, 40, 329–392.

Tom A.B. Snijders, Johan Koskinen, and Michael Schweinberger (2010).

Maximum Likelihood Estimation for Social Network Dynamics.

Annals of Applied Statistics, 4, 567–588.

See SIENA manual and homepage.
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Discussion

Some references (continued)

Johan H. Koskinen and Tom A.B. Snijders (2013). Longitudinal models.

Pp. 130–140 in Exponential Random Graph Models,

edited by Dean Lusher, Johan Koskinen, and Garry Robins. Cambridge University Press.

Tom A.B. Snijders, Alessandro Lomi, and Vanina Torlò (2013). A model for the multiplex

dynamics of two-mode and one-mode networks, with an application to employment

preference, friendship, and advice. Social Networks, 35, 265–276.

Viviana Amati, Felix Schönenberger, Tom A.B. Snijders (2015). Estimation of stochastic

actor-oriented models for the evolution of networks by generalized method of moments.

Journal de la Société Française de Statistique, 156, 140–165.

Tom A.B. Snijders (2017). Stochastic Actor-Oriented Models for Network Dynamics.

Annual Review of Statistics, to appear.

See SIENA manual and homepage.
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Extras Creation and maintenance effects

Extra 1. Creation and maintenance effects

In basic model specifications,

objective function does not depend on the ‘old’ network:

fi (β, x
old, xnew = x) =

L∑
k=1

βk sik(x) ,

Now define ∆+(xold, xnew) = 1 if in xnew a tie is added,

and ∆−(xold, xnew) = 1 if in xnew a tie is dropped,

and (in both cases) 0 otherwise.

For a given effect sik(x), define the creation effect by

sc
ik(xold, xnew) = ∆+(xold, xnew) sik(xnew)

and the maintenance effect by

sm
ik (xold, xnew) = ∆−(xold, xnew) sik(xnew) .
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Extras Creation and maintenance effects

This split allows to separate the effect in a part operating only for creation

and another part operating only for maintenance of ties.

The statistics for MoM estimation are corresponding, only adding

contributions for created or dropped ties, respectively.
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Extras Variance reduction

Extra 2. Variance reduction in Robbins-Monro update step

The art of computer simulation knows a large variety of methods

to improve the efficiency of the simulation process

— i.e., work with a smaller error variance.

These were once known affectionately as swindles.

A useful swindle is the regression method:

When estimating an expected value E
(
zk(X )

)
by simulation,

if you can find a random variable Uk , correlated with zk(X ),

and for which E
(
Uk

)
= 0,

then calculate the regression coefficient γk of zk(X ) on Uk

and subtract the prediction of zk(X ) based on Uk :

E
{
zk(X ) − γk Uk

}
= E

{
zk(X )

}
= fk(θ) .

This does not affect the estimated value and decreases the variance.
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Extras Variance reduction

In statistical modeling, a well-known function with expected value 0

is the score function with k ’th element

Jk(x , θ) =
∂

∂θk
log
(
pθ(x)

)
,

where pθ(x) is the probability (density) function of X

and θk is one of the coordinates of θ.

For the stochastic actor-oriented model,

the score function is too complicated to be computed.

However, in RSiena we do calculate the score function for the

augmented data, i.e., the data including all the ministeps.

(Used for estimating derivatives of expected values.)

The ministeps cannot be observed, but this does not matter – they are

simulated.
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Extras Variance reduction

‘Dolby’ noise reduction

Denote by X̃ the augmented data (i.e., including the ministeps) and by

Jk(X̃ , θ)

the score function of the augmented data w.r.t. θk .

Then the modified Robbins-Monro method has update step

θ̂(N+1) = θ̂(N) − aN D−1
(
z(X (N))− Diag(γ) J(X̃ (N), θ̂(N))− z(x)

)
where γ = (γ1, γ2, . . . , γK ) and γk is an estimate

for the regression coefficient of zk(X ) on Jk(X̃ , θ).

The variance of this update is smaller, making the algorithm more stable.
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Extras Variance reduction

Extra 3. Derivative estimation

For calculation of standard errors of the MoM defined by Eθ̂Z (X ) = z ,

we need to estimate
∂

∂θk
Eθ
{
Z (X )

}
.

For any data augmentation X̃ , this is equal to

∂

∂θk
Eθ
{
Z (X )

}
= Eθ

{
Z (X ) Jk(X̃ , θ)

}
.

Do not think we estimate this by

1

M

M∑
h=1

Z (Xh) Jk(X̃h, θ) .

We do it by

1

M

M∑
h=1

(
Z (Xh) − z

)
Jk(X̃h, θ) .
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