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Göran Kauermann

22. September 2016

Outline

• Statistical Models for (Social) Network Data
•

p0, p1, p2 and and p*
• Graphons and Networks
• ERGM, bERGM, tERGM, gERGM
• Research questions

Ribno, 22.09.16 2

”Social” Network Analysis

Common statistical models trace from sociology:
• There is a set of actors A

• The actors interact, that is they build links or destroy links
• The links (edges) are of interest

”Social” networks are classical friendship networks but also
• business networks
• ecological networks
• economic networks
• etc.
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Definition of Network

• Nodes: A network consists of a set of nodes (actors)
A = {1, . . . , N}

• Edges: A network can be described with the adjacency
matrix

Y 2 RN⇥N ,

with

Y

ij

=

(
1 if there is an edge/link from node i to node j

0 otherwise

• Direction: For simplicity we first assume an undirected
network, which implies Y

ij

= Y

ji

.
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”Classical” Network Models: The p0 Model

• Erdös-Renyi Model (1959)

P(Y
ij

= 1) = ⇡

• Independence of edges (and nodes)
• Parameter ⇡ gives the average density
• Very simplistic model, may serve as intercept or null model
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”Classical” Network Models: The p1 Model

•
p1 Model (Holland and Leinhardt, 1981)

logit
�
P(Y

ij

= 1)
�

= log
✓ P(Y

ij

= 1)

1� P(Y
ij

= 1)

◆
= ↵

i

+ ↵
j

+ z t

ij

�

• The p1 Model assumes conditional independence of the
edges

• Node (actor) specific effects ↵
i

, i = 1, . . . , N

• Edge (pair) specific covariate effects �

• The model is a standard logit model
• Can be fitted with standard software
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”Classical” Network Models: The p2 Model

•
p2 Model (Duijn et al., 2004 and Zijlstra et al., 2006)

logit
�
P(Y

ij

= 1|�)
�

= �
i

+ �
j

+ z t

ij

�, (1)

� = (�1, . . . ,�n

)t ⇠ N(0, �2
�I

n

)

• The model reduces the number of parameters for large
networks

• The p2 model induces nodal heterogeneity
• The modal results in a standard generalized linear mixed

model (GLMM)
• Can be fitted with standard software

Ribno, 22.09.16 7

”Classical” Network Models: The p* Model

• p* model or better known as Exponential Random Graph
Model (ERGM) (Frank and Strauss, 1986)

P(Y = y |✓) =
exp

�
✓T

s(y)
�

(✓)

• (✓) is a normalizing constant
•

s(y) is a vector of so-called network statistics
• The model is an exponential family
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Features of ERGM

• Unlike in the p1 and p2 model the edge Y

ij

depends on the
rest of the network Y\Y

ij

• Edge between node i and j depends on the ”individual”
network of the two nodes

• Conditional model

logit [P(Y
ij

= 1|Y\{Y

ij

}, ✓)] =

✓T [s(y
ij

= 1, Y\{Y

ij

})� s(y
ij

= 0, Y\{Y

ij

})]
| {z }

:=�s

ij

(y)

where �s

ij

(y) denotes the vector of change statistics
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A First Comparison

Modelling Unobserved Network Usability in Estimation
Flexibility Modal Dependence Large

Heterogeneity networks
(N!1)

p0 - - - X X

p1 only parametric - X X
covariates

p2 only random - X X
covariates

p* network and - X - -
covariates
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ERGM: Estimation Problem (1)

• The normalization constant (✓) is numerically infeasible,
since

(✓) =
X

y2Y
exp(s(y)✓)

where Y = set of possible networks with N nodes
• |Y| = 2N(N+1)/2, for N = 10 ) 3 · 1013 networks
• Estimation requires numerical simulation tools
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Estimation Problem (2)

• Pseudo likelihood (Ikeda and Strauss, 1990):
One assume independence of the edges, i.e.

logit P(Y
ij

= 1|Y\{Y

ij

}) = logit P(Y
ij

= 1) = �s

ij

(y)✓

) Estimation is simple, but estimates are biased and
inference is invalid

• Simulation based (Hunter and Handcock, 2006):
We approximate

(✓) ⇡
X

s(y⇤)

exp(✓s(y⇤))

where y

⇤ are random draws from the ERGM
) Estimation is unstable and numerically demanding
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Estimation of ERGM (3)

• Fully Bayesian Estimation (Caimo and Friel, 2011):
We are interested in the posterior distribution

⇡(✓|y) / ⇡(y |✓)⇡(✓),

with ⇡(✓) as prior distribution on ✓.

Problem: This posterior is “doubly-intractable”, because
neither the normalisation constant of ⇡(y |✓) nor of ⇡(✓|y) is
known.
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Estimation of ERGM (4)

Solution: Bergm: Exchange algorithm - We sample from an
augmented distribution

⇡(✓0, y

0, ✓|y) / ⇡(y |✓)⇡(✓)h(✓0|✓)⇡(y 0|✓0).

1 Gibbs update of (✓0, y

0):
i. Draw ✓0 ⇠ h(·|✓).
ii. Draw y

0 ⇠ ⇡(·|✓0).

2 Propose the exchange move from ✓ to ✓0 with probability

↵ = min
✓

1,
q(y 0|✓)⇡(✓0)h(✓|✓0)q(y |✓0)
q(y |✓)⇡(✓)h(✓0|✓)q(y 0|✓0) ⇥

(✓0)(✓)

(✓)(✓0)

◆
.
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Problems in ERGM

• ERGMs are notoriously unstable, i.e. the reasonable
parameter space

⇥0 = {✓ : density(Network) is bounded away form 0 and 1}

is getting smaller for N !1
• As a consequence: simulated networks are either full or

empty
• Bayesian approaches circumvent this problem for the price

of heavy computation (i.e. low acceptance rate)

Two reasons for instability:
1 The models assume that the nodes are homogeneous
2 Network statistics are unstable, i.e. there is an avalanche

effect.
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Extension: Heterogeneity of Actors

We have extended the model to allow for heterogeneous actors
(Thiemichen et al., 2016)

logit
⇥
P(Y

ij

= 1
��
Y \ {Y

ij

}, ✓, �)
⇤

= ✓T �s

ij

(y) + �
i

+ �
j

,

with �
i

⇠ N(µ�, �2
�), for i = 1, ..., n.

This leads to the entire model

P(Y = y |✓,�) =
exp

�
✓T

s(y) + �T

t(y)
�

(✓,�)
,

where t(y) =

 
P
j 6=1

y1j

,
P
j 6=2

y2j

, . . . ,
P
j 6=n

y

nj

!
.
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Fully Bayesian Inference

We are interested in

⇡(✓,�|y) / ⇡(y |✓,�)⇡(✓)⇡(�).

This can be estimated with the exchange algorithm from above
(Bergm).
We are additionally interested in �2

�, i.e.

⇡(✓,�,�2
�|y) / ⇡(y |✓,�)⇡(✓)⇡(�)⇡(�2

�).

with ⇡(�2
�) as inverse gamma.

Problem: Estimation is numerically very demanding
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Instable Network Statistics

• Network statistics ought to be s(y) = 0(N2)
(Schweinberger, 2011)

• two-star, triangle, etc. are all unstable
• Geometrically weighted statistics (Snijders et al., 2006),

e.g.
• geometrically weighted degree (gwd)
• geometrically weighted edgewise shared parameter

(gwesp)
• Smooth statistics (Talk on Friday, Thiemichen)
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Stable Network Statistics

Snijders, Pattison, Robins and Handcock (2006) proposed new
geometrically downweigted network statistics which behave
stable.

• Geometrically weighted degree (gwd)
• Geometrically weighted edgewise shared partners (gwesp)

s(y , q) =
N�2X

l=1

{1� q

l)ESP

l

(y)

where q is a decay parameter and ESP

l

(y) is the number
of edges with l joint partners.

• Note: The gwesp statistics is edge based and not node
based.

• Note: Interpretation gets clumsy.
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What happens if Networks are Large?

• ”Classical” models hardly scale to large networks with
1000 or more actors

• Estimation becomes computationally too demanding
• Homogeneity of actors is questionalble
• Clustering (grouping) of actors seems more useful
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Large network - Graphons and ERGMs (1)

• Graphon: A symmetric function

w : [0, 1]2 ! [0, 1]

and let U

j

⇠ Uniform[0, 1] for j = 1, ..., N. Then an
(exchangeable) Network is defined through

Y

ij

⇠ Bernoulli(⇡
ij

= w(U
i

, U

j

))

• The graphon describes the model and it is made unique by
postulating

g(u) =

Z 1

0
w(u, v)dv

is monotone
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Large Networks - Graphons and ERGMs (2)

• Large ERGMs can be approximated by graphons
(Chatterjee and Diaconis, 2013)

• The relation to graphons allows to approximate the
normalization constant (✓) (Zheng and He, 2015)

• This is numerically simple but theoretically not easy.
Developed for simple statistics only.

• Requires smooth (non-parametric) graphon estimation
(see also Wolfe and Olhede, 2013 or Gao et al., 2015)
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Extensions of ERGMs

• Stochastic Block Models
also known as Community Detection
see Nowicki and Snijders, 2001

• Bayesian ERGM, (bERGM)
see Caimo and Friel, 2011

• Temporal ERGM, (tERGM)
see Hanneke et al., 2010 or Desmarais and Cranmer, 2010

• Generalized ERGM, (gERGM)
see Krivitsky, 2012 or Desmarais and Cranmer, 2012

Ribno, 22.09.16 27

Stochastic Block Model (SBM)

• Stochastic Block Models take the form:

P(Y
ij

= 1) = ⇧
z(i)z(j)

where ⇧ 2 [0, 1]K⇥K is a matrix of edge probabilities with
K << N

•
z : {1, . . . , N}! {1, . . . , K} is the (latent) group indicator

• Extension of Erdös-Renyi Model
• Actors cluster in K groups with same ”within” but different

”between” edge probabilities
• R package blockmodels
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Bayesian Exponential Random Graph Models (bERGM)

• We are interested in the Posterior Distribution

✓|y ⇠ exp(✓T

s(y))f✓(✓)

(✓)f
y

(y)

) Exchange algorithm circumvents the doubly
intractability since both, (✓) and f

y

(y) are unknown
• Bayesian Network Models are more stable, due to the

rejection/acceptance step
• Bayesian Network Models are very computer intensive, do

not work for networks beyond N = 100
• R package bergm
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Temporal Exponential Random Graph Models (tERGM)

• We assume now that networks evolve over time
• We observe the (same) network at different time points

Y1, Y2, Y3, ..., Y

T

• We apply a Temporal ERGM (TERGM)

P(Y
t

= y

t

|Y
t�1 = y

t�1, ..., Y

t�k

= y

t�k

)

=
exp{s(y

t

, y

t�1, ..., y

t�k

)✓}X

y⇤2Y

t

exp{s(y⇤, y

t�1, ..., y

t�p

)✓}

where k is usually small, e.g. k = 1.
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Generalized Exponential Random Graph Models
(gERGM)

We assume now that Y takes more valus than just Y

ij

2 {0, 1}.

•
Y

ij

can be a flow from i to j .
• If Y

ij

can be counts. Krivitsky, 2012 extends the binary
model to a Poisson distribution

• If Y 2 [0, 1], Desmarais and Cranmer, 2012 use a beta
distribution

• See also Catherine Matia & Vincent Miele (2016)

This field is pretty underdeveloped, but data are there!
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Research Questions

In my view, these are the big, open research fields in statistical
network analysis:

• How to account for heterogeneity of the nodes?
• How can we stablize ERGM?
• What models can be fitted to large networks?
• How to account for dynamics?
• How shall we model valued edges?
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