

Structural degree-degree dependencies in large networks

Nelly Litvak

University of Twente, The Netherlands

Joint work with

Pim van der Hoorn, Remco van der Hofstad,
Clara Stegehuis

Ribno, 22-09-2016

Heavy-tailed degree distributions

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma-1}$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma-1}$$

$$1 < \gamma \leq 3$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma-1}$$

$$1 < \gamma \leq 2$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma-1}$$

$$1 < \gamma \leq 2 \quad \Rightarrow \quad \mathbb{E}[D] < \infty$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma-1}$$

$$1 < \gamma \leq 2 \quad \Rightarrow \quad \mathbb{E}[D] < \infty \quad \mathbb{E}[D^2] = \infty$$

Assortativity coefficient

- ▶ $G = (V, E)$ undirected graph of n nodes, E' – directed edges
- ▶ D_i degree of node $i = 1, 2, \dots, n$

Assortativity coefficient

- ▶ $G = (V, E)$ undirected graph of n nodes, E' – directed edges
- ▶ D_i degree of node $i = 1, 2, \dots, n$
- ▶ Newman (2002): assortativity measure $\rho(G)$

$$\rho(G) = \frac{\frac{1}{|E'|} \sum_{(i,j) \in E'} D_i D_j - \left(\frac{1}{|E'|} \sum_{(i,j) \in E'} \frac{1}{2}(D_i + D_j) \right)^2}{\frac{1}{|E'|} \sum_{(i,j) \in E'} \frac{1}{2}(D_i^2 + D_j^2) - \left(\frac{1}{|E'|} \sum_{(i,j) \in E'} \frac{1}{2}(D_i + D_j) \right)^2}$$

- ▶ Statistical estimation of the Pearson's correlation coefficient between degrees on two ends of a random edge

Motivation

Motivation

- ▶ Information flow neural networks.
- ▶ Stability of P2P networks under attack.
- ▶ Epidemics on networks.
- ▶ Network Observability.
- ▶ Opinion dynamics based on social influence.
- ▶ Collaboration in social networks.

Motivation

- ▶ Information flow neural networks.
- ▶ Stability of P2P networks under attack.
- ▶ Epidemics on networks.
- ▶ Network Observability.
- ▶ Opinion dynamics based on social influence.
- ▶ Collaboration in social networks.
- ▶ ...

Assortative and disassortative graphs

► Newman(2003)

	network	type	size n	assortativity r	error σ_r	ref.
social	physics coauthorship	undirected	52 909	0.363	0.002	a
	biology coauthorship	undirected	1 520 251	0.127	0.0004	a
	mathematics coauthorship	undirected	253 339	0.120	0.002	b
	film actor collaborations	undirected	449 913	0.208	0.0002	c
	company directors	undirected	7 673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
	email address books	directed	16 881	0.092	0.004	f
technological	power grid	undirected	4 941	-0.003	0.013	g
	Internet	undirected	10 697	-0.189	0.002	h
	World-Wide Web	directed	269 504	-0.067	0.0002	i
	software dependencies	directed	3 162	-0.016	0.020	j
biological	protein interactions	undirected	2 115	-0.156	0.010	k
	metabolic network	undirected	765	-0.240	0.007	l
	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	o

Assortative and disassortative graphs

► Newman(2003)

	network	type	size n	assortativity r	error σ_r	ref.
social	physics coauthorship	undirected	52 909	0.363	0.002	a
	biology coauthorship	undirected	1 520 251	0.127	0.0004	a
	mathematics coauthorship	undirected	253 339	0.120	0.002	b
	film actor collaborations	undirected	449 913	0.208	0.0002	c
	company directors	undirected	7 673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
technological	email address books	directed	16 881	0.092	0.004	f
	power grid	undirected	4 941	-0.003	0.013	g
	Internet	undirected	10 697	-0.189	0.002	h
	World-Wide Web	directed	269 504	-0.067	0.0002	i
biological	software dependencies	directed	3 162	-0.016	0.020	j
	protein interactions	undirected	2 115	-0.156	0.010	k
	metabolic network	undirected	765	-0.240	0.007	l
	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	o

- Technological and biological networks are disassortative, $\rho(G) < 0$
- Social networks are assortative, $\rho(G) > 0$

Assortative and disassortative graphs

► Newman(2003)

	network	type	size n	assortativity r	error σ_r	ref.
social	physics coauthorship	undirected	52 909	0.363	0.002	a
	biology coauthorship	undirected	1 520 251	0.127	0.0004	a
	mathematics coauthorship	undirected	253 339	0.120	0.002	b
	film actor collaborations	undirected	449 913	0.208	0.0002	c
	company directors	undirected	7 673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
	email address books	directed	16 881	0.092	0.004	f
technological	power grid	undirected	4 941	-0.003	0.013	g
	Internet	undirected	10 697	-0.189	0.002	h
	World-Wide Web	directed	269 504	-0.067	0.0002	i
	software dependencies	directed	3 162	-0.016	0.020	j
biological	protein interactions	undirected	2 115	-0.156	0.010	k
	metabolic network	undirected	765	-0.240	0.007	l
	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	o

- Technological and biological networks are disassortative, $\rho(G) < 0$
- Social networks are assortative, $\rho(G) > 0$
- Note: large networks are never strongly disassortative...
DOROGOVTSEV ET AL. (2010), RASCHKE ET AL. (2010)

$\rho(G)$ via moments of the degrees

$\rho(G)$ via moments of the degrees

- Write

$$\sum_{(i,j) \in E'} \frac{1}{2}(D_i + D_j) = \sum_{i=1}^n D_i^2, \quad \sum_{(i,j) \in E'} \frac{1}{2}(D_i^2 + D_j^2) = \sum_{i=1}^n D_i^3$$

$\rho(G)$ via moments of the degrees

► Write

$$\sum_{(i,j) \in E'} \frac{1}{2}(D_i + D_j) = \sum_{i=1}^n D_i^2, \quad \sum_{(i,j) \in E'} \frac{1}{2}(D_i^2 + D_j^2) = \sum_{i=1}^n D_i^3$$

► Then

$$\rho(G) = \frac{\sum_{(i,j) \in E} D_i D_j - \frac{1}{|E|} \left(\sum_{i=1}^n D_i^2 \right)^2}{\sum_{i=1}^n D_i^3 - \frac{1}{|E|} \left(\sum_{i=1}^n D_i^2 \right)^2}.$$

Scaling of the terms in $\rho(G)$

$$\rho(G) = \frac{\text{crossproducts} - \text{expectation}^2}{\text{variance}} \geq -\frac{\text{expectation}^2}{\text{variance}} = \rho^-(G)$$

Scaling of the terms in $\rho(G)$

$$\rho(G) = \frac{\text{crossproducts} - \text{expectation}^2}{\text{variance}} \geq -\frac{\text{expectation}^2}{\text{variance}} = \rho^-(G)$$

$$\rho^-(G) = -\frac{\frac{1}{|E'|} \left(\sum_{i=1}^n D_i^2 \right)^2}{\sum_{i=1}^n D_i^3 - \frac{1}{|E'|} \left(\sum_{i=1}^n D_i^2 \right)^2}.$$

Scaling of the terms in $\rho(G)$

$$\rho(G) = \frac{\text{crossproducts} - \text{expectation}^2}{\text{variance}} \geq -\frac{\text{expectation}^2}{\text{variance}} = \rho^-(G)$$

$$\rho^-(G) = -\frac{\frac{1}{|E'|} \left(\sum_{i=1}^n D_i^2 \right)^2}{\sum_{i=1}^n D_i^3 - \frac{1}{|E'|} \left(\sum_{i=1}^n D_i^2 \right)^2}.$$

- We have $\sum_{i=1}^n D_i^3 \geq cn^{3/\gamma}$
- But also

$$\frac{1}{|E'|} \left(\sum_{i=1}^n D_i^2 \right)^2 \leq (C^2/c) n^{\max\{4/\gamma-1, 1\}}.$$

- $\rho^-(G) \rightarrow 0$ as $n \rightarrow \infty$ in ANY power law graph with $\gamma \in (1, 3)$

Web and social networks

Dataset	Description	# nodes	max d	$\rho(G_n)$	$\rho(G_n)^{\text{rank}}$	$\rho^-(G_n)$
stanford-cs	web domain	9,914	340	-0.1656	-0.1627	-0.4648
eu-2005	.eu web crawl	862,664	68,963	-0.0562	-0.2525	-0.0670
uk@100,000	.uk web crawl	100,000	55,252	-0.6536	-0.5676	-1.117
uk@1,000,000	.uk web crawl	1,000,000	403,441	-0.0831	-0.5620	-0.0854
enron	e-mailing	69,244	1,634	-0.1599	-0.6827	-0.1932
dblp-2010	co-authorship	326,186	238	0.3018	0.2604	-0.7736
dblp-2011	co-authorship	986,324	979	0.0842	0.1351	-0.2963
hollywood	co-starring	1,139,905	11,468	0.3446	0.4689	-0.6737

All graphs are made undirected

Convergence of $\rho(G)$ to a non-negative value

Theorem (L & vdHofstad 2013)

Let $(G_n)_{n \geq 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma \in (1, 3)$ and $0 < c < C < \infty$ such that

$$cn \leq |E| \leq Cn,$$

$$cn^{1/\gamma} \leq \max_{i=1, \dots, n} D_i \leq Cn^{1/\gamma},$$

$$cn^{(2/\gamma) \vee 1} \leq \sum_{i=1}^n D_i^2 \leq Cn^{(2/\gamma) \vee 1}.$$

Then, any limit point of the Pearson's correlation coefficient $\rho(G_n)$ is non-negative.

Convergence of $\rho(G)$ to a non-negative value

Theorem (L & vdHofstad 2013)

Let $(G_n)_{n \geq 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma \in (1, 3)$ and $0 < c < C < \infty$ such that

$$cn \leq |E| \leq Cn,$$

$$cn^{1/\gamma} \leq \max_{i=1, \dots, n} D_i \leq Cn^{1/\gamma},$$

$$cn^{(2/\gamma) \vee 1} \leq \sum_{i=1}^n D_i^2 \leq Cn^{(2/\gamma) \vee 1}.$$

Then, any limit point of the Pearson's correlation coefficient $\rho(G_n)$ is non-negative.

- Large scale-free graphs are never disassortative!

Convergence of $\rho(G)$ to a non-negative value

Theorem (L & vdHofstad 2013)

Let $(G_n)_{n \geq 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma \in (1, 3)$ and $0 < c < C < \infty$ such that

$$cn \leq |E| \leq Cn,$$

$$cn^{1/\gamma} \leq \max_{i=1, \dots, n} D_i \leq Cn^{1/\gamma},$$

$$cn^{(2/\gamma) \vee 1} \leq \sum_{i=1}^n D_i^2 \leq Cn^{(2/\gamma) \vee 1}.$$

Then, any limit point of the Pearson's correlation coefficient $\rho(G_n)$ is non-negative.

- ▶ Large scale-free graphs are never disassortative!
- ▶ Alternative: **rank correlations**

Degree-degree correlations in directed networks

- ▶ Generalize to directed networks
- ▶ Use rank correlations
- ▶ Null-model: Directed Configuration Model (DCM)
- ▶ Rank correlations on DCM: asymptotics and finite-size effects

Degree-degree correlations in directed networks

Degree-degree correlations in directed networks

Given a directed graph $G = (V, E)$.

Degree-degree correlations in directed networks

Given a directed graph $G = (V, E)$.

Degree-degree correlations in directed networks

Given a directed graph $G = (V, E)$.

Index degree type by $\alpha, \beta \in \{+, -\}$.

Four types of degree-degree correlation

Four types of degree-degree correlation

Out-In

In-Out

Out-Out

In-In

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

Out-degree

⋮

Directed Configuration Model (DCM)

Out-degree

In-degree

v_2

v_2

\vdots

v_n

\vdots

v_n

Directed Configuration Model (DCM)

Out-degree

In-degree

v_2

v_2

\vdots

v_n

v_n

Directed Configuration Model (DCM)

Out-degree

In-degree

v_2

v_2

\vdots

v_n

v_n

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

Remove self-loops and double edges. The result is a simple graph

Rank correlations: Spearman's rho

Rank correlations: Spearman's rho

Given a graph G_n of size n , $\alpha, \beta \in \{+, -\}$

Rank correlations: Spearman's rho

Given a graph G_n of size n , $\alpha, \beta \in \{+, -\}$

We have E joint measurements $\{D_i^\alpha, D_j^\beta\}_{i \rightarrow j}$

Rank correlations: Spearman's rho

Given a graph G_n of size n , $\alpha, \beta \in \{+, -\}$

We have E joint measurements $\{D_i^\alpha, D_j^\beta\}_{i \rightarrow j}$

Compute Pearson's correlation coefficient on $\{D_i^\alpha, D_j^\beta\}_{i \rightarrow j}$

Rank correlations: Spearman's rho

Given a graph G_n of size n , $\alpha, \beta \in \{+, -\}$

Rank the degrees in descending order

We have E joint measurements $\{D_i^\alpha, D_j^\beta\}_{i \rightarrow j} \Rightarrow \{R_i^\alpha, R_j^\beta\}_{i \rightarrow j}$

Compute Pearson's correlation coefficient on $\{R_i^\alpha, R_j^\beta\}_{i \rightarrow j}$

Rank correlations: Spearman's rho

Given a graph G_n of size n , $\alpha, \beta \in \{+, -\}$

Rank the degrees in descending order

We have E joint measurements $\{D_i^\alpha, D_j^\beta\}_{i \rightarrow j} \Rightarrow \{R_i^\alpha, R_j^\beta\}_{i \rightarrow j}$

Compute Pearson's correlation coefficient on $\{R_i^\alpha, R_j^\beta\}_{i \rightarrow j}$

$$\rho_\alpha^\beta(G_n) := r(R^\alpha, R^\beta)$$

Statistical consistency Spearman's rho

Theorem (vdHoorn and L 2014)

Let $\{G_n\}_{n \in \mathbb{N}}$ be a sequence of random graphs, $\alpha, \beta \in \{+, -\}$ and suppose there exist integer valued random variables \mathcal{D}^α and \mathcal{D}^β such that

$$p_\alpha^\beta(k, \ell) \xrightarrow{\mathbb{P}} \mathbb{P}(\mathcal{D}^\alpha = k, \mathcal{D}^\beta = \ell) \quad \text{as } n \rightarrow \infty.$$

Then, as $n \rightarrow \infty$,

$$\rho_\alpha^\beta(G_n) \xrightarrow{\mathbb{P}} \rho(\mathcal{D}^\alpha, \mathcal{D}^\beta)$$

Structural correlations

- ▶ When a graph is simple, this imposes a restriction on how the graph can be wired.

Structural correlations

- ▶ When a graph is simple, this imposes a restriction on how the graph can be wired.
- ▶ **Example:** Degree sequence: 1,1,1,1,4

Structural correlations

- ▶ When a graph is simple, this imposes a restriction on how the graph can be wired.
- ▶ **Example:** Degree sequence: 1,1,1,1,4

Structural correlations

- ▶ When a graph is simple, this imposes a restriction on how the graph can be wired.
- ▶ **Example:** Degree sequence: 1,1,1,1,4

- ▶ There is only one way to make it a simple graph, and it is disassortative

Structural correlations

- ▶ When a graph is simple, this imposes a restriction on how the graph can be wired.
- ▶ **Example:** Degree sequence: 1,1,1,1,4

- ▶ There is only one way to make it a simple graph, and it is disassortative
- ▶ This phenomenon is called 'structural correlations'
- ▶ How large are structural correlations in the erased Directed Configuration Model?

Spearman's rho in the Erased Configuration Model

- ▶ Simple graph: multiple edges and loops are removed
- ▶ Wiring is not entirely neutral

Spearman's rho in the Erased Configuration Model

- ▶ Simple graph: multiple edges and loops are removed
- ▶ Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let $\{G_n\}_{n \in \mathbb{N}}$ be a sequence of graphs of size n , generated by either the Repeated or Erased Configuration Model and $\alpha, \beta \in \{+, -\}$.

Then, as $n \rightarrow \infty$,

$$\rho_{\alpha}^{\beta}(G_n) \xrightarrow{\mathbb{P}} 0.$$

Spearman's rho in the Erased Configuration Model

- ▶ Simple graph: multiple edges and loops are removed
- ▶ Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let $\{G_n\}_{n \in \mathbb{N}}$ be a sequence of graphs of size n , generated by either the Repeated or Erased Configuration Model and $\alpha, \beta \in \{+, -\}$. Then, as $n \rightarrow \infty$,

$$\rho_{\alpha}^{\beta}(G_n) \xrightarrow{\mathbb{P}} 0.$$

- ▶ Number of erased edges of a node converges in distribution to zero. [Chen and Olvera-Cravioto, 2013](#)

Structural correlations in the Erased model

Structural correlations in the Erased model

Figure : Empirical cdf of $\rho_\alpha^\beta(G_n)$ for ECM graphs with $\gamma_\pm = 2.1$

Structural correlations in the Erased model

Figure : Empirical cdf of $\rho_\alpha^\beta(G_n)$ for ECM graphs with $\gamma_\pm = 1.5$

Why is Out-In different?

Why is Out-In different?

⋮

⋮

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

What about In-Out?

What about In-Out?

What about In-Out?

What about In-Out?

What about In-Out?

How large are the structural correlations?

- We want a result of the type:

$$\frac{\rho_+^-(G_n) - \mathbb{E} [\rho_+^-(G_n)]}{n^{f(\gamma_+, \gamma_-)}} \xrightarrow{d} W,$$

where W is composed from stable distributions.

How large are the structural correlations?

- We want a result of the type:

$$\frac{\rho_+^-(G_n) - \mathbb{E} [\rho_+^-(G_n)]}{n^{f(\gamma_+, \gamma_-)}} \xrightarrow{d} W,$$

where W is composed from stable distributions.

- However, none of $f(\gamma_+, \gamma_-)$ scalings works

How large are the structural correlations?

- We want a result of the type:

$$\frac{\rho_+^-(G_n) - \mathbb{E} [\rho_+^-(G_n)]}{n^{f(\gamma_+, \gamma_-)}} \xrightarrow{d} W,$$

where W is composed from stable distributions.

- However, none of $f(\gamma_+, \gamma_-)$ scalings works
- Different $f(\gamma_+, \gamma_-)$ in different areas of (γ_+, γ_-)

Upper bounds

$$\begin{aligned}\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] &\leq \sum_{i,j=1}^n \frac{(D_i^+)^2 (D_j^-)^2}{E^3} + \sum_{i=1}^n \frac{D_i^+ D_i^-}{E^2} \\ &= O\left(n^{\frac{2}{\gamma_+} + \frac{2}{\gamma_-} - 3}\right) + O\left(n^{-1}\right)\end{aligned}$$

Upper bounds

$$\begin{aligned}\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] &\leq \sum_{i,j=1}^n \frac{(D_i^+)^2 (D_j^-)^2}{E^3} + \sum_{i=1}^n \frac{D_i^+ D_i^-}{E^2} \\ &= O\left(n^{\frac{2}{\gamma_+} + \frac{2}{\gamma_-} - 3}\right) + O\left(n^{-1}\right)\end{aligned}$$

Approximation of $n\mu$ by E and CLT for heavy-tailed distributions:

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] \leq O\left(n^{\frac{1}{\gamma_+ \wedge \gamma_-} - 1}\right)$$

Upper bounds

$$\begin{aligned}\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] &\leq \sum_{i,j=1}^n \frac{(D_i^+)^2 (D_j^-)^2}{E^3} + \sum_{i=1}^n \frac{D_i^+ D_i^-}{E^2} \\ &= O\left(n^{\frac{2}{\gamma_+} + \frac{2}{\gamma_-} - 3}\right) + O\left(n^{-1}\right)\end{aligned}$$

Approximation of $n\mu$ by E and CLT for heavy-tailed distributions:

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] \leq O\left(n^{\frac{1}{\gamma_+ \wedge \gamma_-} - 1}\right)$$

CLT for Spearman's ρ

$$\rho_+^-(G_n) = O\left(\rho_+^-(G_n^*)\right) = O\left(n^{-1/2}\right)$$

Phase transition in the scaling of $\rho_+^-(G_n)$

Phase transition in the scaling of $\rho_+^-(G_n)$

Phase transition in the scaling of $\rho_+^-(G_n)$

$$\frac{\rho_+^-(G_n) - \mathbb{E} [\rho_+^-(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

Phase transition in the scaling of $\rho_+^-(G_n)$

$$\frac{\rho_+^-(G_n) - \mathbb{E} [\rho_+^-(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

(a) $n^{-1+1/(\gamma_+ \wedge \gamma_-)}$

(b) $n^{(2/\gamma_+) + (2/\gamma_-) - 3}$

(c) $n^{-1/2}$

Phase transition in the scaling of $\rho_+^-(G_n)$

$$\frac{\rho_+^-(G_n) - \mathbb{E} [\rho_+^-(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

(a) $n^{-1+1/(\gamma_+ \wedge \gamma_-)}$

(b) $n^{(2/\gamma_+)+(2/\gamma_-)-3}$

(c) $n^{-1/2}$

Phase transition in the scaling of $\rho_+^-(G_n)$

$$\frac{\rho_+^-(G_n) - \mathbb{E} [\rho_+^-(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

(a) $n^{-1+1/(\gamma_+ \wedge \gamma_-)}$

(b) $n^{(2/\gamma_+) + (2/\gamma_-) - 3}$

(c) $n^{-1/2}$

Scaling of $\rho_-^+(G_n)$ for In-Out

Scaling of $\rho_{-}^{+}(G_n)$ for In-Out

$$\frac{\rho_{-}^{+}(G_n) - \mathbb{E} [\rho_{-}^{+}(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

Scaling of $\rho_{-}^{+}(G_n)$ for In-Out

$$\frac{\rho_{-}^{+}(G_n) - \mathbb{E} [\rho_{-}^{+}(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

Scaling of $\rho_{\pm}^+(G_n)$ for In-Out

$$\frac{\rho_+^+(G_n) - \mathbb{E} [\rho_+^+(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

(a) $n^{-1+1/(\gamma_+ \wedge \gamma_-)}$

(b) $n^{(2/\gamma_+)+(2/\gamma_-)-3}$

(c) $n^{-1/2}$

Scaling of $\rho_{-}^{+}(G_n)$ for In-Out

$$\frac{\rho_{-}^{+}(G_n) - \mathbb{E} [\rho_{-}^{+}(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

(a) $n^{-1+1/(\gamma_+ \wedge \gamma_-)}$

(b) $n^{(2/\gamma_+) + (2/\gamma_-) - 3}$

(c) $n^{-1/2}$

Scaling of $\rho_{-}^{+}(G_n)$ for In-Out

$$\frac{\rho_{-}^{+}(G_n) - \mathbb{E} [\rho_{-}^{+}(G_n)]}{n^{f(\gamma_+, \gamma_-)}}$$

(a) $n^{-1+1/(\gamma_+ \wedge \gamma_-)}$

(b) $n^{(2/\gamma_+) + (2/\gamma_-) - 3}$

(c) $n^{-1/2}$

A better upper bound

A better upper bound

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] \leq 1 - \frac{n^2}{E} + \frac{1}{E} \sum_{i,j=1}^n \exp \left\{ -\frac{D_i^+ D_j^-}{E} \right\}$$

A better upper bound

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] \leq \frac{n^2}{E} \left(\frac{1}{n^2} \sum_{i,j=1}^n \frac{D_i^+ D_j^-}{E} - 1 + \frac{1}{n^2} \sum_{i,j=1}^n \exp \left\{ -\frac{D_i^+ D_j^-}{E} \right\} \right)$$

A better upper bound

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] \leq \frac{n^2}{E} \left(\frac{1}{n^2} \sum_{i,j=1}^n \frac{D_i^+ D_j^-}{E} - 1 + \frac{1}{n^2} \sum_{i,j=1}^n \exp \left\{ - \frac{D_i^+ D_j^-}{E} \right\} \right)$$

Looks like an empirical form of

$$\frac{1}{n\mu} \mathbb{E}(\xi) - 1 + \mathbb{E} \left(e^{-\xi/(n\mu)} \right)$$

where $P_\xi(k) \sim k^{-(\gamma_{\min}+1)}$, $\gamma_{\min} = \min\{\gamma_+, \gamma_-\}$.

A better upper bound

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] \leq \frac{n^2}{E} \left(\frac{1}{n^2} \sum_{i,j=1}^n \frac{D_i^+ D_j^-}{E} - 1 + \frac{1}{n^2} \sum_{i,j=1}^n \exp \left\{ - \frac{D_i^+ D_j^-}{E} \right\} \right)$$

Looks like an empirical form of

$$\frac{1}{n\mu} \mathbb{E}(\xi) - 1 + \mathbb{E} \left(e^{-\xi/(n\mu)} \right) = O(n^{-\gamma_{\min}})$$

where $P_\xi(k) \sim k^{-(\gamma_{\min}+1)}$, $\gamma_{\min} = \min\{\gamma_+, \gamma_-\}$.

Tauberian Theorem Bingham and Doney 1974

A better upper bound

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] \leq \frac{n^2}{E} \left(\frac{1}{n^2} \sum_{i,j=1}^n \frac{D_i^+ D_j^-}{E} - 1 + \frac{1}{n^2} \sum_{i,j=1}^n \exp \left\{ - \frac{D_i^+ D_j^-}{E} \right\} \right)$$

Looks like an empirical form of

$$\frac{1}{n\mu} \mathbb{E}(\xi) - 1 + \mathbb{E} \left(e^{-\xi/(n\mu)} \right) = O(n^{-\gamma_{\min}})$$

where $P_\xi(k) \sim k^{-(\gamma_{\min}+1)}$, $\gamma_{\min} = \min\{\gamma_+, \gamma_-\}$.

Tauberian Theorem [Bingham and Doney 1974](#)

Theorem (vdHoorn, vdHofstad, Stegehuis, L 2016)

$$\frac{1}{E} \sum_{i,j=1}^n \mathbb{E}_n [E_{ij}^c] = O(n^{-\gamma_{\min}}).$$

Structural correlations versus erased edges

- ▶ We proved a new scaling for the average number of erased edges

Structural correlations versus erased edges

- ▶ We proved a new scaling for the average number of erased edges
- ▶ This scaling however does not explain the behavior of structural correlations.

Structural correlations versus erased edges

- ▶ We proved a new scaling for the average number of erased edges
- ▶ This scaling however does not explain the behavior of structural correlations.
- ▶ For the structural correlations we found the right scaling.

Structural correlations versus erased edges

- ▶ We proved a new scaling for the average number of erased edges
- ▶ This scaling however does not explain the behavior of structural correlations.
- ▶ For the structural correlations we found the right scaling.
- ▶ How much erased edges affect the neutral mixing in a graph?
- ▶ Work in progress.

Thank you!