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Exchangeable graphs

Some notations

Graph G = (V, E): V = vertices := {1, . . . n}, E = edges ⊂ V × V

Adjacency matrix Y = [Yij ]:

Y : n × n, Yij = I{(i , j) ∈ E}

Random graph: defined by the joint distribution of all edges

p(Y ) = p ([Yij ])

Undirected graph: Yij = Yji
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Exchangeable graphs

Exchangeability

Classical exchangeability: for any permutation σ

P([Yi = yi ]) = P([Yi = yσ(i)]).

Joint exchangeability for two dimensional arrays [9]:

P([Yij ] = [yij ]) = P([Yij ] = [yσ(i)σ(j)])

for any permutation σ (applied to both i and j).

(
Separate exchangeability: P([Yij ] = [yij ]) = P([Yij ] = [yσ(i)τ(j)])
for any permutations σ and τ → directed graphs.

)
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Exchangeable graphs

Aldous-Hoover theorem

Theorem: Y = [Yij ] is exchangeable iff there exists F : [0, 1]3 7→ {0, 1},

[Yij ]
d
= [F (Ui ,Uj ,Uij)]

where (Ui )i and (Uij)i,j are iid U [0, 1].

Properties:

I The Yij ’s are not independent (because of the Ui ’s and Uj ’s)

I The Yij ’s are conditionally independent given the Ui ’s:

[Yij ]|(Ui = ui )i
d
= [F (ui , uj ,Uij)]
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Exchangeable graphs

Some exchangeable random graphs

State-space models:

{Zi}i iid ∼ π

{Yij}ij indep. | {Zi}i ∼ B[γ(Zi ,Zj)]

I Latent space [13]*: Zi ∈ Rd , γ(Zi ,Zj) = f (‖Zi − Zj‖)
I Model-based clustering [12]: π = Gaussian mixture,

I Stochastic bloc-model (SBM) [14,23]: π =M, γ = [γk`]

I Continuous version of SBM [8]*: Zi ∈ Sd

I W -graph [20,9]: π = U[0,1]

See [21] for a statistical review + [3] for theoretical properties.

(*): Zi not explicitly random
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W -graph & graphon function

W -graph

I Graphon function:

w : [0, 1]2 7→ [0, 1]

I {Ui}i iid ∼ U[0,1]

I {Yij}ij indep. | {Ui}i :

Yij |Ui ,Uj ∼ B[w(Ui ,Uj)]

Graphon function w(u, u′)

Aldous-Hoover representation: F (Ui ,Uj ,Uij) = I{Uij < w(Ui ,Uj)}
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W -graph & graphon function

Some ideal graphons

’Scale free’ Community

SBM Small world
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W -graph & graphon function

W -graph as limit for dense graphs

Asymptotic framework: (a crude rephrasing of [20,9])

I (Gn) = sequence of exchangeable graphs with increasing size (say n)

I t(F ,G ) = number of occurrences of subgraph F (with k nodes) in G
normalized by n[k].

Convergence: If for any finite set of fixed subgraphs (F1, . . .Fm),
(t(F1,Gn), . . . t(Fm,Gn)) converge in distribution,
then

I there exist a W -graph G such that (Gn)
d−→ G;

I for any fixed F , Et(F ,Gn) −→ f (F ) where

f (F ) =

∫
[0,1]k

∏
(i,j)∈E(F )

w(ui , uj) du1 . . . duk
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W -graph & graphon function

Some comments

Questions

I How strong is the condition

(t(F1,Gn), . . . t(Fm,Gn)) converge in distribution?

I Does it hold for most popular state-space models?

I Does it hold for other popular state graph models (e.g. ERGM [10])?

Comments: If so

I One should be able to derive the graphon of any of these models.

I Only pairwise interactions (asymptotically) matter.

I More complex patterns (e.g. triangles in ERGM) are (asymptotically) useless.
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W -graph & graphon function

Identifiability

Obvious identifiability problem: consider φ : [0, 1] 7→ [0, 1] measure preserving,
then the two graphons

w(u, v) and w ′(u, v) = w(φ(u), φ(v))

give raise to the same random graph [9,26].

Degree function: Denoting Di =
∑

j 6=i Yij , E(Di |Ui = u) = (n − 1)g(u),

g(u) =

∫
[0,1]

w(u, v) dv .

Identifiability condition [2,26,6]:

g(u) strictly increasing.
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Statistical inference
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Statistical inference

Infering w

Main issues

I W -graph is a state-space for graph = incomplete data model
→ Specificity of graph models: p([Ui ]|Y ) intractable1.

I W -graph is a graph model
→ No prior ordering of the nodes is given in general.

Specificity of W -graph

I Recent interest in the statistical community (since 2014)
→ but explosion since then.

I Main interest = flexibility of w
→ Mostly non or semi-parametric methods.

1due to graph moralization
S. Robin (INRA/AgroParisTech) W -graphs and their inference COSTNET, Sept.’16 13 / 30



Statistical inference

Infering w

Main issues

I W -graph is a state-space for graph = incomplete data model
→ Specificity of graph models: p([Ui ]|Y ) intractable1.

I W -graph is a graph model
→ No prior ordering of the nodes is given in general.

Specificity of W -graph

I Recent interest in the statistical community (since 2014)
→ but explosion since then.

I Main interest = flexibility of w
→ Mostly non or semi-parametric methods.

1due to graph moralization
S. Robin (INRA/AgroParisTech) W -graphs and their inference COSTNET, Sept.’16 13 / 30



Statistical inference

Low-rank connexion probability matrix

Connectivity matrix: P(U) = [Pij ] := [w(Ui ,Uj)]

Least-square estimate:

P̂ = arg min
P

∑
i,j

(Yij − Pij)
2 s.t. P has low rank.

Some references:

I [7]: thresholding the singular values of Y + bounds on the MSE

I [26]: same principle + smoothing of the resulting graphon.
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Statistical inference

SBM-based approximations

SBM = W -graph with block-wise constant graphon function.

General strategy:

1. Assign nodes to block (+ order the blocks wrt degree)

2. Estimate w(u, v) with the empirical between block connectivity

A series of works:

I [24]: Constant block width h (after degree ordering) + bound on MISE (ŵ)2

I [6]: Same idea + smoothing between neighbor blocks

I [16,11]: Convergence rate for the least-square estimate3 of a sparse graphon
wn(u, v) = ρnw(u, v)

I [18]: Bayesian model averaging of SBM with increasing number of blocks.

I And more [5,4]...

2conditional on a correct block allocation
3including optimization of block allocation
S. Robin (INRA/AgroParisTech) W -graphs and their inference COSTNET, Sept.’16 15 / 30
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Variational Bayes inference of W -graph
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Variational Bayes inference of W -graph

Variational Bayes inference: General principle

Y = observed data, Z = latent variable, θ = parameter.

Frequentist and Bayesian inference often requires

p(Z |Y ), p(θ|Y ) or p(θ,Z |Y ).

Variational inference: find p̃(·) ≈ p(·|Y ).

Typically [15,1,22,25]

p̃ = arg min
q∈Q

D[q(·) ‖ p(·|Y )]

I D[q ‖ p] = KL[q ‖ p]

I q(θ) = N
I q(Z ) =

∏
i qi (Zi )

I q(θ,Z ) = q(θ)q(Z ).
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Variational Bayes inference of W -graph

Variational Bayes inference of the graphon

SBM with K blocks:

I π block widths

I γ block heights

VBEM inference [17]:

p̃(π), p̃(γk`), p̃(Zi )

→ ẼSBM
K [w(u, v)]

Inferred graphon with SBMK

Bayesian model averaging [18]:

Ẽ[w(u, v)] =
∑
K

P̃(K )ẼSBM
K [w(u, v)]
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Variational Bayes inference of W -graph

How to interpret a graphon?

French political blogs: n = 196 nodes [18]

→ Depicts the heterogeneity of the network.
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From graphon to residual graphon
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From graphon to residual graphon

Accounting for covariates [19]

Data: Y = observed (binary) network, x = (edge) covariates

Questions:

I Does x explain the topology of Y ?

I Residual (wrt x) heterogeneity in Y ?

Logistic regression (H0): logit P(Yij = 1) = β0 + xᵀij β

Logistic regression + graphon residual term: (Ui ) iid ∼ U [0, 1],

logit P(Yij = 1|Ui ,Uj) = ω(Ui ,Uj) + xᵀij β

Goodness of fit (GOF): Check if ω(u, v) = cst (= β0)
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From graphon to residual graphon

Goodness-of-fit as model comparison

Auxiliary model MK :

logit P(Yij = 1|Ui ,Uj ,K ) = ωSBM
K (Ui ,Uj) + xᵀij β.

Goodness of fit:

H0 = {logistic regression is sufficient} = M1

H1 = {logistic regression is not sufficient} =
⋃

K>1 MK

GOF is a assessed if
P(H0|Y ) = P(M1|Y ) is large.

Actually: use P̃(H0) and P̃(M1).
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From graphon to residual graphon

Political blog network

n = 196 blogs (N = 19110 pairs), 3 covariates, density = .075

Inferred graphon (no covariate) Residual graphon (3 covariates)

P̃(H0) ' 10−172
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From graphon to residual graphon

Florentine business

n = 16 families (N = 120 pairs), 3 covariates, density = .12

Inferred graphon (no covariate) Residual graphon (3 covariates)

P̃(H0) = .991
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From graphon to residual graphon

Some more examples

network size (n) nb. covariates (d) density p̂(H0|Y )
Blog 196 3 0.075 3e-172
Tree 51 3 0.54 2e-115
Karate 34 8 0.14 3e-2
Florentine (marriage) 16 3 0.17 0.995
Florentine (business) 16 3 0.125 0.991
Faux Dixon High 248 17 0.02 1
CKM 219 39 0.015 1
AddHealth 67 530 21 0.007 2e-25
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From graphon to residual graphon

Conclusion

W -graph

I A well established object in the probability literature

I A more recent interest in the statistical community, with several theoretical
results

I Still not very popular among practitioners

Variational Bayes inference and GOF

I R package on github.com/platouche/gofNetwork (soon on CRAN)

I Strongly relies on variational Bayes approximation of the posteriors.
→ VBEM asymptotically accurate for logistic regression and SBM
→ No clue about accuracy in the combined model.
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