UNIVERSITY OF TWENTE.

Structural degree-degree dependencies in large networks

University of Twente, The Netherlands

Joint work with Pim van der Hoorn, Remco van der Hofstad, Clara Stegehuis

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$

$$1<\gamma\leqslant 3$$

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$

$$1 < \gamma \leqslant 2$$

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$

$$1 < \gamma \leqslant 2 \quad \Rightarrow \quad \mathbb{E}\left[D\right] < \infty$$

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$\begin{split} \rho(k) &\approx k^{-\gamma - 1} \\ 1 &< \gamma \leqslant 2 \quad \Rightarrow \quad \mathbb{E}\left[D\right] < \infty \quad \mathbb{E}\left[D^2\right] = \infty \end{split}$$

Assortativity coefficient

- ▶ G = (V, E) undirected graph of n nodes, E'- directed edges
- ► D_i degree of node i = 1, 2, ..., n

Assortativity coefficient

- ▶ G = (V, E) undirected graph of n nodes, E'- directed edges
- ▶ D_i degree of node i = 1, 2, ..., n
- ▶ Newman (2002): assortativity measure $\rho(G)$

$$\rho(G) = \frac{\frac{1}{|E'|} \sum_{(i,j) \in E'} D_i D_j - \left(\frac{1}{|E'|} \sum_{(i,j) \in E'} \frac{1}{2} (D_i + D_j)\right)^2}{\frac{1}{|E'|} \sum_{(i,j) \in E'} \frac{1}{2} (D_i^2 + D_j^2) - \left(\frac{1}{|E'|} \sum_{(i,j) \in E'} \frac{1}{2} (D_i + D_j)\right)^2}$$

► Statistical estimation of the Pearson's correlation coefficient between degrees on two ends of a random edge

Motivation

Motivation

- ▶ Information flow neural networks.
- ► Stability of P2P networks under attack.
- ► Epidemics on networks.
- Network Observability.
- Opinion dynamics based on social influence.
- ► Collaboration in social networks.

Motivation

- ▶ Information flow neural networks.
- Stability of P2P networks under attack.
- ► Epidemics on networks.
- Network Observability.
- ► Opinion dynamics based on social influence.
- ► Collaboration in social networks.
- ▶ ..

Assortative and disassortative graphs

► Newman(2003)

	network	type	size n	assortativity r	error σ_r	ref.
$\operatorname{social} \left\{ ight.$	physics coauthorship	undirected	52 909	0.363	0.002	a
	biology coauthorship	undirected	1520251	0.127	0.0004	a
	mathematics coauthorship	undirected	253 339	0.120	0.002	Ь
	film actor collaborations	undirected	449 913	0.208	0.0002	c
	company directors	undirected	7 673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
	email address books	directed	16 881	0.092	0.004	f
. , , , ,]	power grid	undirected	4 941	-0.003	0.013	g
	Internet	undirected	10697	-0.189	0.002	h
technological	World-Wide Web	directed	269 504	-0.067	0.0002	i
$\begin{array}{c} \left(\begin{array}{c} \text{email ac} \\ \text{power g} \\ \text{Internet} \\ \text{World-V} \\ \text{software} \\ \end{array}\right) \end{array}$	software dependencies	directed	3 162	-0.016	0.020	j
(protein interactions	undirected	2115	-0.156	0.010	k
biological	metabolic network	undirected	765	-0.240	0.007	1
	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
(freshwater food web	directed	92	-0.326	0.031	0

Assortative and disassortative graphs

► Newman(2003)

	network	type	size n	assortativity r	error σ_r	ref.
social {	physics coauthorship	undirected	52 909	0.363	0.002	a
	biology coauthorship	undirected	1520251	0.127	0.0004	a
	mathematics coauthorship	undirected	253 339	0.120	0.002	Ь
	film actor collaborations	undirected	449 913	0.208	0.0002	c
	company directors	undirected	7 673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
(email address books	directed	16 881	0.092	0.004	f
(power grid	undirected	4 941	-0.003	0.013	g
. 1 1 . 1	Internet	undirected	10697	-0.189	0.002	h
technological {	World-Wide Web	directed	269504	-0.067	0.0002	i
Į	software dependencies	directed	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	j		
biological	protein interactions	undirected	2 115	-0.156	0.010	k
	metabolic network	undirected	765	-0.240	0.007	1
	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	0

- ► Technological and biological networks are disassortative, $\rho(G) < 0$
- ▶ Social networks are assortative, $\rho(G) > 0$

Assortative and disassortative graphs

► Newman(2003)

	network	type	size n	assortativity r	error σ_r	ref.
$\operatorname{social} \left\{ \right.$	physics coauthorship	undirected	52 909	0.363	0.002	a
	biology coauthorship	undirected	1520251	0.127	0.0004	a
	mathematics coauthorship	undirected	253 339	0.120	0.002	ь
	film actor collaborations	undirected	449 913	0.208	0.0002	c
	company directors	undirected	7 673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
	email address books	directed	16 881	0.092	0.004	f
(power grid	undirected	4 941	-0.003	0.013	g
	Internet	undirected	10697	-0.189	0.002	h
technological {	World-Wide Web	directed	269504	-0.067	0.0002	i
(software dependencies	directed	3 162	-0.016	0.020	j
,	protein interactions	undirected	2 115	-0.156	0.010	k
biological {	metabolic network	undirected	765	-0.240	0.007	1
	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	0

- ► Technological and biological networks are disassortative, $\rho(G) < 0$
- ▶ Social networks are assortative, $\rho(G) > 0$
- ▶ Note: large networks are never strongly disassortative... DOROGOVTSEV ET AL. (2010), RASCHKE ET AL. (2010)

 $\rho(G)$ via moments of the degrees

$\rho(G)$ via moments of the degrees

► Write

$$\sum_{(i,j)\in E'} \frac{1}{2}(D_i + D_j) = \sum_{i=1}^n D_i^2, \quad \sum_{(i,j)\in E'} \frac{1}{2}(D_i^2 + D_j^2) = \sum_{i=1}^n D_i^3$$

$\rho(G)$ via moments of the degrees

▶ Write

$$\sum_{(i,j)\in E'} \frac{1}{2}(D_i + D_j) = \sum_{i=1}^n D_i^2, \quad \sum_{(i,j)\in E'} \frac{1}{2}(D_i^2 + D_j^2) = \sum_{i=1}^n D_i^3$$

► Then

$$\rho(G) = \frac{\sum_{(i,j)\in E} D_i D_j - \frac{1}{|E|} \left(\sum_{i=1}^n D_i^2\right)^2}{\sum_{i=1}^n D_i^3 - \frac{1}{|E|} \left(\sum_{i=1}^n D_i^2\right)^2}.$$

Scaling of the terms in $\rho(G)$

$$\rho(\textit{G}) = \frac{\textit{crossproducts} - \textit{expectation}^2}{\textit{variance}} \geqslant -\frac{\textit{expectation}^2}{\textit{variance}} = \rho^-(\textit{G})$$

Scaling of the terms in $\rho(G)$

$$\begin{split} \rho(G) &= \frac{\textit{crossproducts} - \textit{expectation}^2}{\textit{variance}} \geqslant -\frac{\textit{expectation}^2}{\textit{variance}} = \rho^-(G) \\ \rho^-(G) &= -\frac{\frac{1}{|E'|} \Big(\sum_{i=1}^n D_i^2\Big)^2}{\sum_{i=1}^n D_i^3 - \frac{1}{|E'|} \Big(\sum_{i=1}^n D_i^2\Big)^2}. \end{split}$$

Scaling of the terms in $\rho(G)$

$$\rho(\textit{G}) = \frac{\textit{crossproducts} - \textit{expectation}^2}{\textit{variance}} \geqslant -\frac{\textit{expectation}^2}{\textit{variance}} = \rho^-(\textit{G})$$

$$\rho^{-}(G) = -\frac{\frac{1}{|E'|} \left(\sum_{i=1}^{n} D_i^2\right)^2}{\sum_{i=1}^{n} D_i^3 - \frac{1}{|E'|} \left(\sum_{i=1}^{n} D_i^2\right)^2}.$$

- ► We have $\sum_{i=1}^{n} D_i^3 \ge cn^{3/\gamma}$
- ► But also

$$\frac{1}{|E'|} \left(\sum_{i=1}^{n} D_i^2 \right)^2 \leqslant (C^2/c) n^{\max\{4/\gamma - 1, 1\}}.$$

▶ $\rho^-(G) \to 0$ as $n \to \infty$ in ANY power law graph with $\gamma \in (1,3)$

Web and social networks

Dataset	Description	# nodes	max d	$\rho(G_n)$	$\rho(G_n)^{\mathrm{rank}}$	$\rho^-(G_n)$
stanford-cs	web domain	9,914	340	-0.1656	-0.1627	-0.4648
eu-2005	.eu web crawl	862,664	68,963	-0.0562	-0.2525	-0.0670
uk@100,000	.uk web crawl	100,000	55,252	-0.6536	-0.5676	-1.117
uk@1,000,000	.uk web crawl	1,000,000	403,441	-0.0831	-0.5620	-0.0854
enron	e-mailing	69,244	1,634	-0.1599	-0.6827	-0.1932
dblp-2010	co-authorship	326,186	238	0.3018	0.2604	-0.7736
dblp-2011	co-authorship	986,324	979	0.0842	0.1351	-0.2963
hollywood	co-starring	1,139,905	11,468	0.3446	0.4689	-0.6737

All graphs are made undirected

Convergence of $\rho(G)$ to a non-negative value

Theorem (L & vdHofstad 2013)

Let $(G_n)_{n\geqslant 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma\in(1,3)$ and $0< c< C<\infty$ such that

$$cn \leq |E| \leq Cn,$$

 $cn^{1/\gamma} \leq \max_{i=1,...,n} D_i \leq Cn^{1/\gamma},$
 $cn^{(2/\gamma) \vee 1} \leq \sum_{i=1}^n D_i^2 \leq Cn^{(2/\gamma) \vee 1}.$

Then, any limit point of the Pearson's correlation coefficient $\rho(G_n)$ is non-negative.

Convergence of $\rho(G)$ to a non-negative value

Theorem (L & vdHofstad 2013)

Let $(G_n)_{n\geqslant 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma\in(1,3)$ and $0< c< C<\infty$ such that

$$cn \leq |E| \leq Cn,$$

 $cn^{1/\gamma} \leq \max_{i=1,...,n} D_i \leq Cn^{1/\gamma},$
 $cn^{(2/\gamma) \vee 1} \leq \sum_{i=1}^n D_i^2 \leq Cn^{(2/\gamma) \vee 1}.$

Then, any limit point of the Pearson's correlation coefficient $\rho(G_n)$ is non-negative.

► Large scale-free graphs are never disassortative!

Convergence of $\rho(G)$ to a non-negative value

Theorem (L & vdHofstad 2013)

Let $(G_n)_{n\geqslant 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma\in(1,3)$ and $0< c< C<\infty$ such that

$$cn \leq |E| \leq Cn,$$

 $cn^{1/\gamma} \leq \max_{i=1,...,n} D_i \leq Cn^{1/\gamma},$
 $cn^{(2/\gamma) \vee 1} \leq \sum_{i=1}^n D_i^2 \leq Cn^{(2/\gamma) \vee 1}.$

Then, any limit point of the Pearson's correlation coefficient $\rho(G_n)$ is non-negative.

- ► Large scale-free graphs are never disassortative!
- ► Alternative: rank correlations

- ► Generalize to directed networks
- ▶ Use rank correlations
- Null-model: Directed Configuration Model (DCM)
- ► Rank correlations on DCM: asymptotics and finite-size effects

Given a directed graph G = (V, E).

Given a directed graph G = (V, E).

Given a directed graph G = (V, E).

Index degree type by α , $\beta \in \{+, -\}$.

Four types of degree-degree correlation

Four types of degree-degree correlation

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

Remove self-loops and double edges. The result is a simple graph

Given a graph G_n of size n, α , $\beta \in \{+, -\}$

Given a graph G_n of size n, α , $\beta \in \{+, -\}$

We have E joint measurements $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

Given a graph G_n of size n, α , $\beta \in \{+, -\}$

We have E joint measurements $\{D_i^{\alpha}, D_j^{\beta}\}_{i \to j}$

Compute Pearsons correlation coefficient on $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

Given a graph G_n of size n, α , $\beta \in \{+, -\}$

Rank the degrees in descending order

We have E joint measurements $\{D_i^{\alpha}, D_j^{\beta}\}_{i \to j} \Rightarrow \{R_i^{\alpha}, R_j^{\beta}\}_{i \to j}$

Compute Pearsons correlation coefficient on $\{R_i^{\alpha}, R_i^{\beta}\}_{i \to j}$

Given a graph G_n of size n, α , $\beta \in \{+, -\}$

Rank the degrees in descending order

We have E joint measurements $\{D_i^{\alpha}, D_j^{\beta}\}_{i \to j} \Rightarrow \{R_i^{\alpha}, R_j^{\beta}\}_{i \to j}$

Compute Pearsons correlation coefficient on $\{R_i^{\alpha}, R_j^{\beta}\}_{i \to j}$

$$\rho_{\alpha}^{\beta}(G_n) := r(R^{\alpha}, R^{\beta})$$

Statistical consistency Spearman's rho

Theorem (vdHoorn and L 2014)

Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of random graphs, α , $\beta\in\{+,-\}$ and suppose there exist integer valued random variables \mathcal{D}^{α} and \mathcal{D}^{β} such that

$$p_{\alpha}^{\beta}(\textbf{\textit{k}},\textbf{\textit{\ell}}) \overset{\mathbb{P}}{\rightarrow} \mathbb{P}\left(\mathbb{D}^{\alpha} = \textbf{\textit{k}}, \mathbb{D}^{\beta} = \textbf{\textit{\ell}} \right) \quad \text{as } n \rightarrow \infty.$$

Then, as $n \to \infty$,

$$\rho_{\alpha}^{\beta}(\textit{G}_{n}) \overset{\mathbb{P}}{\rightarrow} \rho\left(\mathcal{D}^{\alpha}, \mathcal{D}^{\beta}\right)$$

► When a graph is simple, this imposes a restriction on how the graph can be wired.

- ► When a graph is simple, this imposes a restriction on how the graph can be wired.
- ► **Example:** Degree sequence: 1,1,1,1,4

- ► When a graph is simple, this imposes a restriction on how the graph can be wired.
- ► **Example:** Degree sequence: 1,1,1,1,4

- ► When a graph is simple, this imposes a restriction on how the graph can be wired.
- ► **Example:** Degree sequence: 1,1,1,1,4

► There is only one way to make it a simple graph, and it is disassortative

- ► When a graph is simple, this imposes a restriction on how the graph can be wired.
- ► **Example:** Degree sequence: 1,1,1,1,4

- ► There is only one way to make it a simple graph, and it is disassortative
- ► This phenomenon is called 'structural correlations'
- ► How large are structural correlations in the erased Directed Configuration Model?

Spearman's rho in the Erased Configuration Model

- ► Simple graph: multiple edges and loops are removed
- ► Wiring is not entirely neutral

Spearman's rho in the Erased Configuration Model

- ► Simple graph: multiple edges and loops are removed
- ► Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of graphs of size n, generated by either the Repeated or Erased Configuration Model and α , $\beta\in\{+,-\}$. Then, as $n\to\infty$,

$$\rho_{\alpha}^{\beta}(G_n) \stackrel{\mathbb{P}}{\to} 0.$$

Spearman's rho in the Erased Configuration Model

- ► Simple graph: multiple edges and loops are removed
- ▶ Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of graphs of size n, generated by either the Repeated or Erased Configuration Model and α , $\beta\in\{+,-\}$. Then, as $n\to\infty$,

$$\rho_{\alpha}^{\beta}(G_n) \stackrel{\mathbb{P}}{\to} 0.$$

► Number of erased edges of a node converges in distribution to zero. Chen and Olvera-Cravioto, 2013

Structural correlations in the Erased model

Structural correlations in the Erased model

Figure : Empirical cdf of $\rho_{\alpha}^{\beta}(\textit{G}_{\textit{n}})$ for ECM graphs with $\gamma_{\pm}=2.1$

Structural correlations in the Erased model

Figure : Empirical cdf of $\rho_{\alpha}^{\beta}(G_n)$ for ECM graphs with $\gamma_+=1.5$

How large are the structural correlations?

▶ We want a result of the type:

$$\frac{\rho_+^-(G_n) - \mathbb{E}\left[\rho_+^-(G_n)\right]}{n^{f(\gamma_+,\gamma_-)}} \stackrel{d}{\to} W,$$

where W is composed from stable distributions.

How large are the structural correlations?

▶ We want a result of the type:

$$\frac{\rho_+^-(G_n) - \mathbb{E}\left[\rho_+^-(G_n)\right]}{n^{f(\gamma_+,\gamma_-)}} \xrightarrow{d} W,$$

where W is composed from stable distributions.

▶ However, none of $f(\gamma_+, \gamma_-)$ scalings works

How large are the structural correlations?

▶ We want a result of the type:

$$\frac{\rho_+^-(G_n) - \mathbb{E}\left[\rho_+^-(G_n)\right]}{n^{f(\gamma_+,\gamma_-)}} \xrightarrow{d} W,$$

where W is composed from stable distributions.

- ▶ However, none of $f(\gamma_+, \gamma_-)$ scalings works
- ▶ Different $f(\gamma_+, \gamma_-)$ in different areas of (γ_+, γ_-)

Upper bounds

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant \sum_{i,j=1}^{n} \frac{(D_{i}^{+})^{2} (D_{j}^{-})^{2}}{E^{3}} + \sum_{i=1}^{n} \frac{D_{i}^{+} D_{i}^{-}}{E^{2}} \\
= O\left(n^{\frac{2}{\gamma_{+}} + \frac{2}{\gamma_{-}} - 3}\right) + O\left(n^{-1}\right)$$

Upper bounds

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant \sum_{i,j=1}^{n} \frac{(D_{i}^{+})^{2} (D_{j}^{-})^{2}}{E^{3}} + \sum_{i=1}^{n} \frac{D_{i}^{+} D_{i}^{-}}{E^{2}}$$

$$= O \left(n^{\frac{2}{\gamma_{+}} + \frac{2}{\gamma_{-}} - 3} \right) + O \left(n^{-1} \right)$$

Approximation of $n\mu$ by E and CLT for heavy-tailed distributions:

$$\frac{1}{E}\sum_{i,j=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right]\leqslant O\left(n^{\frac{1}{\gamma_{+}\wedge\gamma_{-}}-1}\right)$$

Upper bounds

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant \sum_{i,j=1}^{n} \frac{(D_{i}^{+})^{2} (D_{j}^{-})^{2}}{E^{3}} + \sum_{i=1}^{n} \frac{D_{i}^{+} D_{i}^{-}}{E^{2}}$$

$$= O \left(n^{\frac{2}{\gamma_{+}} + \frac{2}{\gamma_{-}} - 3} \right) + O \left(n^{-1} \right)$$

Approximation of $n\mu$ by E and CLT for heavy-tailed distributions:

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant O \left(n^{\frac{1}{\gamma_{+} \wedge \gamma_{-}} - 1} \right)$$

CLT for Spearman's ρ

$$\rho_{+}^{-}(G_n) = O\left(\rho_{+}^{-}(G_n^*)\right) = O\left(n^{-1/2}\right)$$

$$\frac{\rho_{+}^{-}(G_{n}) - \mathbb{E}\left[\rho_{+}^{-}(G_{n})\right]}{n^{f(\gamma_{+},\gamma_{-})}}$$

$$\frac{\rho_{-}^{+}(\textit{G}_{n}) - \mathbb{E}\left[\rho_{-}^{+}(\textit{G}_{n})\right]}{\textit{n}^{\textit{f}\left(\gamma_{+},\gamma_{-}\right)}}$$

$$\frac{\rho_{-}^{+}(G_{n}) - \mathbb{E}\left[\rho_{-}^{+}(G_{n})\right]}{n^{f(\gamma_{+},\gamma_{-})}}$$

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant 1 - \frac{n^{2}}{E} + \frac{1}{E} \sum_{i,j=1}^{n} \exp \left\{ -\frac{D_{i}^{+} D_{j}^{-}}{E} \right\}$$

$$\frac{1}{E} \sum_{i,i=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant \frac{n^{2}}{E} \left(\frac{1}{n^{2}} \sum_{i,i=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}} \sum_{i,j=1}^{n} \exp \left\{ -\frac{D_{i}^{+} D_{j}^{-}}{E} \right\} \right)$$

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant \frac{n^{2}}{E} \left(\frac{1}{n^{2}} \sum_{i,j=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}} \sum_{i,j=1}^{n} \exp \left\{ -\frac{D_{i}^{+} D_{j}^{-}}{E} \right\} \right)$$

Looks like an empirical form of

$$\frac{1}{n\mu}\mathbb{E}(\xi) - 1 + \mathbb{E}\left(e^{-\xi/(n\mu)}\right)$$

where $P_{\xi}(k) \sim k^{-(\gamma_{\min}+1)}$, $\gamma_{\min} = \min{\{\gamma_+, \gamma_-\}}$.

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant \frac{n^{2}}{E} \left(\frac{1}{n^{2}} \sum_{i,j=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}} \sum_{i,j=1}^{n} \exp \left\{ -\frac{D_{i}^{+} D_{j}^{-}}{E} \right\} \right)$$

Looks like an empirical form of

$$\frac{1}{n\mu}\mathbb{E}(\xi) - 1 + \mathbb{E}\left(e^{-\xi/(n\mu)}\right) \, = \textit{O}(\textit{n}^{-\gamma_{min}})$$

where $P_{\xi}(k) \sim k^{-(\gamma_{\min}+1)}$, $\gamma_{\min} = \min{\{\gamma_+, \gamma_-\}}$.

Tauberian Theorem Bingham and Doney 1974

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant \frac{n^{2}}{E} \left(\frac{1}{n^{2}} \sum_{i,j=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}} \sum_{i,j=1}^{n} \exp \left\{ -\frac{D_{i}^{+} D_{j}^{-}}{E} \right\} \right)$$

Looks like an empirical form of

$$\frac{1}{n\mu}\mathbb{E}(\xi) - 1 + \mathbb{E}\left(e^{-\xi/(n\mu)}\right) \, = \textit{O}(\textit{n}^{-\gamma_{min}})$$

where $P_{\xi}(k) \sim k^{-(\gamma_{\min}+1)}$, $\gamma_{\min} = \min{\{\gamma_{+}, \gamma_{-}\}}$. Tauberian Theorem Bingham and Doney 1974

Theorem (vdHoorn, vdHofstad, Stegehuis, L 2016)

$$\frac{1}{E}\sum_{i=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right]=O(n^{-\gamma_{\min}}).$$

UNIVERSITY OF TWENTE.

► We proved a new scaling for the average number of erased edges

- We proved a new scaling for the average number of erased edges
- This scaling however does not explain the behavior of structural correlations.

- We proved a new scaling for the average number of erased edges
- This scaling however does not explain the behavior of structural correlations.
- ▶ For the structural correlations we found the right scaling.

- We proved a new scaling for the average number of erased edges
- This scaling however does not explain the behavior of structural correlations.
- ▶ For the structural correlations we found the right scaling.
- ▶ How much erased edges affect the neutral mixing in a graph?
- Work in progress.

Thank you!