Reconstructing collaborations between political parties from bill cosponsorship networks

Mirko Signorelli^{1,2} and Ernst C. Wit¹

 Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen
Department of Statistical Sciences, University of Padova

rijksuniversiteit groningen

Università degli Studi di Padova

	Lower ("main")	# political	% MPs of 2
Country	Chamber	groups*	main parties
USA	Congress	3	98%
Germany	Bundestag	4	80%
France	National Assembly	7	85%
Italy	Chamber of Deputies	10	62%
UK	House of Commons	12	86%

* Including "independents" (USA, UK) / "not registered" MPs (FR) / "mixed group" (IT).

Party affiliation of the deputies

Majority: PD + CD + SC + AP (+ a few other MPs...).

In the (Italian) Chamber of Deputies, each bill can be

- sponsored by a single deputy;
- cosponsored by more than one deputy.

Cosponsorship = proxy for ideological agreement.

Bill cosponsorship network

An edge-valued, undirected graph $\mathcal{G} = (V, E)$ where

- each node $v_i \in V$ is a deputy;
- a weighted edge e_{ij} displays the number of bills that deputies v_i and v_j have cosponsored together during a legislature.

Example: current legislature

Bill cosponsorship network of the XVII legislature (2013-15). Colors denote parliamentary groups. Edge weights not shown. Derive a model that can answer these questions:

- 1 which parties are politically more active?
- 2 which collaborations exist between parties?
- 3 what other factors affect bill cosponsorship choices?

Idea

 ${\cal G}$ arises from a multivariate Poisson process, stopped at time ${\cal T}.$

Steps

- Associate a Poisson process $\{N_{ij}(t), t \ge 0\}$ with rate λ_{ij} to every pair (i, j) of nodes.
- 2 $N_{ij}(t) \sim \text{Poi}(\lambda_{ij}t)$.
- 3 Stop the process at $T \Rightarrow a_{ij} = N_{ij}(T)$.
- 4 p_1 modelling assumption: $N_{ij}(t) \perp N_{kl}(t), (i,j) \neq (k,l)$.

Each deputy belongs to only one parliamentary group \Rightarrow a **partition** of deputies into *p* groups ("blocks") is **available**.

Stochastic blockmodel (Holland et al., 1983)

If *i* and *k* belong to same block, any probability statement on the graph is left unchanged by interchanging e_{ij} with e_{kj} .

Blockmodel assumption: interaction rates λ_{ij} are homogeneous within each pair of blocks (r, s), i.e.,

 $\lambda_{ij} = \zeta_{rs} \ \forall i \in \text{group } r, \ \forall j \in \text{group } s.$

Conditional on group memberships of nodes $i \in r$ and $j \in s$,

$$a_{ij}|(i \in r, j \in s) \sim \mathsf{Poi}(\mu_{rs} = T\zeta_{rs}).$$

Decomposition of μ_{rs} :

$$\log(\mu_{rs}) = \theta_0 + \alpha_r + \alpha_s + \phi_{rs}.$$

- θ_0 : overall network density;
- α_r , $r \in \{1, ..., p\}$: cosponsorship activity of party r;
- φ_{rs}, r ≤ s ∈ {1,..., p}: collaboration (+) or repulsion (-) between deputies in parties r and s.

Our (extended) stochastic blockmodel

■ Extension that allows inclusion of covariates x_{ij} associated to (v_i, v_j): a_{ij} | (i ∈ r, j ∈ s, x_{ij}) ~ Poi(µ_{ij}),

 $\log(\mu_{ij}) = \theta_0 + \mathbf{x}_{ij}\beta + \alpha_r + \alpha_s + \phi_{rs}.$

Identifiability conditions:

$$\sum_{r=1}^{p} \alpha_r = 0 \text{ and } \sum_{s=1}^{p} \phi_{rs} = 0 \quad \forall r = 1, ..., p,$$

where (for ease of notation) we write $\phi_{sr} = \phi_{rs}$.

The model includes $q = p(p+1)/2 + dim(\beta)$ parameters:

$$\theta = (\theta_0, \ \beta, \ \alpha_2, \ \dots, \ \alpha_p, \ \phi_{12}, \ \phi_{13}, \ \dots, \ \phi_{p-1,p}).$$

Number of parameters increases quickly with p!

- E.g., if $dim(\beta) = 4$ and $p = 5 \Rightarrow q = 20$;
- if $p = 10 \Rightarrow q = 60$, if $p = 15 \Rightarrow q = 125$...
- Why do we resort to penalized inference?
 - We seek a parsimonious solution;
 - Some ϕ_{rs} could be 0 ("indifference" between parties r and s).

Adaptive Lasso (Zou, 2006)

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \log L(\theta) - \delta \sum_{j=1}^{q} w_j |\theta_j|,$$

where $L(\theta) =$ likelihood, $\delta =$ tuning parameter, $w_j =$ weight.

Let θ^* be a consistent estimator of θ and N = n(n-1)/2: if

- 1 $w = 1/|\theta^*|^{\gamma}$
- $2 \ \delta/\sqrt{N} \to 0$
- 3 $\delta N^{(\gamma-1)/2} \rightarrow \infty$

then $\hat{\theta}$ is consistent in variable selection.

Definition of the weight vector w:

•
$$w_j = 0$$
 for θ_0 and α_r (unpenalized);

•
$$w_j = 1/|\theta_j^*|^{\gamma}$$
, with $\theta_j^* = MLE \& \gamma = 2$, for β and ϕ_{rs} .

Interpretation of α and ϕ

$$\hat{\alpha}_r = \left\{ \begin{array}{ll} > 0 & \text{deputies} \in r \text{ cosponsor more than average} \\ < 0 & \text{deputies} \in r \text{ cosponsor less than average} \end{array} \right.$$

 $\hat{\phi}_{rs} = \left\{ \begin{array}{ll} > 0 & \text{deputies in } (r,s) \text{ tend to collaborate} \\ < 0 & \text{deputies in } (r,s) \text{ tend to avoid collaborations} \\ = 0 & \text{indifference between collaboration } / \text{ no coll.} \end{array} \right.$

Selection of tuning parameter δ

- We simulate networks with different model complexity (q) and betamin condition strength.
- We compare the accuracy¹ of models selected by CV, AIC, BIC, GIC² and MBIC³.
- RESULTS: AIC, CV, MBIC often inaccurate; BIC and GIC outperform them.
- 1 % of correctly detected null / non-null $\phi_{rs}.$ 2 Fan and Tang (2013). 3 Chand (2012).

Ingredients:

 bill cosponsorship networks for the Italian Chamber of Deputies (Briatte, 2016), 4 legislatures:

- **XIV** (2001-2006) \rightarrow 8 parties;
- XV (2006-2008) → **13** parties;
- XVI (2008-2013) → 8 parties;
- **XVII** (2013-2015) \rightarrow **10** parties.
- **2** personal details of Deputies (dati.camera.it):
 - gender;
 - age;
 - electoral constituency;
 - parliamentary group.

Covariates (x_{ij})

Covariate	Legislature			
	XIV	XV	XVI	XVII
Intercept (θ_0)	-2.49	-3.05	-2.53	-3.60
Female-Male (FM)	0.251	0.170	0.174	0.198
Female-Female (FF)	0.998	1.00	0.662	0.606
Age difference	0	0	-0.010	-0.002
Same electoral constituency	0.522	0.490	0.514	0.553

- $\hat{\theta}_0$ lower for shorter legislatures (XV & XVII).
- Cosponsorship more frequent if at least one sponsor is female.
- No age effect.
- Collaborations based on geographic proximity.
- Effects (roughly) similar over time.

Relations between blocks: the reduced graph

- Anderson et al. (1992): draw an edge between blocks r and s if [^]π_{rs} > c (= blocks highly connected).
- Instead, we draw an edge if $\hat{\phi}_{rs} > 0$ (= collaboration!).

XIV and XV legislatures (2001-2008)

- 2 coalitions of parties (left & right) + stable majorities.
- Strong polarization: collaborations almost exclusively within parties and between parties in the same coalition.

XVI legislature (2008-2013)

Three different majorities:

- 1 FI + LN + PT + FLI;
- **2** FI + LN + PT;
- 3 FI + FLI + UDC + PD.
 - Reduced graph: reflects division majority/opposition of the first half of the legislature (1).
- Why? Cosponsorship is more likely to take place at the very beginning of each legislature!

XVII legislature (data until dec. 2015!)

- Four "coalitions" (left-wing, right-wing, Scelta Civica & Mov. 5 Stelle).
- "Composite" majority (PD + CD + SC + AP + partly Fl).
- Main collaborations:
 - within the same party;
 - between right-wing parties;
 - centrist parties: SC-CD and SC-AP;
 - two main left-wing parties (PD-SEL);
 - ...M5S isolated?

Extensions and alternatives

- We have used glmnet (great for sparse matrices!).
- Interesting extension: introduce nodal random effects to model unobserved sources of heterogeneity.
 - Italian Chamber: available covariates might not be enough.
 - Other Parliaments: no covariates / difficult to retrieve.
- Problem: how to combine efficiently l₁ penalty and random effects (glmmLasso cannot handle sparse X!)?
- Alternative approach: latentnet
 - does not use group membership & provides latent space representation of Deputies;
 - leads to similar results;
 - drawbacks: no penalization + considerably slower.

Summary

- \blacksquare Bill cosponsorship \approx ideological agreement between deputies.
- Stochastic blockmodel: how do parties collaborate?
- Adaptive lasso (consistent in variable selection).

Results:

- strong ideological polarization from 2001 to 2008;
- increasing political fragmentation from 2008 to 2015;
- female deputies more active in bill cosponsorship;
- geographic proximity relevant, age difference irrelevant.

Preprint: Signorelli & Wit, A penalized inference approach to stochastic blockmodelling of community structure in the Italian Parliament. arXiv:1607.08743.

References

- Anderson, C. J., Wasserman, S., and Faust, K. (1992). Building stochastic blockmodels. *Social networks*, 14(1):137–161.
- Briatte, F. (2016). Network patterns of legislative collaboration in twenty parliaments. *Network Science*, pages 1–6.
- Chand, S. (2012). On tuning parameter selection of lasso-type methods-a monte carlo study. In *IBCAST 2012 Conference Proceedings*, pages 120–129. IEEE.
- Fan, Y. and Tang, C. Y. (2013). Tuning parameter selection in high dimensional penalized likelihood. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 75(3):531–552.
- Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983). Stochastic blockmodels: First steps. *Social networks*, 5(2):109–137.
- Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418–1429.