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Assortativity coefficient

d, d,
i J

» G = (V, E) undirected graph of n nodes, E’— directed edges
» D; degree of node i =1,2,..., n
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Assortativity coefficient

d, d,
i J

G = (V, E) undirected graph of n nodes, E’— directed edges
D; degree of node i =1,2,..., n
Newman (2002): assortativity measure p(G)
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Statistical estimation of the Pearson’s correlation
coefficient between degrees on two ends of a random edge
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Motivation

Information flow neural networks.
Stability of P2P networks under attack.
Epidemics on networks.

Network Observability.

Opinion dynamics based on social influence.

vV v v v vy

Collaboration in social networks.
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Assortative and disassortative graphs

» Newman(2003)

network type size n | assortativity r | error o, | ref.

physics coauthorship undirected 52000 0.363 0.002 a

biology coauthorship undirected | 1520251 0.127 0.0004 a

mathematics coauthorship | undirected 253339 0.120 0.002 b

social film actor collaborations undirected 449913 0.208 0.0002 c
company directors undirected 7673 0.276 0.004 d

student relationships undirected 573 —0.029 0.037 e

email address books directed 16881 0.092 0.004 f

power grid undirected 4941 —0.003 0.013 3

sochtiolsgical Invternet i . undirected 10697 —0.189 0.002 h
World-Wide Web directed 269504 —0.067 0.0002 i

software dependencies directed 3162 —0.016 0.020 j

protein interactions undirected 2115 —0.156 0.010 k

metabolic network undirected 765 —0.240 0.007 I

biological neural network directed 307 —0.226 0.016 m
marine food web directed 134 —0.263 0.037 n

freshwater food web directed 92 —0.326 0.031 o
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» Technological and biological networks are disassortative,
p(G) <0
» Social networks are assortative, p(G) > 0
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network type size n | assortativity r | error o, | ref.

physics coanthorship undirected | 52000 0.363 0.002 =

biology coauthorship undirected | 1520251 0.127 0.0004 a

mathematics coauthorship | undirected 253339 0.120 0.002 b

social film actor collaborations undirected 449913 0.208 0.0002 c
company directors undirected 7673 0.276 0.004 d

student relationships undirected 573 —0.029 0.037 e

email address books directed 16881 0.092 0.004 f

power grid undirected 4941 —0.003 0.013 3

sochtiolsgical Invternet i . undirected 10697 —0.189 0.002 h
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software dependencies directed 3162 —0.016 0.020 j

protein interactions undirected 2115 —0.156 0.010 k

metabolic network undirected 765 —0.240 0.007 I

biological neural network directed 307 —0.226 0.016 m
marine food web directed 134 —0.263 0.037 n

freshwater food web directed 92 —0.326 0.031 o

» Technological and biological networks are disassortative,

p(G) <0

» Social networks are assortative, p(G) > 0
» Note: large networks are never strongly disassortative...
DOROGOVTSEV ET AL. (2010), RASCHKE ET AL. (2010)
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p(G) via moments of the degrees

» Write

> LD+ D) ZD

(ij)EE’
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p(G) via moments of the degrees

» Write
> D+ D)) ZD > D7+ D} ZD3
(ij)EE’ (ij)EE’
» Then
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Scaling of the terms in p(G)

crossproducts — expectation? expectation?

p(G) = > — =p (G)

variance variance
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Scaling of the terms in p(G)

crossproducts — expectation? expectation?

p(G) = > — =p (G)

variance variance
2
1 n 2
[E7| (Zi:l Di)
n 3 1 n 2 2
Zi:l D7 — [E7| (ZI:I Di)

» We have 5 7, D3 > cn®Y
» But also

p(G)=—

n

|El/|<Z D,-2)2 < (Cz/c)nmax{4/y—1,1}_
i=

» p(G) = 0as n— oo in ANY power law graph with
vy €(1,3)
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Web and social networks

Dataset Description # nodes max d p(Gp) o(G)™2 K T 0= (G,)
stanford-cs web domain 9,914 340 -0.1656 -0.1627 -0.4648
eu-2005 .eu web crawl 862,664 68,963 -0.0562 -0.2525 -0.0670
uk@100,000 .uk web crawl 100,000 55,252 -0.6536 -0.5676 -1.117
uk@©1,000,000 | .uk web crawl | 1,000,000 | 403,441 | -0.0831 -0.5620 -0.0854
enron e-mailing 69,244 1,634 -0.1599 -0.6827 -0.1932
dblp-2010 co-authorship 326,186 238 0.3018 0.2604 -0.7736
dblp-2011 co-authorship 986,324 979 0.0842 0.1351 -0.2963
hollywood co-starring 1,139,905 11,468 0.3446 0.4689 -0.6737
All graphs are made undirected
UNIVERSITY OF TWENTE. [ Nelly Litvak, 22-08-2016 ]  8/27




Convergence of p(G) to a non-negative value

Theorem (L & vdHofstad 2013)

Let (Gp)n>1 be a sequence of graphs of size n satisfying that there
exist y € (1,3) and 0 < ¢ < C < oo such that

cn < |E| < Cn,

ent/Y < ‘max D; < cnl/Y,

Then, any limit point of the Pearson’s correlation coefficient p(Gp)
is non-negative.
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Convergence of p(G) to a non-negative value

Theorem (L & vdHofstad 2013)
Let (Gp)n>1 be a sequence of graphs of size n satisfying that there
exist y € (1,3) and 0 < ¢ < C < oo such that

cn < |E| < Cn,

ent/Y < ‘max D; < cnl/Y,

Then, any limit point of the Pearson’s correlation coefficient p(Gp)
is non-negative.

» Large scale-free graphs are never disassortative!
» Alternative: rank correlations
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Degree-degree correlations in directed networks

Generalize to directed networks
Use rank correlations
Null-model: Directed Configuration Model (DCM)

Rank correlations on DCM: asymptotics and finite-size effects

vV v.vyYy
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Degree-degree correlations in directed networks

Given a directed graph G = (V, E).

.
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Degree-degree correlations in directed networks

Given a directed graph G = (V, E).
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Degree-degree correlations in directed networks

Given a directed graph G = (V, E).
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Index degree type by «, 3 € {4+, —}.
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Four types of degree-degree correlation
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Four types of degree-degree correlation
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Directed Configuration Model (DCM)
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Directed Configuration Model (DCM)
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Directed Configuration Model (DCM)
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Directed Configuration Model (DCM)

Out — degree In — degree
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Directed Configuration Model (DCM)

Out — degree In — degree
%1 vi
V2 V2
Vn Vn

Remove self-loops and double edges. The result is a simple graph
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Rank correlations: Spearman’s rho
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Rank correlations: Spearman’s rho

Given a graph G, of size n, o, B € {+, —}
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Rank correlations: Spearman’s rho

Given a graph G, of size n, o, B € {+, —}

We have E joint measurements {D, Djﬁ},qj

Compute Pearsons correlation coefficient on {D, DJ.B},-_U-
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Rank correlations: Spearman’s rho

Given a graph G, of size n, o, B € {+, —}

Rank the degrees in descending order

We have E joint measurements {D, Djﬁ},qj = {R%, F\’jﬁ},-ﬁj

Compute Pearsons correlation coefficient on {R?, RJ.B},-_U-

UNIVERSITY OF TWENTE. [ Nelly Litvak, 22-08-2016 ]  14/27



Rank correlations: Spearman’s rho

Given a graph G, of size n, o, B € {+, —}

Rank the degrees in descending order

We have E joint measurements {D, Djﬁ},qj = {R%, F\’jﬁ},-ﬁj
Compute Pearsons correlation coefficient on {R?, RJ.B},-_U-

0B (G,) == r(R*, RP)
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Statistical consistency Spearman’s rho

Theorem (vdHoorn and L 2014)

Let {G,},en be a sequence of random graphs, «, f € {+, —} and
suppose there exist integer valued random variables D% and DP
such that
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Structural correlations

» When a graph is simple, this imposes a restriction on how the
graph can be wired.
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Structural correlations
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» There is only one way to make it a simple graph, and it is
disassortative
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Structural correlations

» When a graph is simple, this imposes a restriction on how the
graph can be wired.
» Example: Degree sequence: 1,1,1,1,4

» There is only one way to make it a simple graph, and it is
disassortative

» This phenomenon is called ‘structural correlations’

» How large are structural correlations in the erased Directed
Configuration Model?
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Spearman’s rho in the Erased Configuration Model

» Simple graph: multiple edges and loops are removed
» Wiring is not entirely neutral
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Spearman’s rho in the Erased Configuration Model

» Simple graph: multiple edges and loops are removed
» Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let {G,},en be a sequence of graphs of size n, generated by either
the Repeated or Erased Configuration Model and «, § € {+, —}.
Then, as n — oo,
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Spearman’s rho in the Erased Configuration Model

» Simple graph: multiple edges and loops are removed
» Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let {G,},en be a sequence of graphs of size n, generated by either
the Repeated or Erased Configuration Model and «, § € {+, —}.
Then, as n — oo,

» Number of erased edges of a node converges in distribution to
zero. Chen and Olvera-Cravioto, 2013
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Structural correlations in the Erased model
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Structural correlations in the Erased model
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Structural correlations in the Erased model
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Why is Out-In different?
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Why is Out-In different?

high D+
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What about In-Out?
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How large are the structural correlations?

» We want a result of the type:

p+(Gn)f_E[p+(Gn)] i} W,
nf(v+v-)

where W is composed from stable distributions.
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How large are the structural correlations?

» We want a result of the type:

p+(Gn)f_E[p+(Gn)] i} W,
nf(v+v-)

where W is composed from stable distributions.
» However, none of f(y.y,y_) scalings works
» Different f(y4,v_) in different areas of (y,,y_)

UNIVERSITY OF TWENTE. [ Nelly Litvak, 22-08-2016 ]  21/27



Upper bounds

1 o ; : +D:
ELEE<) —Fm—+) "5

ij=1 ij=1 i=1
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Upper bounds

1y i ] i i
EZE"[EUC']<Z E3J +Z E2

ij=1 ij=1 i=1

Approximation of nu by E and CLT for heavy-tailed distributions:

L3 Bilg] <o(mhe)

ij=1
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Upper bounds

1y i ] i i
EZE"[EUC']<Z E3J +Z E2

ij=1 ij=1 i=1

Approximation of nu by E and CLT for heavy-tailed distributions:

L3 Bilg] <o(mhe)

ij=1
CLT for Spearman’s p

p7(Gy) =0 (p3(G))) =0 (,,4/2)
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Phase transition in the scaling of p (G,)
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Phase transition in the scaling of p(G,)

pI ( Gn) —-E [pI ( Gn)]
nf(y+v-)
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Phase transition in the scaling of p(G,)

pI ( Gn) —-E [pI ( Gn)]

nf(v+v-)
f F— 1 1
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(a) n 1+ (v Ay ) (b) n(2/y+)+(2/y-)=3 (c) n /2
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Phase transition in the scaling of p(G,)
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£ > En[Ef] < -2 +g > e {EJ}
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A better upper bound

2

1 D+D_ +D_
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A better upper bound

n 2 1 < D D D+D
ZEn[Elﬂé% ?Z 5 —l—l—Zexp{ }
ij=1 ij=1

L
E <
ij=1

Looks like an empirical form of

nlME(E) —14+E (e /)

where Pg (k) ~ k= rmint1) oy — min{yy, v_)
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A better upper bound

n 2 1 n +
i

1 D D D+D
EZE,;[E;]S% ?Z 5 —l—l-Zexp{ }

ij=1 ij=1 ij=1

Looks like an empirical form of
1
—E(E)—1+E (eﬂi/(nu)> = O(p~Ymin)
np

where Pg (k) ~ k=(0rmn 1)y — minfy ).
Tauberian Theorem Bingham and Doney 1974

Theorem (vdHoorn, vdHofstad, Stegehuis, L 2016)

LS By [£5] = Ot ™).

ij=1
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Structural correlations versus erased edges

» We proved a new scaling for the average number of erased
edges

» This scaling however does not explain the behavior of
structural correlations.

» For the structural correlations we found the right scaling.
» How much erased edges affect the neutral mixing in a graph?
» Work in progress.
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Thank you!
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