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”Social” Network Analysis

Common statistical models trace from sociology:
e There is a set of actors A
e The actors interact, that is they build links or destroy links
e The links (edges) are of interest

"Social” networks are classical friendship networks but also
¢ business networks
e ecological networks
e economic networks
e efc.
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Outline

Definition of Network

Statistical Models for (Social) Network Data
Po, p1, p2 and and p*
Graphons and Networks

ERGM, bERGM, tERGM, gERGM
Research questions
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o Nodes: A network consists of a set of nodes (actors)
A={1,...,N}

o Edges: A network can be described with the adjacency

matrix

with

Yij:{

1 if there is an edge/link from node i to node j

0 otherwise

Y c RNXN

¢ Direction: For simplicity we first assume an undirected
network, which implies Y = Yj;.
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”Classical” Network Models: The p, Model ”Classical” Network Models: The p; Model

p1 Model (Holland and Leinhardt, 1981)

Erdds-Renyi Model (1959) P(Y;=1)

logit (P(Y; = 1)) = log <1_1p(yb::1)

>:a,-+aj+z,§ﬂ
P(Yj=1)=n

The p; Model assumes conditional independence of the
Independence of edges (and nodes) edges

Parameter = gives the average density
Very simplistic model, may serve as intercept or null model

Node (actor) specific effects aj,i=1,..., N
Edge (pair) specific covariate effects

The model is a standard logit model

Can be fitted with standard software

i
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”Classical” Network Models: The p. Model ”Classical” Network Models: The p* Model

p> Model (Duijn et al., 2004 and Zijlstra et al., 2006)

p* model or better known as Exponential Random Graph
logit (P(Y; = 1|®)) = ¢; + ¢; + Zf’,’ﬁv (1) Model (ERGM) (Frank and Strauss, 1986)

® = (¢1,....6n)" ~ N(0,051) Hyzﬂm:emw%wn
k(0)

The model reduces the number of parameters for large
networks

The p> model induces nodal heterogeneity

The modal results in a standard generalized linear mixed
model (GLMM)

Can be fitted with standard software

x(0) is a normalizing constant
s(y) is a vector of so-called network statistics
The model is an exponential family
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Features of ERGM

e Unlike in the p; and p» model the edge Yj; depends on the
rest of the network Y\ Y}

e Edge between node i/ and j depends on the "individual”

network of the two nodes
e Conditional model

logit [P(Yj = 1Y\{Y;},0)] =
07 [s(yy =1, Y\{Yi}) — s(yj = 0, Y\{Yj})]

where As;ji(y) denotes the vector of change statistics
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ERGM: Estimation Problem (1)

e The normalization constant «(6) is numerically infeasible,

r(6) =Y exp(s(y)6)

since
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where ) = set of possible networks with N nodes
o |V =2NIN+1/2 for N =10 = 3 - 10" networks
¢ Estimation requires numerical simulation tools
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A First Comparison

Modelling Unobserved Network Usability in | Estimation
Flexibility Modal Dependence Large
Heterogeneity networks
(N — o0)
p0 v v
p1 only parametric v v
covariates
p2 only random v v
covariates
p* | network and v
covariates
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Estimation Problem (2)

e Pseudo likelihood (lkeda and Strauss, 1990):
One assume independence of the edges, i.e.

logit P(Yj = 1|Y\{Yj}) = logit P(Yjj = 1) = As;(y)0
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Estimation Problem (2)

¢ Pseudo likelihood (lkeda and Strauss, 1990):
One assume independence of the edges, i.e.

logit P(Y; = 1|Y\{Yj}) = logit P(Y; = 1) = Asj(y)0

= Estimation is simple, but estimates are biased and
inference is invalid
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Estimation Problem (2)

e Pseudo likelihood (lkeda and Strauss, 1990):
One assume independence of the edges, i.e.

logit P( Yi= 1|Y\{Y,-j}) = logit P( Yi= 1) = As,-j(y)e

= Estimation is simple, but estimates are biased and
inference is invalid

e Simulation based (Hunter and Handcock, 2006):
We approximate

K(0) ~ Y exp(6s(y*))
s(y*)

where y* are random draws from the ERGM
= Estimation is unstable and numerically demanding
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Estimation Problem (2)

e Pseudo likelihood (lkeda and Strauss, 1990):
One assume independence of the edges, i.e.

logit P(Yj; = 1|Y\{Yj}) = logit P(Y; = 1) = Asj(y)0

= Estimation is simple, but estimates are biased and
inference is invalid

e Simulation based (Hunter and Handcock, 2006):
We approximate

r() ~ ) exp(6s(y"))

s(y*)

where y* are random draws from the ERGM
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Estimation of ERGM (3)

¢ Fully Bayesian Estimation (Caimo and Friel, 2011):
We are interested in the posterior distribution

m(0]y) o< w(y|0)m(6),

with 7(#) as prior distribution on 6.
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Estimation of ERGM (3)

o Fully Bayesian Estimation (Caimo and Friel, 2011):
We are interested in the posterior distribution

m(0ly) o< m(y|0)=(0),
with 7(6) as prior distribution on 6.

Problem: This posterior is “doubly-intractable”, because
neither the normalisation constant of 7(y|#) nor of 7(6|y) is
known.
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Problems in ERGM

o ERGMs are notoriously unstable, i.e. the reasonable
parameter space

©p = {6 : density(Network) is bounded away form 0 and 1}

is getting smaller for N — oo

¢ As a consequence: simulated networks are either full or
empty

e Bayesian approaches circumvent this problem for the price
of heavy computation (i.e. low acceptance rate)

Two reasons for instability:

© The models assume that the nodes are homogeneous

©® Network statistics are unstable, i.e. there is an avalanche
effect.
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Estimation of ERGM (4)

Solution: Bergm: Exchange algorithm - We sample from an
augmented distribution

n(6",y', 0ly) o m(y|0)m(0)h(6'|0)m (y'|0").

@ Gibbs update of (¢, y'):
i. Draw 0’ ~ h(-|6).
ii. Draw y’ ~ (-¢").
@ Propose the exchange move from 6 to ¢’ with probability

(4 a0 K(O)s(6)
@=mn <1’ a(y10)=(0)h(10)a(y'0") nw)nw')> '
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Extension: Heterogeneity of Actors

We have extended the model to allow for heterogeneous actors
(Thiemichen et al., 2016)

logit[P(Yj = 1| Y\ {Y;j},0,0)] = 0T Asj(y) + ¢i + ¢},
with ¢; ~ N(pg, 03), fori =1,..., n.

This leads to the entire model

T T
Py = = ST 1)

where t(y) = (Z Yijs 20 Yojs s 2 Ynj> :
AR j#n
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Fully Bayesian Inference

We are interested in

(0, ¢ly) oc w(y|6, @)m(0)m ().
This can be estimated with the exchange algorithm from above

(Bergm).
We are additionally interested in o3, i.e.

(0,6, 05]y) o 7(y10, ¢)m ()7 ()7 (03).

with 7(03) as inverse gamma.

Problem: Estimation is numerically very demanding

Ribno, 22.09.16 21

Stable Network Statistics

Snijders, Pattison, Robins and Handcock (2006) proposed new
geometrically downweigted network statistics which behave
stable.

e Geometrically weighted degree (gwd)
¢ Geometrically weighted edgewise shared partners (gwesp)

N-2
s(y.q) =Y _{1-4d)ESP(y)

1=1
where g is a decay parameter and ESP(y) is the number
of edges with / joint partners.

¢ Note: The gwesp statistics is edge based and not node
based.

¢ Note: Interpretation gets clumsy.
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Instable Network Statistics

« Network statistics ought to be s(y) = 0(N?)
(Schweinberger, 2011)
¢ two-star, triangle, etc. are all unstable
o Geometrically weighted statistics (Snijders et al., 2006),
e.g.
e geometrically weighted degree (gwd)
e geometrically weighted edgewise shared parameter
(gwesp)

e Smooth statistics (Talk on Friday, Thiemichen)
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What happens if Networks are Large?

"Classical” models hardly scale to large networks with
1000 or more actors

Estimation becomes computationally too demanding
Homogeneity of actors is questionalble
Clustering (grouping) of actors seems more useful
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Large network - Graphons and ERGMs (1) Large Networks - Graphons and ERGMs (2)

e Graphon: A symmetric function

w:[0,1° —[0,1] « Large ERGMs can be approximated by graphons
(Chatterjee and Diaconis, 2013)

¢ The relation to graphons allows to approximate the
normalization constant x(¢) (Zheng and He, 2015)

Yjj ~ Bernoulli(m; = w(U;, U)) ¢ This is numerically simple but theoretically not easy.
Developed for simple statistics only.

¢ Requires smooth (non-parametric) graphon estimation

and let U; ~ Uniform[0, 1] for j = 1, ..., N. Then an
(exchangeable) Network is defined through

e The graphon describes the model and it is made unique by

postulating 1 (see also Wolfe and Olhede, 2013 or Gao et al., 2015)
g(u) = / w(u, v)av
0
is monotone
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Extensions of ERGMs Stochastic Block Model (SBM)
¢ Stochastic Block Models take the form:
» Stochastic Block Models
also known as Community Detection P(Yj = 1) = Nz3yz()
see Nowicki and Snijders, 2001
« Bayesian ERGM, (bERGM) where M € [0, 1]K*K is a matrix of edge probabilities with
see Caimo and Friel, 2011 K<<N

z:{1,...,N} = {1,..., K} is the (latent) group indicator
see Hanneke et al., 2010 or Desmarais and Cranmer, 2010 Extension of Erdés-Renyi Model

¢ Generalized ERGM, (QERGM) Actors cluster in K groups with same "within” but different
see Krivitsky, 2012 or Desmarais and Cranmer, 2012 "between” edge probabilities

R package blockmodels

¢ Temporal ERGM, (tERGM)
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Bayesian Exponential Random Graph Models (b ERGM) Temporal Exponential Random Graph Models (tERGM)

We are interested in the Posterior Distribution * We assume now that networks evolve over time
o We observe the (same) network at different time points

oly . EROTS(0)

ﬁ(e)fy(Y) Y1,Y2, Y3,...,YT
= Exchange algorithm circumvents the doubly ¢ We apply a Temporal ERGM (TERGM)
intractability since both, x(#) and f,(y) are unknown
« Bayesian Network Models are more stable, due to the P(Yt =yt Vi1 = Y1, Yok = Yik)
rejection/acceptance step _exp{s(Vt Vi1, Yi-k)0}
 Bayesian Network Models are very computer intensive, do Z exp{s(y*, Yi—1, ..., Yt—p)0}
not work for networks beyond N = 100 y*EYy

R package bergm where k is usually small, e.g. k = 1.
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Generalized Exponential Random Graph Models Research Questions
(JERGM)
We assume now that Y takes more valus than just Yj € {0,1}. In my view, these are the big, open research fields in statistical

network analysis:

Yjj can be a flow from i to j.
If Y; can be counts. Krivitsky, 2012 extends the binary How to account for heterogeneity of the nodes?
model to a Poisson distribution e How can we stablize ERGM?

If Y € [0, 1], Desmarais and Cranmer, 2012 use a beta
distribution

See also Catherine Matia & Vincent Miele (2016)

What models can be fitted to large networks?
How to account for dynamics?
How shall we model valued edges?

This field is pretty underdeveloped, but data are there!

Ribno, 22.09.16 31 LMU B

UNIVERSITAT
MONCHEN

Ribno, 22.09.16




Literature |

A. Caimo and N. Friel. Bayesian inference for exponential random graph models.
Social Networks, 33:41-55, 2011.

S. Chatterjee and P. Diaconis. Estimating and understanding exponential random
graph models. The Annals of Statistics, 41:2428-2461, 2013.

B. A. Desmarais and S. J. Cranmer. Consistent confidence intervals for maximum
pseudolikelihood estimators. Political Analysis, 2010.

B. A. Desmarais and S. J. Cranmer. Statistical inference for valued-edge networks:
The generalized exponential random graph model, 2012.

M.A.J. Duijn, T.A.B. Snijders, and B.J.H. Zijlstra. po: a random effects model with
covariates for directed graphs. Statistica Neerlandica, 58(2):234—254, 2004.

O. Frank and D. Strauss. Markov graphs. Journal of the American Statistical
Association, 81(395):832-842, 1986.

C. Gao, Y. Lu, and H. H. Zhuo. Rate-optimal graphon estimation. Annals of Statistics,
43(6):2624—-2652, 2015.

S. Hanneke, W. Fu, and E. P. Xing. Discrete temporal models of social networks, 2010.

Ribno, 22.09.16 33

WAL IANS
LMU | |iessiess
MONCHEN

Literature lll

T. Zheng and R. He. Gimle: graph-limit enabled fast computation for fitting exponential
random graph models to large social networks. Social Network Analysis and
Mining, 2015.

B.J.H. Zijlstra, M.A.J. Duijn, and T.A.B. Snijders. The mulitlevel p> model. a random
effects model for the analysis of multiple social networks. Methodology: European
Journal of Research Methods for the Behavioral and Social Sciences, 2(1):42—-47,
2006.

Ribno, 22.09.16 35

Lo
AL IANS

LMU| [cmvessirss
MoncHEn

Literature Il

P.W. Holland and S. Leinhardt. An exponential family of probability distributions for
direted graphs. Journal of the American Statistical Association, 76(373):33-50,
1981.

D.R. Hunter and M.S. Handcock. Inference in curved exponential family models for
networks. Journal of Computational and Graphical Statistics, 15:565-583, 2006.

M. lkeda and D. Strauss. Pseudolikelihood estimation for social networks. Journal of
the American Statistical Association, 85(409):202-212, 1990.

P. N. Krivitsky. Exponential-family random graph models for valued networks.
Electronic Journal of Statistics, 6:1100—1128, 2012.

K. Nowicki and T. A. Snijders. Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, 96:1077—-1087, 2001.

M. Schweinberger. Statistical modelling of network panel data: Goodness of fit. British
Journal of Mathematical and Statistical Psychology, 65:263—-281, 2011.

T. A. Snijders, P. E. Pattinson, G. L. Robinson, and M. S. Handcock. New specifications
for exponential random graph models. Sociological Methodology, 36:99-153, 2006.

S. Thiemichen, N. Friel, A. Caimo, and G. Kauermann. Bayesian exponential random
graph models with nodal random effects. Social Networks, 46:11-28, 2016.

P. J. Wolfe and S. C. Olhede. Nonparametric graphon estimation. 2013.

|

Fre Ribno, 22.09.16 34

’LMU




