UNIVERSITY OF TWENTE.

Structural degree-degree

 dependencies in large networksNelly Litvak

University of Twente, The Netherlands
Joint work with
Pim van der Hoorn, Remco van der Hofstad,
Clara Stegehuis
Ribno, 22-09-2016

Heavy-tailed degree distributions

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$
p(k) \approx k^{-\gamma-1}
$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$
\begin{aligned}
& \quad p(k) \approx k^{-\gamma-1} \\
& 1<\gamma \leqslant 3
\end{aligned}
$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$
p(k) \approx k^{-\gamma-1}
$$

$$
1<\gamma \leqslant 2
$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$
\begin{array}{r}
p(k) \approx k^{-\gamma-1} \\
1<\gamma \leqslant 2 \Rightarrow \mathbb{E}[D]<\infty
\end{array}
$$

Heavy-tailed degree distributions

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$
\begin{gathered}
p(k) \approx k^{-\gamma-1} \\
1<\gamma \leqslant 2 \Rightarrow \mathbb{E}[D]<\infty \quad \mathbb{E}\left[D^{2}\right]=\infty
\end{gathered}
$$

Assortativity coefficient

- $G=(V, E)$ undirected graph of n nodes, E^{\prime} - directed edges
- D_{i} degree of node $i=1,2, \ldots, n$

Assortativity coefficient

- $G=(V, E)$ undirected graph of n nodes, E^{\prime} - directed edges
- D_{i} degree of node $i=1,2, \ldots, n$
- Newman (2002): assortativity measure $\rho(G)$

$$
\rho(G)=\frac{\frac{1}{\left|E^{\prime}\right|} \sum_{(i, j) \in E^{\prime}} D_{i} D_{j}-\left(\frac{1}{\left|E^{\prime}\right|} \sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(D_{i}+D_{j}\right)\right)^{2}}{\frac{1}{\left|E^{\prime}\right|} \sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(D_{i}^{2}+D_{j}^{2}\right)-\left(\frac{1}{\left|E^{\prime}\right|} \sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(D_{i}+D_{j}\right)\right)^{2}}
$$

- Statistical estimation of the Pearson's correlation coefficient between degrees on two ends of a random edge

Motivation

Motivation

- Information flow neural networks.
- Stability of P2P networks under attack.
- Epidemics on networks.
- Network Observability.
- Opinion dynamics based on social influence.
- Collaboration in social networks.

Motivation

- Information flow neural networks.
- Stability of P2P networks under attack.
- Epidemics on networks.
- Network Observability.
- Opinion dynamics based on social influence.
- Collaboration in social networks.

Assortative and disassortative graphs

- Newman(2003)

	network	type	size n	assortativity r	error σ_{r}	ref
	physics coauthorship	undirected	52909	0.363	0.002	a
	biology coauthorship	undirected	1520251	0.127	0.0004	a
	mathematics coauthorship	undirected	253339	0.120	0.002	b
social	film actor collaborations	undirected	449913	0.208	0.0002	c
	company directors	undirected	7673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
	email address books	directed	16881	0.092	0.004	f
	power grid	undirected	4941	-0.003	0.013	g
	Internet	undirected	10697	-0.189	0.002	h
technological	World-Wide Web	directed	269504	-0.067	0.0002	i
	software dependencies	directed	3162	-0.016	0.020	j
	protein interactions	undirected	2115	-0.156	0.010	k
	metabolic network	undirected	765	-0.240	0.007	1
biological $\{$	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	o

Assortative and disassortative graphs

- Newman(2003)

	network	type	size n	assortativity r	error σ_{r}	ref
	physics coauthorship	undirected	52909	0.363	0.002	a
	biology coauthorship	undirected	1520251	0.127	0.0004	a
	mathematics coauthorship	undirected	253339	0.120	0.002	b
social	film actor collaborations	undirected	449913	0.208	0.0002	c
	company directors	undirected	7673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
	email address books	directed	16881	0.092	0.004	f
	power grid	undirected	4941	-0.003	0.013	g
	Internet	undirected	10697	-0.189	0.002	h
	World-Wide Web	directed	269504	-0.067	0.0002	i
	software dependencies	directed	3162	-0.016	0.020	j
	protein interactions	undirected	2115	-0.156	0.010	k
	metabolic network	undirected	765	-0.240	0.007	1
biological $\{$	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	o

- Technological and biological networks are disassortative, $\rho(G)<0$
- Social networks are assortative, $\rho(G)>0$

Assortative and disassortative graphs

- Newman(2003)

	network	type	size n	assortativity r	error σ_{r}	ref
	physics coauthorship	undirected	52909	0.363	0.002	a
	biology coauthorship	undirected	1520251	0.127	0.0004	a
	mathematics coauthorship	undirected	253339	0.120	0.002	b
social	film actor collaborations	undirected	449913	0.208	0.0002	c
	company directors	undirected	7673	0.276	0.004	d
	student relationships	undirected	573	-0.029	0.037	e
	email address books	directed	16881	0.092	0.004	f
	power grid	undirected	4941	-0.003	0.013	g
	Internet	undirected	10697	-0.189	0.002	h
	World-Wide Web	directed	269504	-0.067	0.0002	i
	software dependencies	directed	3162	-0.016	0.020	j
	protein interactions	undirected	2115	-0.156	0.010	k
	metabolic network	undirected	765	-0.240	0.007	1
biological $\{$	neural network	directed	307	-0.226	0.016	m
	marine food web	directed	134	-0.263	0.037	n
	freshwater food web	directed	92	-0.326	0.031	o

- Technological and biological networks are disassortative, $\rho(G)<0$
- Social networks are assortative, $\rho(G)>0$
- Note: large networks are never strongly disassortative... Dorogovtsev et al. (2010), Raschke et al. (2010)
$\rho(G)$ via moments of the degrees

$\rho(G)$ via moments of the degrees

- Write

$$
\sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(D_{i}+D_{j}\right)=\sum_{i=1}^{n} D_{i}^{2}, \quad \sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(D_{i}^{2}+D_{j}^{2}\right)=\sum_{i=1}^{n} D_{i}^{3}
$$

$\rho(G)$ via moments of the degrees

- Write

$$
\sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(D_{i}+D_{j}\right)=\sum_{i=1}^{n} D_{i}^{2}, \quad \sum_{(i, j) \in E^{\prime}} \frac{1}{2}\left(D_{i}^{2}+D_{j}^{2}\right)=\sum_{i=1}^{n} D_{i}^{3}
$$

- Then

$$
\rho(G)=\frac{\sum_{(i, j) \in E} D_{i} D_{j}-\frac{1}{|E|}\left(\sum_{i=1}^{n} D_{i}^{2}\right)^{2}}{\sum_{i=1}^{n} D_{i}^{3}-\frac{1}{|E|}\left(\sum_{i=1}^{n} D_{i}^{2}\right)^{2}} .
$$

Scaling of the terms in $\rho(G)$

$$
\rho(G)=\frac{\text { crossproducts }- \text { expectation }^{2}}{\text { variance }} \geqslant-\frac{\text { expectation }^{2}}{\text { variance }}=\rho^{-}(G)
$$

Scaling of the terms in $\rho(G)$

$$
\begin{gathered}
\rho(G)=\frac{\text { crossproducts }- \text { expectation }}{}{ }^{2} \geqslant-\frac{\text { expectation }^{2}}{\text { variance }}=\rho^{-}(G) \\
\rho^{-}(G)=-\frac{\frac{1}{\left|E^{\top}\right|}\left(\sum_{i=1}^{n} D_{i}^{2}\right)^{2}}{\sum_{i=1}^{n} D_{i}^{3}-\frac{1}{\left|E^{\top}\right|}\left(\sum_{i=1}^{n} D_{i}^{2}\right)^{2}} .
\end{gathered}
$$

Scaling of the terms in $\rho(G)$

$$
\begin{gathered}
\rho(G)=\frac{\text { crossproducts }- \text { expectation }}{}{ }^{2} \geqslant-\frac{\text { expectation }^{2}}{\text { variance }}=\rho^{-}(G) \\
\rho^{-}(G)=-\frac{\frac{1}{\left|E^{\top}\right|}\left(\sum_{i=1}^{n} D_{i}^{2}\right)^{2}}{\sum_{i=1}^{n} D_{i}^{3}-\frac{1}{\left|E^{\top}\right|}\left(\sum_{i=1}^{n} D_{i}^{2}\right)^{2}} .
\end{gathered}
$$

- We have $\sum_{i=1}^{n} D_{i}^{3} \geqslant c n^{3 / \gamma}$
- But also

$$
\frac{1}{\left|E^{\prime}\right|}\left(\sum_{i=1}^{n} D_{i}^{2}\right)^{2} \leqslant\left(C^{2} / C\right) n^{\max \{4 / \gamma-1,1\}} .
$$

- $\rho^{-}(G) \rightarrow 0$ as $n \rightarrow \infty$ in ANY power law graph with $\gamma \in(1,3)$

Web and social networks

Dataset	Description	\# nodes	maxd	$\rho\left(G_{n}\right)$	$\rho\left(G_{n}\right)^{\text {rank }}$	$\rho^{-}\left(G_{n}\right)$
stanford-cs	web domain	9,914	340	-0.1656	-0.1627	-0.4648
eu-2005	.eu web crawl	862,664	68,963	-0.0562	-0.2525	-0.0670
uk@100,000	.uk web crawl	100,000	55,252	-0.6536	-0.5676	-1.117
uk@1,000,000	.uk web crawl	$1,000,000$	403,441	-0.0831	-0.5620	-0.0854
enron	e-mailing	69,244	1,634	-0.1599	-0.6827	-0.1932
dblp-2010	co-authorship	326,186	238	0.3018	0.2604	-0.7736
dblp-2011	co-authorship	986,324	979	0.0842	0.1351	-0.2963
hollywood	co-starring	$1,139,905$	11,468	0.3446	0.4689	-0.6737

All graphs are made undirected

Convergence of $\rho(G)$ to a non-negative value

Theorem (L \& vdHofstad 2013)

Let $\left(G_{n}\right)_{n \geqslant 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma \in(1,3)$ and $0<c<C<\infty$ such that

$$
\begin{aligned}
& c n \leqslant|E| \leqslant C n, \\
& c n^{1 / \gamma} \leqslant \max _{i=1, \ldots, n} D_{i} \leqslant C n^{1 / \gamma}, \\
& c n^{(2 / \gamma) \vee 1} \leqslant \sum_{i=1}^{n} D_{i}^{2} \leqslant C n^{(2 / \gamma) \vee 1} .
\end{aligned}
$$

Then, any limit point of the Pearson's correlation coefficient $\rho\left(G_{n}\right)$ is non-negative.

Convergence of $\rho(G)$ to a non-negative value

Theorem (L \& vdHofstad 2013)

Let $\left(G_{n}\right)_{n \geqslant 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma \in(1,3)$ and $0<c<C<\infty$ such that

$$
\begin{aligned}
& c n \leqslant|E| \leqslant C n, \\
& c n^{1 / \gamma} \leqslant \max _{i=1, \ldots, n} D_{i} \leqslant C n^{1 / \gamma}, \\
& c n^{(2 / \gamma) \vee 1} \leqslant \sum_{i=1}^{n} D_{i}^{2} \leqslant C n^{(2 / \gamma) \vee 1} .
\end{aligned}
$$

Then, any limit point of the Pearson's correlation coefficient $\rho\left(G_{n}\right)$ is non-negative.

- Large scale-free graphs are never disassortative!

Convergence of $\rho(G)$ to a non-negative value

Theorem (L \& vdHofstad 2013)

Let $\left(G_{n}\right)_{n \geqslant 1}$ be a sequence of graphs of size n satisfying that there exist $\gamma \in(1,3)$ and $0<c<C<\infty$ such that

$$
\begin{aligned}
& c n \leqslant|E| \leqslant C n, \\
& c n^{1 / \gamma} \leqslant \max _{i=1, \ldots, n} D_{i} \leqslant C n^{1 / \gamma}, \\
& c n^{(2 / \gamma) \vee 1} \leqslant \sum_{i=1}^{n} D_{i}^{2} \leqslant C n^{(2 / \gamma) \vee 1} .
\end{aligned}
$$

Then, any limit point of the Pearson's correlation coefficient $\rho\left(G_{n}\right)$ is non-negative.

- Large scale-free graphs are never disassortative!
- Alternative: rank correlations

Degree-degree correlations in directed networks

- Generalize to directed networks
- Use rank correlations
- Null-model: Directed Configuration Model (DCM)
- Rank correlations on DCM: asymptotics and finite-size effects

Degree-degree correlations in directed networks

Degree-degree correlations in directed networks

Given a directed graph $G=(V, E)$.

Degree-degree correlations in directed networks

Given a directed graph $G=(V, E)$.

Degree-degree correlations in directed networks

Given a directed graph $G=(V, E)$.

Index degree type by $\alpha, \beta \in\{+,-\}$.

Four types of degree-degree correlation

Four types of degree-degree correlation

Out-Out

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

Directed Configuration Model (DCM)

Out - degree v_{1}

Directed Configuration Model (DCM)

UNIVERSITY OF TWENTE.

Directed Configuration Model (DCM)

Out - degree v_{1}

V_{n}

In-degree
v_{1}
v_{n}

Remove self-loops and double edges. The result is a simple graph

UNIVERSITY OF TWENTE.

Rank correlations: Spearman's rho

Rank correlations: Spearman's rho

Given a graph G_{n} of size $n, \alpha, \beta \in\{+,-\}$

Rank correlations: Spearman's rho

Given a graph G_{n} of size $n, \alpha, \beta \in\{+,-\}$

We have E joint measurements $\left\{D_{i}^{\alpha}, D_{j}^{\beta}\right\}_{i \rightarrow j}$

Rank correlations: Spearman's rho

Given a graph G_{n} of size $n, \alpha, \beta \in\{+,-\}$

We have E joint measurements $\left\{D_{i}^{\alpha}, D_{j}^{\beta}\right\}_{i \rightarrow j}$
Compute Pearsons correlation coefficient on $\left\{D_{i}^{\alpha}, D_{j}^{\beta}\right\}_{i \rightarrow j}$

Rank correlations: Spearman's rho

Given a graph G_{n} of size $n, \alpha, \beta \in\{+,-\}$
Rank the degrees in descending order
We have E joint measurements $\left\{D_{i}^{\alpha}, D_{j}^{\beta}\right\}_{i \rightarrow j} \Rightarrow\left\{R_{i}^{\alpha}, R_{j}^{\beta}\right\}_{i \rightarrow j}$
Compute Pearsons correlation coefficient on $\left\{R_{i}^{\alpha}, R_{j}^{\beta}\right\}_{i \rightarrow j}$

Rank correlations: Spearman's rho

Given a graph G_{n} of size $n, \alpha, \beta \in\{+,-\}$
Rank the degrees in descending order
We have E joint measurements $\left\{D_{i}^{\alpha}, D_{j}^{\beta}\right\}_{i \rightarrow j} \Rightarrow\left\{R_{i}^{\alpha}, R_{j}^{\beta}\right\}_{i \rightarrow j}$
Compute Pearsons correlation coefficient on $\left\{R_{i}^{\alpha}, R_{j}^{\beta}\right\}_{i \rightarrow j}$

$$
\rho_{\alpha}^{\beta}\left(G_{n}\right):=r\left(R^{\alpha}, R^{\beta}\right)
$$

Statistical consistency Spearman's rho

Theorem (vdHoorn and L 2014)

Let $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random graphs, $\alpha, \beta \in\{+,-\}$ and suppose there exist integer valued random variables \mathcal{D}^{α} and \mathcal{D}^{β} such that

$$
p_{\alpha}^{\beta}(k, \ell) \xrightarrow{\mathbb{P}} \mathbb{P}\left(\mathcal{D}^{\alpha}=k, \mathcal{D}^{\beta}=\ell\right) \quad \text { as } n \rightarrow \infty .
$$

Then, as $n \rightarrow \infty$,

$$
\rho_{\alpha}^{\beta}\left(G_{n}\right) \xrightarrow{\mathbb{P}} \rho\left(\mathcal{D}^{\alpha}, \mathcal{D}^{\beta}\right)
$$

Structural correlations

- When a graph is simple, this imposes a restriction on how the graph can be wired.

Structural correlations

- When a graph is simple, this imposes a restriction on how the graph can be wired.
- Example: Degree sequence: 1,1,1,1,4

Structural correlations

- When a graph is simple, this imposes a restriction on how the graph can be wired.
- Example: Degree sequence: 1,1,1,1,4

Structural correlations

- When a graph is simple, this imposes a restriction on how the graph can be wired.
- Example: Degree sequence: 1,1,1,1,4

- There is only one way to make it a simple graph, and it is disassortative

Structural correlations

- When a graph is simple, this imposes a restriction on how the graph can be wired.
- Example: Degree sequence: 1,1,1,1,4

- There is only one way to make it a simple graph, and it is disassortative
- This phenomenon is called 'structural correlations'
- How large are structural correlations in the erased Directed Configuration Model?

Spearman's rho in the Erased Configuration Model

- Simple graph: multiple edges and loops are removed
- Wiring is not entirely neutral

Spearman's rho in the Erased Configuration Model

- Simple graph: multiple edges and loops are removed
- Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of graphs of size n, generated by either the Repeated or Erased Configuration Model and $\alpha, \beta \in\{+,-\}$. Then, as $n \rightarrow \infty$,

$$
\rho_{\alpha}^{\beta}\left(G_{n}\right) \xrightarrow{\mathbb{P}} 0 .
$$

Spearman's rho in the Erased Configuration Model

- Simple graph: multiple edges and loops are removed
- Wiring is not entirely neutral

Theorem (vdHoorn and L 2014)

Let $\left\{G_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of graphs of size n, generated by either the Repeated or Erased Configuration Model and $\alpha, \beta \in\{+,-\}$.
Then, as $n \rightarrow \infty$,

$$
\rho_{\alpha}^{\beta}\left(G_{n}\right) \xrightarrow{\mathbb{P}} 0 .
$$

- Number of erased edges of a node converges in distribution to zero. Chen and Olvera-Cravioto, 2013

Structural correlations in the Erased model

Structural correlations in the Erased model

Figure: Empirical cdf of $\rho_{\alpha}^{\beta}\left(G_{n}\right)$ for ECM graphs with $\gamma_{ \pm}=2.1$ UNIVERSITY OF TWENTE.

Structural correlations in the Erased model

Figure: Empirical cdf of $\rho_{\alpha}^{\beta}\left(G_{n}\right)$ for ECM graphs with $\gamma_{ \pm}=1.5$

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

Why is Out-In different?

What about In-Out?

What about In-Out?

What about In-Out?

What about In-Out?

What about In-Out?

How large are the structural correlations?

- We want a result of the type:

$$
\frac{\rho_{+}^{-}\left(G_{n}\right)-\mathbb{E}\left[\rho_{+}^{-}\left(G_{n}\right)\right]}{n^{f(\gamma+, \gamma-)}} \xrightarrow{d} W,
$$

where W is composed from stable distributions.

How large are the structural correlations?

- We want a result of the type:

$$
\frac{\rho_{+}^{-}\left(G_{n}\right)-\mathbb{E}\left[\rho_{+}^{-}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma-\right)}} \xrightarrow{d} W,
$$

where W is composed from stable distributions.

- However, none of $f\left(\gamma_{+}, \gamma_{-}\right)$scalings works

How large are the structural correlations?

- We want a result of the type:

$$
\frac{\rho_{+}^{-}\left(G_{n}\right)-\mathbb{E}\left[\rho_{+}^{-}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}} \xrightarrow{d} W,
$$

where W is composed from stable distributions.

- However, none of $f\left(\gamma_{+}, \gamma_{-}\right)$scalings works
- Different $f\left(\gamma_{+}, \gamma_{-}\right)$in different areas of $\left(\gamma_{+}, \gamma_{-}\right)$

Upper bounds

$$
\begin{aligned}
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] & \leqslant \sum_{i, j=1}^{n} \frac{\left(D_{i}^{+}\right)^{2}\left(D_{j}^{-}\right)^{2}}{E^{3}}+\sum_{i=1}^{n} \frac{D_{i}^{+} D_{i}^{-}}{E^{2}} \\
& =O\left(n^{\frac{2}{+}+\frac{2}{\gamma--}}\right)+O\left(n^{-1}\right)
\end{aligned}
$$

Upper bounds

$$
\begin{aligned}
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] & \leqslant \sum_{i, j=1}^{n} \frac{\left(D_{i}^{+}\right)^{2}\left(D_{j}^{-}\right)^{2}}{E^{3}}+\sum_{i=1}^{n} \frac{D_{i}^{+} D_{i}^{-}}{E^{2}} \\
& =O\left(n^{\frac{2}{\gamma+}+\frac{2}{\gamma-}-3}\right)+O\left(n^{-1}\right)
\end{aligned}
$$

Approximation of $n \mu$ by E and CLT for heavy-tailed distributions:

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] \leqslant O\left(n^{\frac{1}{\gamma+\wedge \gamma_{-}}-1}\right)
$$

Upper bounds

$$
\begin{aligned}
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] & \leqslant \sum_{i, j=1}^{n} \frac{\left(D_{i}^{+}\right)^{2}\left(D_{j}^{-}\right)^{2}}{E^{3}}+\sum_{i=1}^{n} \frac{D_{i}^{+} D_{i}^{-}}{E^{2}} \\
& =O\left(n^{\frac{2}{\gamma+}+\frac{2}{\gamma-}-3}\right)+O\left(n^{-1}\right)
\end{aligned}
$$

Approximation of $n \mu$ by E and CLT for heavy-tailed distributions:

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] \leqslant O\left(n^{\frac{1}{\gamma+\wedge \gamma-}-1}\right)
$$

CLT for Spearman's ρ

$$
\rho_{+}^{-}\left(G_{n}\right)=O\left(\rho_{+}^{-}\left(G_{n}^{*}\right)\right)=O\left(n^{-1 / 2}\right)
$$

Phase transition in the scaling of $\rho_{+}^{-}\left(G_{n}\right)$

Phase transition in the scaling of $\rho_{+}^{-}\left(G_{n}\right)$

Phase transition in the scaling of $\rho_{+}^{-}\left(G_{n}\right)$

$$
\frac{\rho_{+}^{-}\left(G_{n}\right)-\mathbb{E}\left[\rho_{+}^{-}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

Phase transition in the scaling of $\rho_{+}^{-}\left(G_{n}\right)$

$$
\frac{\rho_{+}^{-}\left(G_{n}\right)-\mathbb{E}\left[\rho_{+}^{-}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

(a) $n^{-1+1 /\left(\gamma_{+} \wedge \gamma_{-}\right)}$

(b) $n^{\left(2 / \gamma_{+}\right)+\left(2 / \gamma_{-}\right)-3}$
[Nelly Litvak, 22-08-2016] 23/27

Phase transition in the scaling of $\rho_{+}^{-}\left(G_{n}\right)$

$$
\frac{\rho_{+}^{-}\left(G_{n}\right)-\mathbb{E}\left[\rho_{+}^{-}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

(a) $n^{-1+1 /\left(\gamma_{+} \wedge \gamma_{-}\right)}$

(b) $n^{\left(2 / \gamma_{+}\right)+\left(2 / \gamma_{-}\right)-3}$

(c) $n^{-1 / 2}$

Phase transition in the scaling of $\rho_{+}^{-}\left(G_{n}\right)$

$$
\frac{\rho_{+}^{-}\left(G_{n}\right)-\mathbb{E}\left[\rho_{+}^{-}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

(a) $n^{-1+1 /\left(\gamma_{+} \wedge \gamma_{-}\right)}$

(b) $n^{\left(2 / \gamma_{+}\right)+\left(2 / \gamma_{-}\right)-3}$

Scaling of $\rho_{-}^{+}\left(G_{n}\right)$ for In-Out

Scaling of $\rho_{-}^{+}\left(G_{n}\right)$ for In-Out

$$
\frac{\rho_{-}^{+}\left(G_{n}\right)-\mathbb{E}\left[\rho_{-}^{+}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

Scaling of $\rho_{-}^{+}\left(G_{n}\right)$ for In-Out

Scaling of $\rho_{-}^{+}\left(G_{n}\right)$ for In-Out

$$
\frac{\rho_{-}^{+}\left(G_{n}\right)-\mathbb{E}\left[\rho_{-}^{+}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

(a) $n^{-1+1 /(\gamma+\wedge \gamma-)}$

(b) $n^{\left(2 / \gamma_{+}\right)+\left(2 / \gamma_{-}\right)-3}$
[Nelly Litvak, 22-08-2016] 24/27

Scaling of $\rho_{-}^{+}\left(G_{n}\right)$ for In-Out

$$
\frac{\rho_{-}^{+}\left(G_{n}\right)-\mathbb{E}\left[\rho_{-}^{+}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

(a) $n^{-1+1 /\left(\gamma_{+} \wedge \gamma_{-}\right)}$

(b) $n^{\left(2 / \gamma_{+}\right)+\left(2 / \gamma_{-}\right)-3}$
[Nelly Litvak, 22-08-2016] 24/27

Scaling of $\rho_{-}^{+}\left(G_{n}\right)$ for In-Out

$$
\frac{\rho_{-}^{+}\left(G_{n}\right)-\mathbb{E}\left[\rho_{-}^{+}\left(G_{n}\right)\right]}{n^{f\left(\gamma_{+}, \gamma_{-}\right)}}
$$

(a) $n^{-1+1 /(\gamma+\wedge \gamma-)}$

(b) $n^{\left(2 / \gamma_{+}\right)+\left(2 / \gamma_{-}\right)-3}$
[Nelly Litvak, 22-08-2016]
24/27

A better upper bound

A better upper bound

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] \leqslant 1-\frac{n^{2}}{E}+\frac{1}{E} \sum_{i, j=1}^{n} \exp \left\{-\frac{D_{i}^{+} D_{j}^{-}}{E}\right\}
$$

A better upper bound

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E}-1+\frac{1}{n^{2}} \sum_{i, j=1}^{n} \exp \left\{-\frac{D_{i}^{+} D_{j}^{-}}{E}\right\}\right)
$$

A better upper bound

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E}-1+\frac{1}{n^{2}} \sum_{i, j=1}^{n} \exp \left\{-\frac{D_{i}^{+} D_{j}^{-}}{E}\right\}\right)
$$

Looks like an empirical form of

$$
\frac{1}{n \mu} \mathbb{E}(\xi)-1+\mathbb{E}\left(e^{-\xi /(n \mu)}\right)
$$

where $P_{\xi}(k) \sim k^{-\left(\gamma_{\text {min }}+1\right)}, \gamma_{\text {min }}=\min \left\{\gamma_{+}, \gamma_{-}\right\}$.

A better upper bound

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E}-1+\frac{1}{n^{2}} \sum_{i, j=1}^{n} \exp \left\{-\frac{D_{i}^{+} D_{j}^{-}}{E}\right\}\right)
$$

Looks like an empirical form of

$$
\frac{1}{n \mu} \mathbb{E}(\xi)-1+\mathbb{E}\left(e^{-\xi /(n \mu)}\right)=O\left(n^{-\gamma_{\min }}\right)
$$

where $P_{\xi}(k) \sim k^{-\left(\gamma_{\min }+1\right)}, \gamma_{\text {min }}=\min \left\{\gamma_{+}, \gamma_{-}\right\}$.
Tauberian Theorem Bingham and Doney 1974

A better upper bound

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{D_{i}^{+} D_{j}^{-}}{E}-1+\frac{1}{n^{2}} \sum_{i, j=1}^{n} \exp \left\{-\frac{D_{i}^{+} D_{j}^{-}}{E}\right\}\right)
$$

Looks like an empirical form of

$$
\frac{1}{n \mu} \mathbb{E}(\xi)-1+\mathbb{E}\left(e^{-\xi /(n \mu)}\right)=O\left(n^{-\gamma_{\text {min }}}\right)
$$

where $P_{\xi}(k) \sim k^{-\left(\gamma_{\min }+1\right)}, \gamma_{\text {min }}=\min \left\{\gamma_{+}, \gamma_{-}\right\}$.
Tauberian Theorem Bingham and Doney 1974
Theorem (vdHoorn, vdHofstad, Stegehuis, L 2016)

$$
\frac{1}{E} \sum_{i, j=1}^{n} \mathbb{E}_{n}\left[E_{i j}^{c}\right]=O\left(n^{-\gamma_{\mathrm{min}}}\right)
$$

Structural correlations versus erased edges

- We proved a new scaling for the average number of erased edges

Structural correlations versus erased edges

- We proved a new scaling for the average number of erased edges
- This scaling however does not explain the behavior of structural correlations.

Structural correlations versus erased edges

- We proved a new scaling for the average number of erased edges
- This scaling however does not explain the behavior of structural correlations.
- For the structural correlations we found the right scaling.

Structural correlations versus erased edges

- We proved a new scaling for the average number of erased edges
- This scaling however does not explain the behavior of structural correlations.
- For the structural correlations we found the right scaling.
- How much erased edges affect the neutral mixing in a graph?
- Work in progress.

Thank you!

