W-graphs and their inference

(with emphasize en variational Bayes)

S. Robin + P. Latouche, S. Ouadah

INRA / AgroParisTech

COSTNET, Ribno, September 2016

Exchangeable graphs

Outline

Exchangeable graphs

W-graph & graphon function

Statistical inference

Variational Bayes inference of W-graph

From graphon to residual graphon

Some notations

Graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
: $\mathcal{V} =$ vertices $:= \{1, \dots, n\}$, $\mathcal{E} =$ edges $\subset \mathcal{V} \times \mathcal{V}$

Adjacency matrix $Y = [Y_{ij}]$:

$$Y: n \times n, \qquad Y_{ij} = \mathbb{I}\{(i,j) \in \mathcal{E}\}$$

Random graph: defined by the joint distribution of all edges

$$p(Y) = p([Y_{ij}])$$

Undirected graph: $Y_{ij} = Y_{ji}$

Exchangeability

Classical exchangeability: for any permutation σ

$$P([Y_i = y_i]) = P([Y_i = y_{\sigma(i)}]).$$

Joint exchangeability for two dimensional arrays [9]:

$$P([Y_{ij}] = [y_{ij}]) = P([Y_{ij}] = [y_{\sigma(i)\sigma(j)}])$$

for any permutation σ (applied to both *i* and *j*).

Exchangeability

Classical exchangeability: for any permutation σ

$$P([Y_i = y_i]) = P([Y_i = y_{\sigma(i)}]).$$

Joint exchangeability for two dimensional arrays [9]:

$$P([Y_{ij}] = [y_{ij}]) = P([Y_{ij}] = [y_{\sigma(i)\sigma(j)}])$$

for any permutation σ (applied to both *i* and *j*).

Separate exchangeability: $P([Y_{ij}] = [y_{ij}]) = P([Y_{ij}] = [y_{\sigma(i)\tau(j)}])$ for any permutations σ and $\tau \rightarrow$ directed graphs.

Aldous-Hoover theorem

Theorem: $Y = [Y_{ij}]$ is exchangeable iff there exists $F : [0, 1]^3 \mapsto \{0, 1\}$,

$$[Y_{ij}] \stackrel{d}{=} [F(U_i, U_j, U_{ij})]$$

where $(U_i)_i$ and $(U_{ij})_{i,j}$ are iid $\mathcal{U}[0,1]$.

Aldous-Hoover theorem

Theorem: $Y = [Y_{ij}]$ is exchangeable iff there exists $F : [0, 1]^3 \mapsto \{0, 1\}$,

$$[Y_{ij}] \stackrel{d}{=} [F(U_i, U_j, U_{ij})]$$

where $(U_i)_i$ and $(U_{ij})_{i,j}$ are iid $\mathcal{U}[0,1]$.

Properties:

• The Y_{ij} 's are not independent (because of the U_i 's and U_j 's)

Aldous-Hoover theorem

Theorem: $Y = [Y_{ij}]$ is exchangeable iff there exists $F : [0, 1]^3 \mapsto \{0, 1\}$,

$$[Y_{ij}] \stackrel{d}{=} [F(U_i, U_j, U_{ij})]$$

where $(U_i)_i$ and $(U_{ij})_{i,j}$ are iid $\mathcal{U}[0,1]$.

Properties:

- The Y_{ij} 's are not independent (because of the U_i 's and U_j 's)
- The Y_{ij} 's are conditionally independent given the U_i 's:

$$[Y_{ij}]|(U_i = u_i)_i \stackrel{d}{=} [F(u_i, u_j, U_{ij})]$$

Exchangeable graphs

Some exchangeable random graphs

State-space models:

$$\{Z_i\}_i \text{ iid } \sim \pi$$

 $\{Y_{ij}\}_{ij} \text{ indep. } | \{Z_i\}_i \sim \mathcal{B}[\gamma(Z_i, Z_j)]$

Some exchangeable random graphs

State-space models:

$$\{Z_i\}_i \text{ iid } \sim \pi$$

 $\{Y_{ij}\}_{ij} \text{ indep. } | \{Z_i\}_i \sim \mathcal{B}[\gamma(Z_i, Z_j)]$

► Latent space [13]*:
$$Z_i \in \mathbb{R}^d$$
, $\gamma(Z_i, Z_j) = f(||Z_i - Z_j||)$

- Model-based clustering [12]: $\pi =$ Gaussian mixture,
- Stochastic bloc-model (SBM) [14,23]: $\pi = \mathcal{M}, \quad \gamma = [\gamma_{k\ell}]$
- Continuous version of SBM [8]*: $Z_i \in S^d$
- *W*-graph [20,9]: $\pi = \mathcal{U}_{[0,1]}$

See [21] for a statistical review + [3] for theoretical properties.

(*): Z_i not explicitly random

Graphon function:

 $w:[0,1]^2\mapsto [0,1]$

Graphon function:

$$w: [0,1]^2 \mapsto [0,1]$$

• $\{U_i\}_i \text{ iid } \sim \mathcal{U}_{[0,1]}$

Graphon function w(u, u')

Graphon function:

 $w:[0,1]^2\mapsto [0,1]$

- $\{U_i\}_i$ iid ~ $\mathcal{U}_{[0,1]}$
- $\{Y_{ij}\}_{ij}$ indep. $|\{U_i\}_i$:

 $Y_{ij}|U_i, U_j \sim \mathcal{B}[w(U_i, U_j)]$

Graphon function w(u, u')

 $w:[0,1]^2\mapsto [0,1]$

- $\{U_i\}_i$ iid $\sim \mathcal{U}_{[0,1]}$
- $\{Y_{ij}\}_{ij}$ indep. $|\{U_i\}_i$:

 $Y_{ij}|U_i, U_j \sim \mathcal{B}[w(U_i, U_j)]$

Aldous-Hoover representation: $F(U_i, U_j, U_{ij}) = \mathbb{I}\{U_{ij} < w(U_i, U_j)\}$

S. Robin (INRA/AgroParisTech)

W-graphs and their inference

Some ideal graphons

W-graph as limit for dense graphs

Asymptotic framework: (a crude rephrasing of [20,9])

- (\mathcal{G}_n) = sequence of exchangeable graphs with increasing size (say n)
- ► t(F, G) = number of occurrences of subgraph F (with k nodes) in G normalized by n_[k].

W-graph as limit for dense graphs

Asymptotic framework: (a crude rephrasing of [20,9])

- (\mathcal{G}_n) = sequence of exchangeable graphs with increasing size (say n)
- ► t(F, G) = number of occurrences of subgraph F (with k nodes) in G normalized by n_[k].

Convergence: If for any finite set of fixed subgraphs (F_1, \ldots, F_m) , $(t(F_1, \mathcal{G}_n), \ldots, t(F_m, \mathcal{G}_n))$ converge in distribution, then

- there exist a *W*-graph \mathcal{G} such that $(\mathcal{G}_n) \stackrel{d}{\longrightarrow} \mathcal{G}$;
- for any fixed F, $\mathbb{E}t(F, \mathcal{G}_n) \longrightarrow f(F)$ where

$$f(F) = \int_{[0,1]^k} \prod_{(i,j)\in\mathcal{E}(F)} w(u_i, u_j) \, \mathrm{d} u_1 \dots \, \mathrm{d} u_k$$

Some comments

Questions

► How strong is the condition

 $(t(F_1, \mathcal{G}_n), \dots, t(F_m, \mathcal{G}_n))$ converge in distribution?

- Does it hold for most popular state-space models?
- ▶ Does it hold for other popular state graph models (e.g. ERGM [10])?

Some comments

Questions

▶ How strong is the condition

 $(t(F_1, \mathcal{G}_n), \dots, t(F_m, \mathcal{G}_n))$ converge in distribution?

- Does it hold for most popular state-space models?
- ▶ Does it hold for other popular state graph models (e.g. ERGM [10])?

Comments: If so

- One should be able to derive the graphon of any of these models.
- Only pairwise interactions (asymptotically) matter.
- More complex patterns (e.g. triangles in ERGM) are (asymptotically) useless.

Identifiability

Obvious identifiability problem: consider $\phi : [0, 1] \mapsto [0, 1]$ measure preserving, then the two graphons

$$w(u, v)$$
 and $w'(u, v) = w(\phi(u), \phi(v))$

give raise to the same random graph [9,26].

Identifiability

Obvious identifiability problem: consider $\phi : [0, 1] \mapsto [0, 1]$ measure preserving, then the two graphons

$$w(u, v)$$
 and $w'(u, v) = w(\phi(u), \phi(v))$

give raise to the same random graph [9,26].

Degree function: Denoting $D_i = \sum_{j \neq i} Y_{ij}$, $\mathbb{E}(D_i | U_i = u) = (n-1)g(u)$,

$$g(u)=\int_{[0,1]}w(u,v)\,\mathrm{d} v.$$

Identifiability

Obvious identifiability problem: consider $\phi : [0, 1] \mapsto [0, 1]$ measure preserving, then the two graphons

$$w(u, v)$$
 and $w'(u, v) = w(\phi(u), \phi(v))$

give raise to the same random graph [9,26].

Degree function: Denoting $D_i = \sum_{j \neq i} Y_{ij}$, $\mathbb{E}(D_i | U_i = u) = (n-1)g(u)$,

$$g(u)=\int_{[0,1]}w(u,v)\,\mathrm{d} v.$$

Identifiability condition [2,26,6]:

g(u) strictly increasing.

S. Robin (INRA/AgroParisTech)

W-graphs and their inference

Outline

Exchangeable graphs

W-graph & graphon function

Statistical inference

Variational Bayes inference of W-graph

From graphon to residual graphon

S. Robin (INRA/AgroParisTech)

W-graphs and their inference

COSTNET, Sept.'16 12 / 30

Infering w

Main issues

- W-graph is a state-space for graph = incomplete data model → Specificity of graph models: p([U_i]|Y) intractable¹.
- ► *W*-graph is a graph model
 - \rightarrow No prior ordering of the nodes is given in general.

¹due to graph moralization

Infering w

Main issues

- ► W-graph is a state-space for graph = incomplete data model → Specificity of graph models: p([U_i]|Y) intractable¹.
- ► *W*-graph is a graph model
 - \rightarrow No prior ordering of the nodes is given in general.

Specificity of W-graph

- ▶ Recent interest in the statistical community (since 2014)
 → but explosion since then.
- ▶ Main interest = flexibility of *w*
 - → Mostly non or semi-parametric methods.

¹due to graph moralization

S. Robin (INRA/AgroParisTech)

Low-rank connexion probability matrix

Connectivity matrix: $P(U) = [P_{ij}] := [w(U_i, U_j)]$

Low-rank connexion probability matrix

Connectivity matrix: $P(U) = [P_{ij}] := [w(U_i, U_j)]$

Least-square estimate:

$$\widehat{P} = \arg\min_{P} \sum_{i,j} (Y_{ij} - P_{ij})^2$$
 s.t. P has low rank.

Low-rank connexion probability matrix

Connectivity matrix: $P(U) = [P_{ij}] := [w(U_i, U_j)]$

Least-square estimate:

$$\widehat{P} = \arg\min_{P} \sum_{i,j} (Y_{ij} - P_{ij})^2$$
 s.t. P has low rank.

Some references:

- [7]: thresholding the singular values of Y + bounds on the MSE
- ▶ [26]: same principle + smoothing of the resulting graphon.

SBM-based approximations

SBM = W-graph with block-wise constant graphon function.

General strategy:

- 1. Assign nodes to block (+ order the blocks wrt degree)
- 2. Estimate w(u, v) with the empirical between block connectivity

²conditional on a correct block allocation ³including optimization of block allocation

SBM-based approximations

SBM = W-graph with block-wise constant graphon function.

General strategy:

- 1. Assign nodes to block (+ order the blocks wrt degree)
- 2. Estimate w(u, v) with the empirical between block connectivity

A series of works:

- ▶ [24]: Constant block width h (after degree ordering) + bound on $MISE(\hat{w})^2$
- ▶ [6]: Same idea + smoothing between neighbor blocks
- ► [16,11]: Convergence rate for the least-square estimate³ of a sparse graphon $w_n(u, v) = \rho_n w(u, v)$
- ▶ [18]: Bayesian model averaging of SBM with increasing number of blocks.
- ▶ And more [5,4]...

²conditional on a correct block allocation

³including optimization of block allocation

Outline

Exchangeable graphs

W-graph & graphon function

Statistical inference

Variational Bayes inference of W-graph

From graphon to residual graphon

Variational Bayes inference: General principle

Y = observed data, Z = latent variable, $\theta =$ parameter.

Frequentist and Bayesian inference often requires

 $p(Z|Y), \quad p(\theta|Y) \text{ or } p(\theta, Z|Y).$

Variational Bayes inference: General principle

Y = observed data, Z = latent variable, $\theta =$ parameter.

Frequentist and Bayesian inference often requires

$$p(Z|Y), \quad p(\theta|Y) \text{ or } p(\theta, Z|Y).$$

Variational inference: find $\tilde{p}(\cdot) \approx p(\cdot|Y)$.

Variational Bayes inference: General principle

Y = observed data, Z = latent variable, $\theta =$ parameter.

Frequentist and Bayesian inference often requires

$$p(Z|Y), p(\theta|Y) \text{ or } p(\theta, Z|Y).$$

Variational inference: find $\widetilde{p}(\cdot) \approx p(\cdot|Y)$.

$$\widetilde{p} = \arg\min_{q \in Q} D[q(\cdot) \parallel p(\cdot|Y)]$$

$$\blacktriangleright D[q \parallel p] = KL[q \parallel p] \qquad \blacktriangleright q(\ell) = \prod_i q_i(Z_i)$$

$$\blacktriangleright q(\ell) = \mathcal{N} \qquad \flat q(\ell, Z) = q(\ell)q(Z).$$

т

Variational Bayes inference of the graphon

SBM with K blocks:

- π block widths
- $\blacktriangleright \gamma$ block heights

Variational Bayes inference of the graphon

SBM with K blocks:

- π block widths
- γ block heights

VBEM inference [17]:

 $\widetilde{p}(\pi), \ \widetilde{p}(\gamma_{k\ell}), \ \widetilde{p}(Z_i)$ $\rightarrow \widetilde{\mathbb{E}}_{K}^{SBM}[w(u, v)]$

Variational Bayes inference of the graphon

SBM with K blocks:

- π block widths
- γ block heights

VBEM inference [17]:

$$\widetilde{p}(\pi), \ \widetilde{p}(\gamma_{k\ell}), \ \widetilde{p}(Z_i)$$

 $\rightarrow \widetilde{\mathbb{E}}_{K}^{SBM}[w(u, v)]$

Variational Bayes inference of the graphon

SBM with *K* blocks:

- π block widths
- γ block heights

VBEM inference [17]:

$$\widetilde{p}(\pi), \ \widetilde{p}(\gamma_{k\ell}), \ \widetilde{p}(Z_i)$$

$$\rightarrow \widetilde{\mathbb{E}}_{K}^{SBM}[w(u, v)]$$

Bayesian model averaging [18]:

$$\widetilde{\mathbb{E}}[w(u,v)] = \sum_{K} \widetilde{P}(K) \widetilde{\mathbb{E}}_{K}^{SBM}[w(u,v)]$$

S. Robin (INRA/AgroParisTech)

W-graphs and their inference

How to interpret a graphon?

French political blogs: n = 196 nodes [18]

 \rightarrow Depicts the heterogeneity of the network.

Outline

Exchangeable graphs

W-graph & graphon function

Statistical inference

Variational Bayes inference of W-graph

From graphon to residual graphon

From graphon to residual graphon

Accounting for covariates [19]

Data: Y = observed (binary) network, x = (edge) covariates

Data: Y = observed (binary) network, x = (edge) covariates

Questions:

- Does x explain the topology of Y?
- Residual (wrt x) heterogeneity in Y?

Data: Y = observed (binary) network, x = (edge) covariates

Questions:

- Does x explain the topology of Y?
- Residual (wrt x) heterogeneity in Y?

Logistic regression (H_0): logit $P(Y_{ij} = 1) = \beta_0 + x_{ij}^{\mathsf{T}}\beta$

Data: Y = observed (binary) network, x = (edge) covariates

Questions:

- Does x explain the topology of Y?
- Residual (wrt x) heterogeneity in Y?

Logistic regression (H_0): logit $P(Y_{ij} = 1) = \beta_0 + x_{ij}^{\mathsf{T}}\beta$

Logistic regression + graphon residual term: (U_i) iid ~ $\mathcal{U}[0, 1]$,

logit
$$P(Y_{ij} = 1 | U_i, U_j) = \omega(U_i, U_j) + x_{ij}^{\mathsf{T}}\beta$$

Data: Y = observed (binary) network, x = (edge) covariates

Questions:

- Does x explain the topology of Y?
- Residual (wrt x) heterogeneity in Y?

Logistic regression (H_0): logit $P(Y_{ij} = 1) = \beta_0 + x_{ij}^{\mathsf{T}}\beta$

Logistic regression + graphon residual term: (U_i) iid ~ $\mathcal{U}[0, 1]$,

logit
$$P(Y_{ij} = 1 | U_i, U_j) = \omega(U_i, U_j) + x_{ij}^{\mathsf{T}}\beta$$

Goodness of fit (GOF): Check if $\omega(u, v) = \text{cst}$ (= β_0)

Goodness-of-fit as model comparison

Auxiliary model M_K :

logit
$$P(Y_{ij} = 1 | U_i, U_j, K) = \omega_K^{SBM}(U_i, U_j) + x_{ij}^{\mathsf{T}}\beta.$$

Goodness-of-fit as model comparison

Auxiliary model M_K :

logit
$$P(Y_{ij} = 1 | U_i, U_j, K) = \omega_K^{SBM}(U_i, U_j) + x_{ij}^{\mathsf{T}}\beta$$
.

Goodness of fit:

$$H_0 = \{ \text{logistic regression is sufficient} \} = M_1$$

 $H_1 = \{ \text{logistic regression is not sufficient} \} = \bigcup_{K>1} M_K$

GOF is a assessed if

$$P(H_0|Y) = P(M_1|Y)$$
 is large.

Goodness-of-fit as model comparison

Auxiliary model M_K :

logit
$$P(Y_{ij} = 1 | U_i, U_j, K) = \omega_K^{SBM}(U_i, U_j) + x_{ij}^{\mathsf{T}}\beta$$
.

Goodness of fit:

$$H_0 = \{ \text{logistic regression is sufficient} \} = M_1$$

 $H_1 = \{ \text{logistic regression is not sufficient} \} = \bigcup_{K>1} M_K$

GOF is a assessed if

$$P(H_0|Y) = P(M_1|Y)$$
 is large.

Actually: use $\widetilde{P}(H_0)$ and $\widetilde{P}(M_1)$.

Political blog network

n = 196 blogs (N = 19110 pairs), 3 covariates, density = .075

Inferred graphon (no covariate)

Residual graphon (3 covariates)

 $\widetilde{P}(H_0) \simeq 10^{-172}$

Florentine business

n = 16 families (N = 120 pairs), 3 covariates, density = .12

Inferred graphon (no covariate)

Residual graphon (3 covariates)

 $\widetilde{P}(H_0) = .991$

Some more examples

network	size (n)	nb. covariates (<i>d</i>)	density	$\hat{p}(H_0 Y)$
Blog	196	3	0.075	3e-172
Tree	51	3	0.54	2e-115
Karate	34	8	0.14	3e-2
Florentine (marriage)	16	3	0.17	0.995
Florentine (business)	16	3	0.125	0.991
Faux Dixon High	248	17	0.02	1
CKM	219	39	0.015	1
AddHealth 67	530	21	0.007	2e-25

Conclusion

W-graph

- A well established object in the probability literature
- A more recent interest in the statistical community, with several theoretical results
- Still not very popular among practitioners

Conclusion

W-graph

- A well established object in the probability literature
- ► A more recent interest in the statistical community, with several theoretical results
- Still not very popular among practitioners

Variational Bayes inference and GOF

- R package on github.com/platouche/gofNetwork (soon on CRAN)
- Strongly relies on variational Bayes approximation of the posteriors.
 - \rightarrow VBEM asymptotically accurate for logistic regression and SBM
 - \rightarrow No clue about accuracy in the combined model.

References I

J. Beal, M. and Z. Ghahramani.

The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayes. Statist., 7:543–52, 2003.

P. J. Bickel and A. Chen.

A nonparametric view of network models and Newman-Girvan and other modularities. Proc. Natl. Acad. Sci. U.S.A., 106:21068–21073, Dec 2009.

B. Bollobás, S. Janson, and O. Riordan.

The phase transition in inhomogeneous random graphs. *Rand. Struct. Algo.*, 31(1):3–122, 2007.

C. Borgs, J.T. Chayes, H. Cohn, and S. Ganguly.

Consistent nonparametric estimation for heavy-tailed sparse graphs. arXiv preprint arXiv:1508.06675v2, 2016.

D. Cai, N. Ackerman, and C. Freer.

An iterative step-function estimator for graphons. arXiv preprint arXiv:1412.2129v2, 2016.

S. H. Chan and E. Airoldi.

A consistent histogram estimator for exchangeable graph models. In *ICML*, pages 208–216, 2014.

S. Chatterjee.

Matrix estimation by universal singular value thresholding. *The Annals of Statistics*, 43(1):177–214, 2015.

Model for heterogeneous random networks using continuous latent variables and an application to a tree-fungus network. Biometrics, 66(4):1043-1051, 2010.

References II

P. Diaconis and S. Janson

Graph limits and exchangeable random graphs. Rend. Mat. Appl., 7(28):33-61, 2008.

O. Frank and D. Strauss.

Markov graphs. J. Amer. Statist. Assoc., 81(395):832-842, 1986

C. Gao, Y. Lu, and H.H. Zhou

Rate-optimal graphon estimation. The Annals of Statistics, 43(6):2624-2652, 2015.

M. S. Handcock, A. E. Raftery, and J. M. Tantrum.

doi: 10.1111/j.1467-985X.2007.00471.x. P. D. Hoff, A. E. Raftery, and M. S. Handcock.

Model-based clustering for social networks.

Latent space approaches to social network analysis. J. Amer. Statist. Assoc., 97(460):1090-98, 2002

P.W. Holland and S. Leinhardt.

Structural sociometry.

Perspectives on social network research, pages 63-83, 1979

T. Jaakkola.

Advanced mean field methods: theory and practice, chapter Tutorial on variational approximation methods. MIT Press. 2000.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2):301-354, 2007.

O. Klopp, A.B. Tsybakov, and N. Verzelen.

Oracle inequalities for network models and sparse graphon estimation. arXiv preprint arXiv:1507.04118v2. 2016

References III

P. Latouche, E. Birmelé, and C. Ambroise.

Variational bayesian inference and complexity control for stochastic block models. Statis. Model., 12(1):93–115, 2012.

P. Latouche and S. Robin.

Variational bayes model averaging for graphon functions and motif frequencies inference in W-graph models. Statistics and Computing, pages 1–13, 2015.

P. Latouche, S. Robin, and S. Ouadah.

Goodness of fit of logistic models for random graphs. Technical report, arXiv:1508.00286, 2015.

L. Lovász and B. Szegedy.

Limits of dense graph sequences. Journal of Combinatorial Theory, Series B, 96(6):933 – 957, 2006.

C. Matias and S. Robin.

Modeling heterogeneity in random graphs through latent space models: a selective review. ESAIM: Proc., 47:55–74, 2014.

Tom Minka.

Divergence measures and message passing. Technical Report MSR-TR-2005-173, Microsoft Research Ltd, 2005.

Estimation and prediction for stochastic block-structures. J. Amer. Statist. Assoc., 96:1077–87, 2001.

S.C. Olhede and P.J. Wolfe.

Network histograms and universality of blockmodel approximation. Proceedings of the National Academy of Sciences, 111(41):14722–14727, 2014.

References IV

M. J. Wainwright and M. I. Jordan.

Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1–2):1–305, 2008.

J. Yang, C. Han, and E. Airoldi.

Nonparametric estimation and testing of exchangeable graph models. In AISTATS, pages 1060–1067, 2014.