

Exponential Random Graph Models for (Social) Network Data Analysis - Overview, Challenges, Research Problems

Göran Kauermann

22. September 2016

Outline

- Statistical Models for (Social) Network Data
- p_0, p_1, p_2 and p^*
- Graphons and Networks
- ERGM, bERGM, tERGM, gERGM
- Research questions

"Social" Network Analysis

Common statistical models trace from sociology:

- There is a set of actors A
- The actors interact, that is they build links or destroy links
- The links (edges) are of interest

"Social" networks are classical friendship networks but also

- business networks
- ecological networks
- economic networks
- etc.

Ribno, 22.09.16

2

Definition of Network

- **Nodes:** A network consists of a set of nodes (actors)
 $A = \{1, \dots, N\}$
- **Edges:** A network can be described with the adjacency matrix

$$Y \in \mathbb{R}^{N \times N},$$

with

$$Y_{ij} = \begin{cases} 1 & \text{if there is an edge/link from node } i \text{ to node } j \\ 0 & \text{otherwise} \end{cases}$$

- **Direction:** For simplicity we first assume an undirected network, which implies $Y_{ij} = Y_{ji}$.

Ribno, 22.09.16

3

Ribno, 22.09.16

4

"Classical" Network Models: The p_0 Model

- Erdös-Renyi Model (1959)

$$P(Y_{ij} = 1) = \pi$$

- Independence of edges (and nodes)
- Parameter π gives the average density
- Very simplistic model, may serve as intercept or null model

Ribno, 22.09.16 5

"Classical" Network Models: The p_1 Model

- p_1 Model (Holland and Leinhardt, 1981)

$$\text{logit}(\mathbb{P}(Y_{ij} = 1)) = \log \left(\frac{\mathbb{P}(Y_{ij} = 1)}{1 - \mathbb{P}(Y_{ij} = 1)} \right) = \alpha_i + \alpha_j + \mathbf{z}_{ij}^t \boldsymbol{\beta}$$

- The p_1 Model assumes conditional independence of the edges
- Node (actor) specific effects $\alpha_i, i = 1, \dots, N$
- Edge (pair) specific covariate effects $\boldsymbol{\beta}$
- The model is a standard logit model
- Can be fitted with standard software

Ribno, 22.09.16 6

"Classical" Network Models: The p_2 Model

- p_2 Model (Duijn et al., 2004 and Zijlstra et al., 2006)

$$\text{logit}(\mathbb{P}(Y_{ij} = 1|\Phi)) = \phi_i + \phi_j + \mathbf{z}_{ij}^t \boldsymbol{\beta}, \quad (1)$$
$$\boldsymbol{\phi} = (\phi_1, \dots, \phi_n)^t \sim N(\mathbf{0}, \sigma_\phi^2 I_n)$$

- The model reduces the number of parameters for large networks
- The p_2 model induces nodal heterogeneity
- The model results in a standard generalized linear mixed model (GLMM)
- Can be fitted with standard software

Ribno, 22.09.16 7

"Classical" Network Models: The p^* Model

- p^* model or better known as Exponential Random Graph Model (ERGM) (Frank and Strauss, 1986)

$$P(Y = y|\theta) = \frac{\exp(\theta^T s(y))}{\kappa(\theta)}$$

- $\kappa(\theta)$ is a normalizing constant
- $s(y)$ is a vector of so-called network statistics
- The model is an exponential family

Ribno, 22.09.16 8

Features of ERGM

- Unlike in the p_1 and p_2 model the edge Y_{ij} depends on the rest of the network $Y \setminus Y_{ij}$
- Edge between node i and j depends on the "individual" network of the two nodes
- Conditional model

$$\text{logit } [P(Y_{ij} = 1 | Y \setminus \{Y_{ij}\}, \theta)] = \theta^T \underbrace{[s(y_{ij} = 1, Y \setminus \{Y_{ij}\}) - s(y_{ij} = 0, Y \setminus \{Y_{ij}\})]}_{:= \Delta s_{ij}(y)}$$

where $\Delta s_{ij}(y)$ denotes the vector of change statistics

Ribno, 22.09.16 9

A First Comparison

	Modelling Flexibility	Unobserved Modal Heterogeneity	Network Dependence	Usability in Large networks ($N \rightarrow \infty$)	Estimation
p_0	-	-	-	✓	✓
p_1	only covariates	parametric	-	✓	✓
p_2	only covariates	random	-	✓	✓
p^*	network and covariates	-	✓	-	-

Ribno, 22.09.16 10

ERGM: Estimation Problem (1)

- The normalization constant $\kappa(\theta)$ is numerically infeasible, since

$$\kappa(\theta) = \sum_{y \in \mathcal{Y}} \exp(s(y)\theta)$$

where \mathcal{Y} = set of possible networks with N nodes

- $|\mathcal{Y}| = 2^{N(N+1)/2}$, for $N = 10 \Rightarrow 3 \cdot 10^{13}$ networks
- Estimation requires numerical simulation tools

Ribno, 22.09.16 11

Estimation Problem (2)

- Pseudo likelihood (Ikeda and Strauss, 1990): One assume independence of the edges, i.e.

$$\text{logit } P(Y_{ij} = 1 | Y \setminus \{Y_{ij}\}) = \text{logit } P(Y_{ij} = 1) = \Delta s_{ij}(y)\theta$$

Ribno, 22.09.16 12

Estimation Problem (2)

- Pseudo likelihood (Ikeda and Strauss, 1990):
One assume independence of the edges, i.e.

$$\text{logit } P(Y_{ij} = 1 | Y \setminus \{Y_{ij}\}) = \text{logit } P(Y_{ij} = 1) = \Delta s_{ij}(y)\theta$$

⇒ Estimation is simple, but estimates are biased and
inference is invalid

Ribno, 22.09.16 13

Estimation Problem (2)

- Pseudo likelihood (Ikeda and Strauss, 1990):
One assume independence of the edges, i.e.

$$\text{logit } P(Y_{ij} = 1 | Y \setminus \{Y_{ij}\}) = \text{logit } P(Y_{ij} = 1) = \Delta s_{ij}(y)\theta$$

⇒ Estimation is simple, but estimates are biased and
inference is invalid

- Simulation based (Hunter and Handcock, 2006):
We approximate

$$\kappa(\theta) \approx \sum_{s(y^*)} \exp(\theta s(y^*))$$

where y^* are random draws from the ERGM

Ribno, 22.09.16 14

Estimation Problem (2)

- Pseudo likelihood (Ikeda and Strauss, 1990):
One assume independence of the edges, i.e.

$$\text{logit } P(Y_{ij} = 1 | Y \setminus \{Y_{ij}\}) = \text{logit } P(Y_{ij} = 1) = \Delta s_{ij}(y)\theta$$

⇒ Estimation is simple, but estimates are biased and
inference is invalid

- Simulation based (Hunter and Handcock, 2006):
We approximate

$$\kappa(\theta) \approx \sum_{s(y^*)} \exp(\theta s(y^*))$$

where y^* are random draws from the ERGM

⇒ Estimation is unstable and numerically demanding

Ribno, 22.09.16 15

Estimation of ERGM (3)

- Fully Bayesian Estimation (Caimo and Friel, 2011):
We are interested in the posterior distribution

$$\pi(\theta | y) \propto \pi(y | \theta) \pi(\theta),$$

with $\pi(\theta)$ as prior distribution on θ .

Ribno, 22.09.16 16

Estimation of ERGM (3)

- Fully Bayesian Estimation (Caimo and Friel, 2011):
We are interested in the posterior distribution

$$\pi(\theta|y) \propto \pi(y|\theta)\pi(\theta),$$

with $\pi(\theta)$ as prior distribution on θ .

Problem: This posterior is “doubly-intractable”, because neither the normalisation constant of $\pi(y|\theta)$ nor of $\pi(\theta|y)$ is known.

Ribno, 22.09.16 17

Estimation of ERGM (4)

Solution: Bergm: Exchange algorithm - We sample from an augmented distribution

$$\pi(\theta', y', \theta|y) \propto \pi(y|\theta)\pi(\theta)h(\theta'|y)\pi(y'|\theta').$$

① Gibbs update of (θ', y') :

- Draw $\theta' \sim h(\cdot|\theta)$.
- Draw $y' \sim \pi(\cdot|\theta')$.

② Propose the exchange move from θ to θ' with probability

$$\alpha = \min \left(1, \frac{q(y'|\theta)\pi(\theta')h(\theta|\theta')q(y|\theta')}{q(y|\theta)\pi(\theta)h(\theta'|\theta)q(y'|\theta')} \times \frac{\kappa(\theta')\kappa(\theta)}{\kappa(\theta)\kappa(\theta')} \right).$$

Ribno, 22.09.16 18

Problems in ERGM

- ERGMs are notoriously unstable, i.e. the reasonable parameter space

$$\Theta_0 = \{\theta : \text{density(Network)} \text{ is bounded away from 0 and 1}\}$$

is getting smaller for $N \rightarrow \infty$

- As a consequence: simulated networks are either full or empty
- Bayesian approaches circumvent this problem for the price of heavy computation (i.e. low acceptance rate)

Two reasons for instability:

- The models assume that the nodes are **homogeneous**
- Network statistics are **unstable**, i.e. there is an avalanche effect.

Ribno, 22.09.16 19

Extension: Heterogeneity of Actors

We have extended the model to allow for heterogeneous actors (Thiemichen et al., 2016)

$$\text{logit}[P(Y_{ij} = 1 | Y \setminus \{Y_{ij}\}, \theta, \phi)] = \theta^T \Delta s_{ij}(y) + \phi_i + \phi_j,$$

with $\phi_i \sim N(\mu_\phi, \sigma_\phi^2)$, for $i = 1, \dots, n$.

This leads to the entire model

$$P(Y = y | \theta, \phi) = \frac{\exp(\theta^T s(y) + \phi^T t(y))}{\kappa(\theta, \phi)},$$

$$\text{where } t(y) = \left(\sum_{j \neq 1} y_{1j}, \sum_{j \neq 2} y_{2j}, \dots, \sum_{j \neq n} y_{nj} \right).$$

Ribno, 22.09.16 20

We are interested in

$$\pi(\theta, \phi | y) \propto \pi(y | \theta, \phi) \pi(\theta) \pi(\phi).$$

This can be estimated with the exchange algorithm from above (Bergm).

We are additionally interested in σ_ϕ^2 , i.e.

$$\pi(\theta, \phi, \sigma_\phi^2 | y) \propto \pi(y | \theta, \phi) \pi(\theta) \pi(\phi) \pi(\sigma_\phi^2).$$

with $\pi(\sigma_\phi^2)$ as inverse gamma.

Problem: Estimation is numerically **very** demanding

Ribno, 22.09.16 21

- Network statistics ought to be $s(y) = 0(N^2)$ (Schweinberger, 2011)
- two-star, triangle, etc. are all **unstable**
- Geometrically weighted statistics (Snijders et al., 2006), e.g.
 - geometrically weighted degree (gwd)
 - geometrically weighted edgewise shared parameter (gwesp)
- Smooth statistics (Talk on Friday, Thiemichen)

Ribno, 22.09.16 22

Stable Network Statistics

Snijders, Pattison, Robins and Handcock (2006) proposed new **geometrically downweighted network statistics** which behave **stable**.

- Geometrically weighted degree (gwd)
- Geometrically weighted edgewise shared partners (gwesp)

$$s(y, q) = \sum_{l=1}^{N-2} \{1 - q^l\} ESP_l(y)$$

where q is a decay parameter and $ESP_l(y)$ is the number of edges with l joint partners.

- Note: The gwesp statistics is **edge based** and not **node based**.
- Note: Interpretation gets **clumsy**.

Ribno, 22.09.16 23

What happens if Networks are Large?

- "Classical" models hardly scale to large networks with 1000 or more actors
- Estimation becomes computationally too demanding
- Homogeneity of actors is questionable
- Clustering (grouping) of actors seems more useful

Ribno, 22.09.16 24

- Graphon: A symmetric function

$$w : [0, 1]^2 \rightarrow [0, 1]$$

and let $U_j \sim \text{Uniform}[0, 1]$ for $j = 1, \dots, N$. Then an (exchangeable) Network is defined through

$$Y_{ij} \sim \text{Bernoulli}(\pi_{ij} = w(U_i, U_j))$$

- The graphon describes the model and it is made unique by postulating

$$g(u) = \int_0^1 w(u, v) dv$$

is **monotone**

- Large ERGMs can be approximated by graphons (Chatterjee and Diaconis, 2013)
- The relation to graphons allows to approximate the normalization constant $\kappa(\theta)$ (Zheng and He, 2015)
- This is numerically simple but theoretically not easy. Developed for simple statistics only.
- Requires smooth (non-parametric) graphon estimation (see also Wolfe and Olhede, 2013 or Gao et al., 2015)

Extensions of ERGMs

- **Stochastic Block Models**

also known as Community Detection
see Nowicki and Snijders, 2001

- **Bayesian ERGM**, (bERGM)
see Caimo and Friel, 2011

- **Temporal ERGM**, (tERGM)
see Hanneke et al., 2010 or Desmarais and Cranmer, 2010

- **Generalized ERGM**, (gERGM)
see Krivitsky, 2012 or Desmarais and Cranmer, 2012

Stochastic Block Model (SBM)

- Stochastic Block Models take the form:

$$P(Y_{ij} = 1) = \Pi_{z(i)z(j)}$$

where $\Pi \in [0, 1]^{K \times K}$ is a matrix of edge probabilities with $K \ll N$

- $z : \{1, \dots, N\} \rightarrow \{1, \dots, K\}$ is the (latent) group indicator
- Extension of Erdös-Renyi Model
- Actors cluster in K groups with same "within" but different "between" edge probabilities
- R package `blockmodels`

- We are interested in the Posterior Distribution

$$\theta|y \sim \frac{\exp(\theta^T s(y)) f_\theta(\theta)}{\kappa(\theta) f_y(y)}$$

⇒ Exchange algorithm circumvents the doubly intractability since both, $\kappa(\theta)$ and $f_y(y)$ are unknown

- Bayesian Network Models are more stable, due to the rejection/acceptance step
- Bayesian Network Models are very computer intensive, do not work for networks beyond $N = 100$
- R package `bergm`

- We assume now that **networks evolve over time**
- We observe the (same) network at different time points

$$Y_1, Y_2, Y_3, \dots, Y_T$$

- We apply a Temporal ERGM (TERGM)

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}, \dots, Y_{t-k} = y_{t-k}) = \frac{\exp\{s(y_t, y_{t-1}, \dots, y_{t-k})\theta\}}{\sum_{y^* \in Y_t} \exp\{s(y^*, y_{t-1}, \dots, y_{t-p})\theta\}}$$

where k is usually small, e.g. $k = 1$.

Generalized Exponential Random Graph Models (gERGM)

We assume now that Y takes more values than just $Y_{ij} \in \{0, 1\}$.

- Y_{ij} can be a flow from i to j .
- If Y_{ij} can be counts. Krivitsky, 2012 extends the binary model to a Poisson distribution
- If $Y \in [0, 1]$, Desmarais and Cranmer, 2012 use a beta distribution
- See also Catherine Matia & Vincent Miele (2016)

This field is pretty underdeveloped, but data are there!

Research Questions

In my view, these are the big, open research fields in statistical network analysis:

- How to account for **heterogeneity** of the nodes?
- How can we **stabilize** ERGM?
- What models can be fitted to **large networks**?
- How to account for **dynamics**?
- How shall we model **valued edges**?

Literature I

A. Caimo and N. Friel. Bayesian inference for exponential random graph models. *Social Networks*, 33:41–55, 2011.

S. Chatterjee and P. Diaconis. Estimating and understanding exponential random graph models. *The Annals of Statistics*, 41:2428–2461, 2013.

B. A. Desmarais and S. J. Cranmer. Consistent confidence intervals for maximum pseudolikelihood estimators. *Political Analysis*, 2010.

B. A. Desmarais and S. J. Cranmer. Statistical inference for valued-edge networks: The generalized exponential random graph model, 2012.

M.A.J. Duijn, T.A.B. Snijders, and B.J.H. Zijlstra. p_2 : a random effects model with covariates for directed graphs. *Statistica Neerlandica*, 58(2):234–254, 2004.

O. Frank and D. Strauss. Markov graphs. *Journal of the American Statistical Association*, 81(395):832–842, 1986.

C. Gao, Y. Lu, and H. H. Zhuo. Rate-optimal graphon estimation. *Annals of Statistics*, 43(6):2624–2652, 2015.

S. Hanneke, W. Fu, and E. P. Xing. Discrete temporal models of social networks, 2010.

Ribno, 22.09.16 33

Literature II

P.W. Holland and S. Leinhardt. An exponential family of probability distributions for directed graphs. *Journal of the American Statistical Association*, 76(373):33–50, 1981.

D.R. Hunter and M.S. Handcock. Inference in curved exponential family models for networks. *Journal of Computational and Graphical Statistics*, 15:565–583, 2006.

M. Ikeda and D. Strauss. Pseudolikelihood estimation for social networks. *Journal of the American Statistical Association*, 85(409):202–212, 1990.

P. N. Krivitsky. Exponential-family random graph models for valued networks. *Electronic Journal of Statistics*, 6:1100–1128, 2012.

K. Nowicki and T. A. Snijders. Estimation and prediction for stochastic blockstructures. *Journal of the American Statistical Association*, 96:1077–1087, 2001.

M. Schweinberger. Statistical modelling of network panel data: Goodness of fit. *British Journal of Mathematical and Statistical Psychology*, 65:263–281, 2011.

T. A. Snijders, P. E. Pattinson, G. L. Robinson, and M. S. Handcock. New specifications for exponential random graph models. *Sociological Methodology*, 36:99–153, 2006.

S. Thiemichen, N. Friel, A. Caimo, and G. Kauermann. Bayesian exponential random graph models with nodal random effects. *Social Networks*, 46:11–28, 2016.

P. J. Wolfe and S. C. Olhede. Nonparametric graphon estimation. 2013.

Ribno, 22.09.16 34

Literature III

T. Zheng and R. He. Gmlme: graph-limit enabled fast computation for fitting exponential random graph models to large social networks. *Social Network Analysis and Mining*, 2015.

B.J.H. Zijlstra, M.A.J. Duijn, and T.A.B. Snijders. The multilevel p^2 model. a random effects model for the analysis of multiple social networks. *Methodology: European Journal of Research Methods for the Behavioral and Social Sciences*, 2(1):42–47, 2006.

Ribno, 22.09.16 35