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Number of political groups in some Parliaments

Lower (“main”) # political % MPs of 2
Country Chamber groups* main parties

USA Congress 3 98%
Germany Bundestag 4 80%
France National Assembly 7 85%
Italy Chamber of Deputies 10 62%
UK House of Commons 12 86%

* Including “independents” (USA, UK) / “not registered” MPs (FR) /
“mixed group” (IT).
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Party affiliation of the deputies

Current composition of
the Chamber:

630 deputies;

10 (9+1) parties.

...Which parties are more
alike / collaborate more?

Majority: PD + CD + SC + AP (+ a few other MPs...).
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Bill cosponsorship networks

In the (Italian) Chamber of Deputies, each bill can be

sponsored by a single deputy;

cosponsored by more than one deputy.

Cosponsorship = proxy for ideological agreement.

Bill cosponsorship network

An edge-valued, undirected graph G = (V ,E ) where

each node vi ∈ V is a deputy;

a weighted edge eij displays the number of bills that deputies
vi and vj have cosponsored together during a legislature.
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Example: current legislature
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Group

AP
FDI
FI
LN
PD
CD
SEL
mixed
M5S
SC

Bill cosponsorship network of the XVII legislature (2013-15).
Colors denote parliamentary groups. Edge weights not shown.
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Purpose

Derive a model that can answer these questions:

1 which parties are politically more active?

2 which collaborations exist between parties?

3 what other factors affect bill cosponsorship choices?
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Network generating process

Idea

G arises from a multivariate Poisson process, stopped at time T .

Steps

1 Associate a Poisson process {Nij(t), t ≥ 0} with rate λij to
every pair (i , j) of nodes.

2 Nij(t) ∼ Poi(λij t).

3 Stop the process at T ⇒ aij = Nij(T ).

4 p1 modelling assumption: Nij(t) ⊥⊥ Nkl(t), (i , j) 6= (k, l).
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Stochastic blockmodels

Each deputy belongs to only one parliamentary group
⇒ a partition of deputies into p groups (“blocks”) is available.

Stochastic blockmodel (Holland et al., 1983)

If i and k belong to same block, any probability statement on the
graph is left unchanged by interchanging eij with ekj .

Blockmodel assumption: interaction rates λij are homogeneous
within each pair of blocks (r , s), i.e.,

λij = ζrs ∀i ∈ group r , ∀j ∈ group s.
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Initial stochastic blockmodel

Conditional on group memberships of nodes i ∈ r and j ∈ s,

aij |(i ∈ r , j ∈ s) ∼ Poi(µrs = T ζrs).

Decomposition of µrs :

log(µrs) = θ0 + αr + αs + φrs .

θ0: overall network density;

αr , r ∈ {1, ..., p}: cosponsorship activity of party r ;

φrs , r ≤ s ∈ {1, ..., p}: collaboration (+) or repulsion (-)
between deputies in parties r and s.
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Our (extended) stochastic blockmodel

Extension that allows inclusion of covariates xij associated
to (vi , vj):

aij |(i ∈ r , j ∈ s, xij) ∼ Poi(µij),

log(µij) = θ0 + xijβ + αr + αs + φrs .

Identifiability conditions:

p∑
r=1

αr = 0 and

p∑
s=1

φrs = 0 ∀r = 1, ..., p,

where (for ease of notation) we write φsr = φrs .
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Penalized inference

The model includes q = p(p + 1)/2 + dim(β) parameters:

θ = (θ0, β, α2, ..., αp, φ12, φ13, ..., φp−1,p) .

Number of parameters increases quickly with p!

• E.g., if dim(β) = 4 and p = 5⇒ q = 20;
• if p = 10⇒ q = 60, if p = 15⇒ q = 125...

Why do we resort to penalized inference?

• We seek a parsimonious solution;
• Some φrs could be 0 (“indifference” between parties r and s).
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The adaptive Lasso

Adaptive Lasso (Zou, 2006)

θ̂ = argmax
θ

log L(θ)− δ
q∑

j=1

wj |θj |,

where L(θ) = likelihood, δ = tuning parameter, wj = weight.

Let θ∗ be a consistent estimator of θ and N = n(n − 1)/2: if

1 w = 1/|θ∗|γ

2 δ/
√
N → 0

3 δN(γ−1)/2 →∞
then θ̂ is consistent in variable selection.
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Weight vector and interpretation

Definition of the weight vector w :

wj = 0 for θ0 and αr (unpenalized);

wj = 1/|θ∗j |γ , with θ∗j = MLE & γ = 2, for β and φrs .

Interpretation of α and φ

α̂r =

{
> 0
< 0

deputies ∈ r cosponsor more than average
deputies ∈ r cosponsor less than average

.

φ̂rs =


> 0
< 0
= 0

deputies in (r , s) tend to collaborate
deputies in (r , s) tend to avoid collaborations
indifference between collaboration / no coll.

.
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Selection of tuning parameter δ
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Simulation C We simulate networks with
different model complexity (q)
and betamin condition strength.

We compare the accuracy1 of
models selected by CV, AIC,
BIC, GIC2 and MBIC3.

RESULTS: AIC, CV, MBIC
often inaccurate; BIC and GIC
outperform them.

1 % of correctly detected null / non-null φrs .
2 Fan and Tang (2013). 3 Chand (2012).
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The data

Ingredients:

1 bill cosponsorship networks for the Italian Chamber of
Deputies (Briatte, 2016), 4 legislatures:

XIV (2001-2006) → 8 parties;
XV (2006-2008) → 13 parties;
XVI (2008-2013) → 8 parties;
XVII (2013-2015) → 10 parties.

2 personal details of Deputies (dati.camera.it):

gender;
age;
electoral constituency;
parliamentary group.
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Covariates (xij)

Covariate Legislature
XIV XV XVI XVII

Intercept (θ0) -2.49 -3.05 -2.53 -3.60
Female-Male (FM) 0.251 0.170 0.174 0.198

Female-Female (FF) 0.998 1.00 0.662 0.606
Age difference 0 0 -0.010 -0.002

Same electoral constituency 0.522 0.490 0.514 0.553

θ̂0 lower for shorter legislatures (XV & XVII).

Cosponsorship more frequent if at least one sponsor is female.

No age effect.

Collaborations based on geographic proximity.

Effects (roughly) similar over time.
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Relations between blocks: the reduced graph

Group

set 1
set 2
set 3
set 4
set 5

Original graph Reduced graph

Anderson et al. (1992): draw an edge between blocks r and s
if π̂rs > c (= blocks highly connected).

Instead, we draw an edge if φ̂rs > 0 (= collaboration!).
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XIV and XV legislatures (2001-2008)

XIV legislature (2001−2006)

AN

UDC

FI

LN

DS

Margh

mixed

RC

COALITION

right−wing
left−wing

XV legislature (2006−2008)

AN

DC

FI

IDV

LN

mixed

PCI

RC
PD

Udeur

RNP

UDC

Verdi

2 coalitions of parties (left & right) + stable majorities.

Strong polarization: collaborations almost exclusively within
parties and between parties in the same coalition.
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XVI legislature (2008-2013)

FLI

FI

IDV

LN

mixed

PD

PT

UDC

COALITION

right−wing
centrist
left−wing

Three different majorities:

1 FI + LN + PT + FLI;

2 FI + LN + PT;

3 FI + FLI + UDC + PD.

Reduced graph: reflects division
majority/opposition of the first
half of the legislature (1).

Why? Cosponsorship is more
likely to take place at the very
beginning of each legislature!
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XVII legislature (data until dec. 2015!)

FDI

AP

FI

LN

mixed

M5S

PD
CD

SC

SEL

COALITION

right−wing
centrist
left−wing
M5S

Four “coalitions” (left-wing,
right-wing, Scelta Civica &
Mov. 5 Stelle).

“Composite” majority (PD +
CD + SC + AP + partly FI).

Main collaborations:

• within the same party;
• between right-wing parties;
• centrist parties: SC-CD and

SC-AP;
• two main left-wing parties

(PD-SEL);
• ...M5S isolated?
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Extensions and alternatives

We have used glmnet (great for sparse matrices!).

Interesting extension: introduce nodal random effects to
model unobserved sources of heterogeneity.

Italian Chamber: available covariates might not be enough.
Other Parliaments: no covariates / difficult to retrieve.

Problem: how to combine efficiently `1 penalty and
random effects (glmmLasso cannot handle sparse X !)?

Alternative approach: latentnet

does not use group membership & provides latent space
representation of Deputies;
leads to similar results;
drawbacks: no penalization + considerably slower.
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Summary

Bill cosponsorship ≈ ideological agreement between deputies.

Stochastic blockmodel: how do parties collaborate?

Adaptive lasso (consistent in variable selection).

Results:

strong ideological polarization from 2001 to 2008;

increasing political fragmentation from 2008 to 2015;

female deputies more active in bill cosponsorship;

geographic proximity relevant, age difference irrelevant.

Preprint: Signorelli & Wit, A penalized inference approach to
stochastic blockmodelling of community structure in the Italian
Parliament. arXiv:1607.08743.
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