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Motivation

Analysing (online) social networks one would like to know:

I How young is given social network?

I How many friends has an average network member?

I What proportion of population supports some political party?

I etc



Motivation

All such questions are related to the problem of estimating an
average of a function f (·) defined on the network nodes.

Let G = (V , E), with |V| = n, |E| = m, be an undirected
graph representing a social network.

Then, we are interested to estimate

µ(G) =
1

|V|
∑
v∈V

f (v). (1)



Constraints

Clearly, we are interested in the case when the topology of the
network is not known and complete crawl of the network is not
possible.

E.g., in online social networks, crawling is subject to an API
limit on the number of requests per minute.

A standard Twitter account can make no more than one
request per minute.

With this rate, we would crawl the entire Twitter social
network in 950 years...



Snowball vs Random Walk

There are two main approaches to organize network sampling:

I Snowball sampling: sample all neighbours of a newly
discovered node;

I Random Walk sampling: sample just one neighbour of a
newly discovered node;

Our focus will be on the random walk based methods, since
snowball sampling quickly requires excessive amount of
resources and is biased by the principal eigenvector of the
adjacency matrix.
(M. Newman, Networks, 2010; A. Maiya & T. Berger-Wolf,
2010)



Random Walk on Graph (Background)

The (discrete-time) Standard Random Walk {Xk , k = 0, 1, ...}
is defined by the transition probabilities

P(Xk+1 = j | Xk = i) = pij =

{
1/di , if j is a neighbour of i,
0, otherwise.

where di is the degree of node i .



Random Walk on Graph (Background)

Assuming the network is connected, the stationary distribution
of the standard Random Walk has a simple expression

πi =
di

2m
.

This stationary distribution is achieved roughly after the
relaxation time

trel =
1

1− |λ2|
,

where λ2 is the second largest by modulus the eigenvalue of
the transition matrix P .

We also have

||P(Xk = i)− πi || ≤ C |λ2|k , k = 1, 2, ...



Metropolis-Hastings Sampling

Since the standard random walk is biased towards large degree
nodes, it might not be a good idea to use directly the
estimator

µ̂(N) =
1

N

N∑
k=1

f (Xk).

One way around this problem is to use Metropolis-Hastings
chain with the following transition matrix PMH :

PMH
ij =

{
1

max(di ,dj )
if j 6= i

1−∑k 6=i
1

max(di ,dk )
if j = i .



Metropolis-Hastings Sampling

By using the CLT for MCs (see e.g., Brémaud 1999), one can
show the following central limit theorem for MH Chain.

Proposition
(Central Limit Theorem for MH) For MH Markov chain, it
holds that

√
N
(
µ̂
(N)
MH(G)− µ(G)

)
D−→ N (0, σ2

MH), as N →∞,

where σ2
MH = σ2

ff = 2
n
fTZf − 1

n
fT f −

(
1
n
fT1
)2

and where
Z = [I− P + 1πT ]−1 is the fundamental matrix.

In the context of online social networks, the use of MH
estimator was first proposed in (M. Gjoka et al, 2010).



Respondent Driven Sampling (RDS)

MH approach is known to be not very efficient because of
frequent resampling.

D. Heckathorn and co-authors in early 2000’s proposed to use
the standard random walk but to unbias the estimator in the
following way:

µ̂
(N)
RDS (G) =

∑N
t=1 f (Xt)/d(Xt)∑N

t=1 1/d(Xt)
:=

∑N
t=1 f

′
(Xt)∑N

t=1 g(Xt)
, (2)



Respondent Driven Sampling (RDS)

Using 2D CLT for MCs from (E. Nummelin, 2002), we can
show (our CSoNet’16 paper) that the RDS estimator is
asymptotically consistent with a given asymptotic variance.

Proposition
The RDS estimate µ̂RDS (G) satisfies

√
N(µ̂

(N)
RDS (G)− µ(G))

D−→ N (0, σ2
RDS ),

with σ2
RDS given by

σ2
RDS = d2

av

(
σ2
1 + σ2

2µ
2(G)− 2µ(G)σ2

12

)
,

where σ2
1 = 1

|E |f
TZf

′ − 1
2|E |
∑

x
f (x)2

d(x)
−
(

1
2|E |f

T1
)2
,

σ2
2 = σ2

gg = 1
|E |1

TZg − 1
2|E |g

T1− ( 1
dav

)2 and

σ2
12 = 1

2|E |f
TZg + 1

2|E |1
TZf

′ − 1
2|E |f

Tg − 1
dav

1
2|E |1

T f.



RDS Variance vs MH Variance
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Tour based estimators

One very fruitful idea is to use tours for the construction of
estimators. This idea goes back to the works (L. Massoulié et
al, 2006) and (C. Cooper et al, 2013).

For instance, suppose we would like to estimate the number of
edges in the network.

Consider the first return time to node i

T+
i = min{t > 0 : St = i & S0 = i}.

The expected value of the first return time is given by

E [T+
i ] =

1

πi
=

2m

di
.



Tour based estimators

Let Rk =
∑k

j=1 Tk be the time of the k-th return to node i .
Then, we can use the following estimator for the number of
edges

m̂ =
diRk

2k
.

This idea can be easily extended to estimate a large variety of
network characteristics.



Twitter as example



Twitter as example

Assuming that a rough estimation of the number of users is
500 · 106 and the average number of followers per user is 10,
the expected return time from the nodes like “Katy Perry” or
“Justin Bieber” is about 2 · 10 · 500 · 106/50 · 106 = 200.

To obtain a decent error (≤ 5%), we need about 1000
samples, and hence in total about 200000 operations. This is
orders of magnitude less than the size of the Twitter follower
graph!



Tour based estimators

In the tour-based estimators we return just to one node. Of
course, hitting a set of several nodes should be much easier.

The problem is that the process becomes not Markovian...

Fortunately, there are at least two solutions to this problem.



Super-node idea

The first solution is... to change the problem...
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super-node



Super-node idea

Using the results from (F. Chung, 1997), we can show that

Proposition
The random walk on the modified graph with super-node has
a smaller mixing time with respect to the walk on the original
graph.



Super-node idea

The super-node can be grown in time (with some care!) to
include for instance large degree nodes found during the tours.

More details in (K.A., B. Ribeiro and J. Sreedharan, ACM
Sigmetrics 2016).



Super-node idea

The second idea is based on reinforcement learning (our
CSoNet 2016 paper).

Define Yn := Xτn for τn := successive times to visit some set
of nodes V0.

Then {(Yn, τn)} is a semi-Markov process on V0.



Super-node idea

Let ξ := min{n > 0 : Xn ∈ V0} and define

Ti := Ei [ξ],

h(i) := Ei

[
ξ∑

m=1

f (Xm)

]
, i ∈ V0.

Then (see e.g., Ross, 2013), the Poisson equation for the
semi-Markov process (Yn, τn) is

V (i) = h(i)− βTi +
∑
j∈V0

pY (j |i)V (j), i ∈ V0. (3)

Here β is the desired stationary average of f .



Super-node idea

The reinforcement learning algorithm for the solution of the
Poisson equation works as follows:

Let {z} be IID uniform on V0. For each n ≥ 1, generate an
independent copy {X n

m} of {Xm} with X n
0 = z for

0 ≤ m ≤ ξ(n) := the first return time to V0.

A reinforcement learning step is then

Vn+1(i) = Vn(i) + a(n)I{z = i}× ξ(n)∑
m=1

f (X n
m)

− Vn(i0)ξ(n) + Vn(X n
ξ(n))− Vn(i)

 ,(4)

where a(n) > 0 are stepsizes satisfying∑
n a(n) =∞, ∑n a(n)2 <∞.



Super-node idea
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More details in (K.A., V. Borkar, A. Kadavankandy and J.
Sreedharan, CSoNet 2016).



Tour estimator with super-node

A very promising idea is to combine tour-type RDS estimators
with super-node:
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Historical interlude



Conclusion

Unfortunately, there is yet no unifying theory for network
sampling.

Fortunately, there is a number of interesting open questions:

I Can we do a theoretical analysis for NMSE which includes
both bias and asymptotic variance?

I Can we analyse main sampling schemes on some typical
random graph models? Is there the best sampling algorithm
for a given random graph model?

I Is there a substantial effect of network function on the
performance of an estimator?

I Is there a scheduling approach better than snowball and
random walk? Some compromise or generalization?

I Is there a better use of information in case of subsampling?
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Thank you!

Any questions and suggestions are welcome.


