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Heavy-tailed degree distributions

p(k) ≈ k−γ−1

1 < γ 6 ⇒ E [D] <∞ E
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Assortativity coefficient

I G = (V ,E ) undirected graph of n nodes, E ′– directed edges
I Di degree of node i = 1, 2, . . . , n

I Newman (2002): assortativity measure ρ(G )
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I Statistical estimation of the Pearson’s correlation

coefficient between degrees on two ends of a random edge
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Motivation

I Information flow neural networks.

I Stability of P2P networks under attack.

I Epidemics on networks.

I Network Observability.

I Opinion dynamics based on social influence.

I Collaboration in social networks.

I . . .
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Assortative and disassortative graphs

I Newman(2003)

I Technological and biological networks are disassortative,
ρ(G ) < 0

I Social networks are assortative, ρ(G ) > 0
I Note: large networks are never strongly disassortative...

Dorogovtsev et al. (2010), Raschke et al. (2010)
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ρ(G ) via moments of the degrees

I Write∑
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Scaling of the terms in ρ(G )

ρ(G ) =
crossproducts − expectation2
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3
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I But also
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i=1

D2
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)2
6 (C 2/c)nmax{4/γ−1,1}.

I ρ−(G )→ 0 as n→∞ in ANY power law graph with
γ ∈ (1, 3)
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Web and social networks

Dataset Description # nodes max d ρ(Gn) ρ(Gn)
rank ρ−(Gn)

stanford-cs web domain 9,914 340 -0.1656 -0.1627 -0.4648
eu-2005 .eu web crawl 862,664 68,963 -0.0562 -0.2525 -0.0670
uk@100,000 .uk web crawl 100,000 55,252 -0.6536 -0.5676 -1.117
uk@1,000,000 .uk web crawl 1,000,000 403,441 -0.0831 -0.5620 -0.0854
enron e-mailing 69,244 1,634 -0.1599 -0.6827 -0.1932
dblp-2010 co-authorship 326,186 238 0.3018 0.2604 -0.7736
dblp-2011 co-authorship 986,324 979 0.0842 0.1351 -0.2963
hollywood co-starring 1,139,905 11,468 0.3446 0.4689 -0.6737

All graphs are made undirected
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Convergence of ρ(G ) to a non-negative value

Theorem (L & vdHofstad 2013)

Let (Gn)n>1 be a sequence of graphs of size n satisfying that there
exist γ ∈ (1, 3) and 0 < c < C <∞ such that

cn 6 |E | 6 Cn,

cn1/γ 6 max
i=1,...,n

Di 6 Cn1/γ,

cn(2/γ)∨1 6
n∑

i=1

D2
i 6 Cn(2/γ)∨1.

Then, any limit point of the Pearson’s correlation coefficient ρ(Gn)
is non-negative.

I Large scale-free graphs are never disassortative!
I Alternative: rank correlations
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Degree-degree correlations in directed networks

I Generalize to directed networks

I Use rank correlations

I Null-model: Directed Configuration Model (DCM)

I Rank correlations on DCM: asymptotics and finite-size effects
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Degree-degree correlations in directed networks

i → j

i j

D+
i

D−
jDαi Dβj

Index degree type by α,β ∈ {+,−}.
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Four types of degree-degree correlation
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Directed Configuration Model (DCM)

Out − degree

...

v1

v2

vn

In − degree

...

v1

v2

vn

Remove self-loops and double edges. The result is a simple graph
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Rank correlations: Spearman’s rho

Given a graph Gn of size n, α,β ∈ {+,−}

Rank the degrees in descending order

We have E joint measurements {Dαi ,Dβj }i→j

⇒ {Rαi ,Rβj }i→j

Compute Pearsons correlation coefficient on

ρβα(Gn) := r(Rα,Rβ)
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Statistical consistency Spearman’s rho

Theorem (vdHoorn and L 2014)

Let {Gn}n∈N be a sequence of random graphs, α,β ∈ {+,−} and
suppose there exist integer valued random variables Dα and Dβ

such that

pβα(k , `)
P→ P

(
Dα = k ,Dβ = `

)
as n→∞.

Then, as n→∞,

ρβα(Gn)
P→ ρ

(
Dα,Dβ

)

[ Nelly Litvak, 22-08-2016 ] 15/27



Structural correlations

I When a graph is simple, this imposes a restriction on how the
graph can be wired.

I Example: Degree sequence: 1,1,1,1,4

I There is only one way to make it a simple graph, and it is
disassortative

I This phenomenon is called ‘structural correlations’
I How large are structural correlations in the erased Directed

Configuration Model?
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Spearman’s rho in the Erased Configuration Model

I Simple graph: multiple edges and loops are removed

I Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let {Gn}n∈N be a sequence of graphs of size n, generated by either
the Repeated or Erased Configuration Model and α,β ∈ {+,−}.
Then, as n→∞,

ρβα(Gn)
P→ 0.

I Number of erased edges of a node converges in distribution to
zero. Chen and Olvera-Cravioto, 2013
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Structural correlations in the Erased model
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Structural correlations in the Erased model
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Figure : Empirical cdf of ρβα(Gn) for ECM graphs with γ± = 2.1
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Why is Out-In different?
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How large are the structural correlations?

I We want a result of the type:

ρ−+(Gn) − E
[
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]
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d→W ,

where W is composed from stable distributions.

I However, none of f (γ+,γ−) scalings works

I Different f (γ+,γ−) in different areas of (γ+,γ−)
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Structural correlations versus erased edges

I We proved a new scaling for the average number of erased
edges

I This scaling however does not explain the behavior of
structural correlations.

I For the structural correlations we found the right scaling.

I How much erased edges affect the neutral mixing in a graph?

I Work in progress.
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Thank you!
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