On some sheaves of special groups

Vincent Astier

1 Introduction and basic notions

We consider sheaves of special groups (mainly over Boolean spaces). These are connected to the sheaves of abstract Witt rings considered by Marshall in [9], used therein in particular to classify spaces of orderings with a finite number of accumulation points. Our approach allows us to show that the so-called "question 1" (see [11, 1]) has a positive answer for these spaces. We conclude these notes by computing the behaviour of the Boolean hull functor when applied to a sheaf of special groups. The author would like to thank the referee for some very helpful comments.

Our references are [3] for special groups and the Boolean hull functor, and [10] for spaces of orderings. The functorial link between (reduced) special groups and spaces of orderings –a categorical duality– can be found in [3, Chapter 3]. If G is a (reduced) special group we denote by (X_G, G) (or simply X_G) its associated space of orderings. Conversely, if Y is a space of orderings, we denote by G_Y its associated reduced special group.

Definition 1.1 Let G be a special group and let $\operatorname{Sat}_f(G)$ be the set of saturated subgroups of finite index in G. We say that G is pure in the product of its finite quotients (ppfq, for short) if the canonical map

$$\begin{array}{rcl} G & \to & \prod_{\Delta \in \operatorname{Sat}_f(G)} G/\Delta \\ a & \mapsto & (a/\Delta)_{\Delta \in \operatorname{Sat}_f(G)} \end{array}$$

is pure, that is, reflects positive existential formulas with parameters in G. We naturally refer to this property as the property ppfq, and say that G is a ppfq special group.

Then question 1 in [11] is simply if all reduced special groups are ppfq. Note that Gladki and Marshall have shown in [5] that the answer is in general negative, i.e. that some reduced special groups are not ppfq.

Definition 1.2 (see [4], Part I) Let L be a first-order language containing a binary relation symbol for the equality and let X be a non-empty topological space. We consider the category of opens in X where the morphisms are the inclusions, and the category of L-structures where the morphisms are the morphisms of L-structures. A **sheaf of L-structures** over X is a contravariant functor Γ from the category of opens in X to the category of L-structures (we denote the image of an open C by $\Gamma(C)$ and the image of an inclusion $C \subseteq D$ of opens by $r_{D,C} : \Gamma(D) \to \Gamma(C)$) which satisfies the following properties:

- 1. $\Gamma(\emptyset)$ is the L-structure with only one element, in which every atomic formula is true;
- 2. (Sheaf property) For any C = ∪_{i∈I}C_i where C, C_i are opens in X for i in some index set I and any n ∈ N:
 If g
 _i ∈ Γ(C_i)ⁿ, i ∈ I, are such that r_{Cj,Cj}∩C_k(g
 j) = r{Ck,Cj}∩C_k(g
 _k) for every j, k ∈ I then there is g
 i ∈ Γ(C)ⁿ such that r{C,Ci}(g
 _j) = g
 _i for every i ∈ I, and for every atomic L-formula θ(x
 ̄) (the tuples x
 ̄ and g
 ̄ may be of different lengths):
 Γ(C) ⊨ θ(g
 ̄) if and only if for every i ∈ I Γ(C_i) ⊨ θ(g
 _i). (Remark that this implies that g
 ̄ is unique since L contains the equality.)

If Γ is a sheaf over $X, D \subseteq C$ are two opens in X and $f \in \Gamma(C)$, we will often write f instead of $r_{C,D}(f)$ if the context is clear enough to prevent any confusions.

For $x \in X$, the opens C containing x form a direct system and the direct limits $\Gamma(x) := \lim_{x \in C} \Gamma(C)$ are called **the stalks** of the sheaf. If C is an open containing $x \in X$, we denote by $r_{C,x}$ the canonical L-morphism from $\Gamma(C)$ to $\Gamma(x)$, and for convenience we write f(x) for $r_{C,x}(f)$ if $f \in \Gamma(C)$. The next lemma gathers a few well-known facts.

- **Lemma 1.3** 1. Let $x \in X$ and $a \in \Gamma(x)$. Then there exists an open C in $X, C \ni x$, and $f \in \Gamma(C)$ such that f(x) = a.
 - 2. Let $C = \bigcup_{i \in I} C_i$ where C, C_i are opens in X for i in some index set I. Then $\Gamma(C) = \prod_{i \in I} \Gamma(C_i)$ as L-structures (the map used for the identification being $g \mapsto (r_{C,C_i}(g))_{i \in I}$).
 - 3. Let C be open in X. Then the map $\Gamma(C) \to \prod_{x \in C} \Gamma(x), f \mapsto (f(x))_{x \in C}$ identifies $\Gamma(C)$ with an L-substructure of $\prod_{x \in C} \Gamma(x)$.

PROOF: (1) is clear by the definition of $\Gamma(x)$ as a direct limit, and (2) is a direct consequence of the sheaf property.

(3) Let $\theta(\bar{g})$ be an atomic *L*-formula with parameters $\bar{g} \in \Gamma(C)$. Suppose that $\Gamma(C) \models \theta(\bar{g})$. Then by definition of $\Gamma(x)$ as direct limit we get $\Gamma(x) \models \theta(\bar{g}(x))$, for every $x \in C$, which implies $\prod_{x \in C} \Gamma(x) \models \theta(\bar{g})$.

Suppose now that $\prod_{x \in C} \Gamma(x) \models \theta(\bar{g})$, i.e. $\Gamma(x) \models \theta(\bar{g}(x))$, for every $x \in C$. Let $x \in C$. By definition of $\Gamma(x)$ there is some open D_x in C such that $\Gamma(D_x) \models \theta(\bar{g})$. We have $C = \bigcup_{x \in C} D_x$, and by the sheaf property $\Gamma(C) \models \theta(\bar{g})$ if and only if $\Gamma(D_x) \models \theta(\bar{g})$ for every $x \in C$, which is true. \Box

Remark: Using lemma 1.3, we see that an equivalent formulation of the sheaf property is the conjunction of the two conditions:

- 1. Let $C = \bigcup_{i \in I} C_i$ where C, C_i are opens in X for i in some index set Iand let $g_i \in \Gamma(C_i), i \in I$, be such that $r_{C_j,C_j\cap C_k}(g_j) = r_{C_k,C_j\cap C_k}(g_k)$ for every $j,k \in I$. Then there is $g \in \Gamma(C)$ such that $r_{C,C_i}(g) = g_i$ for every $i \in I$ ("gluing" property).
- 2. $\Gamma(C)$ is an L-substructure of $\prod_{x \in C} \Gamma(x)$, for every open C in X.

Finally, we recall that a positive-primitive formula (pp-formula for short) in a language L is of the form

$$\exists \bar{x} \; \bigwedge_{i=1}^n R_i(\bar{t}_i(\bar{x})),$$

where the R_i are relations symbols of L and the $\bar{t}_i(\bar{x})$ are tuples of L-terms. It is easy to check that if $f : M \to N$ is an L-morphism between two L-structures M and N, f is reflects positive existential formulas with parameters in M if and only if f reflect pp-formulas with parameters in M. In particular, it is enought to consider pp-formulas in the definition of property ppfq.

2 Concerning positive-primitive formulas and property ppfq

The following proposition is an easy extension of [12, Proposition 3.4]:

Proposition 2.1 Let Γ be a sheaf of L-structures over a Boolean space X. Then the inclusion of $\Gamma(X)$ in $\prod_{x \in X} \Gamma(x)$ is a pure L-morphism.

PROOF: Let $\bar{g} \in \Gamma(X)$ and let $\phi(\bar{g})$ be a positive-primitive formula of the form $\exists \bar{v} \ \theta(\bar{g}, \bar{v})$ where θ is a conjunction of atomic formulas with parameters \bar{g} , such that $\prod_{x \in X} \Gamma(x) \models \phi(\bar{g})$, i.e. $\Gamma(x) \models \phi(\bar{g}(x))$ for every $x \in X$

(since $\phi(\bar{g})$ is positive-primitive). For $x \in X$ let $\bar{v}_x \in \Gamma(x)$ be such that $\Gamma(x) \models \theta(\bar{g}(x), \bar{v}_x)$. Then by lemma 1.3 (1) there is a clopen neighbourhood N_x of x and $\bar{\lambda}_x \in \Gamma(N_x)$ such that $\bar{\lambda}_x(x) = \bar{v}_x$. By the definition of $\Gamma(x)$ as direct limit there is a clopen M_x containing x such that $M_x \subseteq N_x$ and $\Gamma(M_x) \models \theta(\bar{g}, \bar{\lambda}_x)$.

The sets M_x ($x \in X$) cover X which has dimension 0 since it is Boolean. So by [6] p. 54 B) there is a finite partition $\{M_1, \ldots, M_n\}$ of X into clopen sets such that for every $1 \leq i \leq n$ there exists $x \in X$ with $M_i \subseteq M_x$. In particular there is some $\bar{\lambda}_i \in \Gamma(M_i)$ such that $\Gamma(M_i) \models \theta(\bar{g}, \bar{\lambda}_i)$.

Let $\bar{\lambda} := (\bar{\lambda}_1, \dots, \bar{\lambda}_n)$ in the decomposition $\Gamma(X) = \prod_{i=1}^n \Gamma(M_i)$ (see lemma 1.3 (2)). We have $\Gamma(X) \models \theta(\bar{g}, \bar{\lambda})$ (since $\Gamma(M_i) \models \theta(\bar{g}, \bar{\lambda}_i)$ for every *i* and θ is an atomic formula), so $\Gamma(X) \models \phi(\bar{g})$.

By a **sheaf of special groups**, respectively reduced special groups, we mean a sheaf such that the image of a non-empty open set is always a special group, respectively a reduced special group (and the image of the empty set is the only special group with one element).

If we consider a sheaf Γ of special groups (respectively reduced special groups) over X, the stalks will be special groups (respectively reduced special groups) since these two classes are closed under direct limits.

Conversely, if Γ is a sheaf of L_{SG} -structures over X Boolean and the stalks of Γ are all special groups (repectively reduced special groups), then $\Gamma(X)$ is a special group (respectively a reduced special group) since $\Gamma(X)$ is pure in $\prod_{x \in X} \Gamma(x)$ which is a special group (and is reduced if and only if all the stalks are reduced).

Suppose now that Γ is a sheaf of reduced special groups over X (which need not be Boolean) and consider a clopen C in X. Then by lemma 1.3 we have $\Gamma(X) = \Gamma(C) \times \Gamma(X \setminus C)$ as special groups, so $\Gamma(C)$ is a Pfister quotient of $\Gamma(X)$. If $x \in X$ has a system of neighborhoods consisting of clopen sets $C_i, i \in I$, then $\Gamma(x) = \lim_{K \to C} \Gamma(C_i)$ is also a Pfister quotient of $\Gamma(X)$. In terms of spaces of orderings: $\overrightarrow{X}_{\Gamma(C)}$ and $X_{\Gamma(x)}$ are subspaces of $X_{\Gamma(X)}$.

Theorem 2.2 Let Γ be a sheaf of reduced special groups over a Boolean space X and let C be a clopen in X.

- 1. If every stalk $\Gamma(x)$, for $x \in C$, is a ppfq reduced special group, then $\Gamma(C)$ is a ppfq reduced special group.
- 2. The following two conditions are equivalent:
 - (a) $\Gamma(x)$ is ppfq, for every $x \in C$.
 - (b) For every $x \in C$, there is a clopen D in C, $D \ni x$, such that $\Gamma(D)$ is ppfq.

Proof:

- 1. Since the class of special groups with the ppfq property is closed under products (it can be seen using, for instance, [1, Proposition 5]), $\prod_{x \in C} \Gamma(x)$ is a special group with the ppfq property. But $\Gamma(C)$ is pure in it by Proposition 2.1, so is ppfq by [1, Proposition 3].
- 2. "(a) \Rightarrow (b)" is clear since the first point of the theorem tells us that for every clopen D of C, $\Gamma(D)$ is ppfq. "(b) \Rightarrow (a)" Let $x \in C$ and let D be a clopen in C containing x such that $\Gamma(D)$ is ppfq. By the paragraph preceding the lemma, $\Gamma(x)$ is a Pfister quotient of $\Gamma(D)$, so is ppfq by [1, Proposition 6].

We now wish to use Marshall's results in [9, Chapter 8]. For this we check briefly that sheaves of reduced Witt rings correspond to sheaves of reduced special groups via the functor sending reduced Witt rings to reduced special groups (see [7] or [2]):

Let W be a sheaf of reduced Witt rings over a Boolean space X, and write W(C) for the image of the clopen C under W and $r_{D,C}^W$ for the image under W of the inclusion of clopens $C \subseteq D$. Let G be the functor which sends a clopen C in X to G(C) the reduced special group of W(C), and an inclusion $C \subseteq D$ of clopens in X to $r_{D,C}^G$ the morphism of special groups associated to the morphism of Witt rings $r_{D,C}^W$. We only need to check the sheaf property for G (we use the reformulation presented after Lemma 1.3):

Let $C = \bigcup_{i \in I} C_i$, where C, C_i are clopens in X and $g_i \in \Gamma(C_i)$ (for all $i \in I$), such that $r_{C_j,C_j\cap C_k}^G(g_j) = r_{C_k,C_j\cap C_k}^G(g_k)$ for every $j,k \in I$. Since for $A \subseteq B$ clopens in $X, G(A) \subseteq W(A)$ and $r_{B,A}^G = r_{B,A}^W \upharpoonright G(B)$, we can apply the sheaf property for W. This gives an element $g \in W(C)$ such that $r_{C,C_i}^W(g) = g_i$ for every $i \in I$ and we have to check that $g \in G(C)$. For this, observe that $r_{C,C_i}^W(g) = g_i \in G(C_i) \subseteq W(C_i)$ for every $i \in I$, which implies that $g_i(x)$ belongs to the reduced special group of W(x) for every $x \in C_i$ and every $i \in I$. So g(x) belongs to the reduced special group of W(x) for every $x \in C$. But morphisms of abstract Witt rings preserve the underlying special group, so we can consider sheaves of abstract Witt rings to be in the language L_{WR} of rings expanded by a predicate for the special group. Since W(C) is an L_{WR} -substructure of $\prod_{x \in C} W(x)$ by Lemma 1.3, we get that g is in G(C), the special group of W(C).

The rest of the sheaf property comes easily from the fact that if G is a special group and $a, b \in G$ then $a \in D_G(1, b)$ if and only if a(1 + b) = 1 + b in the Witt ring of G.

Following Marshall's terminology (see [9] p. 217), we say that a special group of the form $\Gamma(X)$, where Γ is a sheaf of special groups over a Boolean

space X, is obtained by **sheaf formation** from the stalks of the sheaf.

Corollary 2.3 Let G be a reduced special group whose space of orderings has only a finite number of accumulation points. Then G is ppfq.

PROOF: By [9, Proposition 8.17 together with Corollary 6.25] and using the correspondence between abstract Witt rings and special groups, such a special group is built up from the special group \mathbb{Z}_2 by using a finite number of times the operations of extension and sheaf formation. Since both operations preserve the property ppfq (see [11, Proposition 2.3] for the extension; Theorem 2.2 proves it for sheaf formations) and the reduced special group \mathbb{Z}_2 is ppfq, the result follows.

3 Boolean hull and sheaves

We conclude this note by computing the behaviour of the Boolean hull functor (see [3, Chapter 4, Section 2]) on sheaves and is related to [3, Theorem 6.34], which computes the Boolean hull of Boolean filtered powers of reduced special groups. We use the following notation: If G is a special group with associated space of orderings X_G and $\bar{g} = (g_1, \ldots, g_n) \in G$, $X_G(\bar{g})$ denotes the following basic clopen of X_G :

$$\{\sigma \in X_G \mid \sigma(g_1) = \cdots = \sigma(g_n) = 1\}.$$

Proposition 3.1 Let Γ be a sheaf of special groups over a Boolean space X. Let Γ_B be the map which sends a clopen C in X to the Boolean algebra $B_{\Gamma(C)}$, the empty set to the one-element Boolean algebra, and which associates to every $C \subseteq D$ clopens in X the morphism of Boolean algebras $B(r_{D,C})$: $B_{\Gamma(D)} \rightarrow B_{\Gamma(C)}$. Then Γ_B is a sheaf of Boolean algebras.

PROOF: For ease of notation we write X_U for $X_{\Gamma(U)}$. Since the Boolean hull operation is a functor, the only property we have to check to see that Γ_B is a sheaf is the sheaf property. We check its reformulation stated after lemma 1.3:

Let $C = \bigcup_{j \in J} C_j$ where C and C_j , $j \in J$, are clopens in X, and suppose we have $b_j \in B_{\Gamma(C_j)}$, $j \in J$, such that for every $j, k \in J$ $B(r_{C_j,C_j\cap C_k})(b_j) = B(r_{C_k,C_j\cap C_k})(b_k)$. Is there then some $b \in B_{\Gamma(C)}$ such that $B(r_{C,C_j})(b) = b_j$ for every $j \in J$?

We now reformulate the hypothesis using the definition of the Boolean hull functor: If $U \subseteq V$ are clopens in X, X_U is a subspace of X_V and $B_{\Gamma(U)}$, $B_{\Gamma(V)}$ are the Boolean algebras of clopens in X_U , X_V . Since the map $r_{V,U}$ is the Pfister quotient which corresponds to the inclusion of X_U in X_V as a subspace, the map $B(r_{V,U})$ from $B_{\Gamma(V)}$ to $B_{\Gamma(U)}$ just sends a clopen in X_V to its intersection with X_U . So the hypothesis of the sheaf property can be reformulated as follows:

We have b_j clopens in X_{C_j} , $j \in J$, such that for every $j, k \in J$ $b_j \cap X_{C_j \cap C_k} = b_k \cap X_{C_j \cap C_k}$. And we are looking for some clopen b in X_C such that for every $j \in J$ $b \cap X_{C_j} = b_j$.

Using [9, Proposition 8.2], we know that $X_D = \bigcup_{x \in D} X_x$ for every clopen D in X, (where X_x is the space of orderings of $\Gamma(x)$). In particular $X_C = \bigcup_{j \in J} X_{C_j}$ and we define $b = \bigcup_{j \in J} b_j$. We first check that b is clopen in X_C , and for this we use the following:

Fact 1: Let $j \in J$ and let A be open in X_{C_j} . Since $X_{C_j} \subseteq X_C$ we have $A \subseteq X_C$. Then A is open in X_C .

Proof of the fact: Let $\sigma \in A$. Since A is open in X_{C_j} there is $\bar{g}_j \in \Gamma(C_j)$ such that $\sigma \in X_{C_j}(\bar{g}_j) \subseteq A$. Define $\bar{g} = (\bar{g}_j, \overline{-1}) \in \Gamma(C) = \Gamma(C_j) \times \Gamma(C \setminus C_j)$. Then $X_C(\bar{g}) = X_{C_j}(\bar{g}_j)$ and $\sigma \in X_C(\bar{g}) \subseteq A$. End of the proof of Fact 1.

Applying Fact 1, each b_j is open in X_C and then $b = \bigcup_{j \in J} b_j$ is open in X_C . We now need a second fact:

Fact 2: $X_C \setminus b = \bigcup_{j \in J} (X_{C_i} \setminus b_j).$

Proof of the fact: " \subseteq " Let $\sigma \in X_C \setminus b$. Then $\sigma \in X_{C_j}$ for some $j \in J$ and $\sigma \notin b_j$ (otherwise $\sigma \in b$).

" \supseteq " Let $\sigma \in X_{C_j} \setminus b_j$ for some $j \in J$. Since $X_{C_j} \subseteq X_C$ we have $\sigma \in X_C$. Suppose $\sigma \in b$. Then $\sigma \in b_k \subseteq X_{C_k}$ for some $k \neq j$. Now $\sigma \in X_{C_j} \cap X_{C_k} = X_{C_j \cap C_k}$ (because for D clopen $X_D = \bigcup_{x \in D} X_x$ by [9, Proposition 8.2]). So $\sigma \in b_k \cap X_{C_j \cap C_k}$ which is equal to $b_j \cap X_{C_j \cap C_k}$ by hypothesis and we get $\sigma \in b_j$, a contradiction. End of the proof of Fact 2.

Since the b_j are clopens in X_{C_j} , the two facts then describe $X_C \setminus b$ as a union of opens of X_C , so $X_C \setminus b$ is open in X_C . We now check that $b \cap X_{C_j} = b_j$ for every $j \in J$: $b \cap X_{C_j} = (\bigcup_{k \in J} b_k) \cap X_{C_j} = \bigcup_{k \in J} (b_k \cap X_{C_j})$, which clearly contains $b_j \cap X_{C_j} = b_j$. For the other inclusion we have

 $b_k \cap X_{C_i} = b_k \cap X_{C_i} \cap X_{C_k} = b_k \cap X_{C_i \cap C_k} = b_j \cap X_{C_i \cap C_k} \subseteq b_j.$

The Boolean hull operation is a functor, so the map $r_{C,x} : \Gamma(C) \to \Gamma(x) = \lim_{\to D} \operatorname{clopen}_{\ni x} \Gamma(D)$ is sent to the map from $B_{\Gamma(C)}$ to $B_{\Gamma(x)} = \Gamma_B(x)$ given by the definition of $\Gamma_B(x)$ as direct limit, i.e. this last map is $B(r_{C,x})$. So to check the second condition of the reformulation of the sheaf property, we have to check that $f : B_{\Gamma(C)} \to \prod_{x \in C} B_{\Gamma(x)}, b \mapsto (B(r_{C,x})(b))_{x \in C}$ is a monomorphism of Boolean algebras. Since $r_{C,x}$ is the map corresponding to the inclusion of X_x in X_C as a subspace, the map $B(r_{C,x})$ just sends a clopen of X_C to its intersection with X_x . So the map f is in fact:

 $f : \{\text{clopens of } X_C\} \to \prod_{x \in C} \{\text{clopens of } X_x\}, b \mapsto (b \cap X_x)_{x \in C}.$ This is clearly a monomorphism of Boolean algebras since $X_C = \bigcup_{x \in C} X_x$ by [9,

Proposition 8.2].

Acknoledgements: The research leading to this note was carried out with the partial support of the European RTN Network (HPRN-CT-2002-00287) "Algebraic K-Theory, Linear Algebraic Groups and Related Structures", and the European RTN Network (HPRN-CT-2001-00271) "Real Algebraic and Analytic Geometry".

References

- Vincent Astier and Marcus Tressl. Axiomatization of local-global principles for pp-formulas in spaces of orderings. Archive for Mathematical Logic, 44(1):77–95, 2005.
- M. Dickmann. Anneaux de witt abstraits et groupes spéciaux. In Séminaire de Structures Algébriques Ordonnées, volume 42. Paris VII
 CNRS, Logique, Prépublications, 1993.
- [3] M. A. Dickmann and F. Miraglia. Special groups: Boolean-theoretic methods in the theory of quadratic forms. *Mem. Amer. Math. Soc.*, 145(689):xvi+247, 2000. With appendixes A and B by Dickmann and A. Petrovich.
- [4] Ellerman, D.P.: Sheaves of structures and generalized ultraproducts. Ann. Math. Logic 7, 163–195 (1974)
- [5] Gladki, P., Marshall, M.: The pp conjecture for spaces of orderings of rational conics. To appear
- [6] Witold Hurewicz and Henry Wallman. Dimension Theory. Princeton Mathematical Series, v. 4. Princeton University Press, Princeton, N. J., 1941.
- [7] Arileide Lira de Lima. Les groupes spéciaux, aspects algébriques et combinatoires de la théorie des espaces d'ordres abstraits. PhD thesis, University Paris 7, 1997.
- [8] Angus Macintyre. Model-completeness for sheaves of structures. Fundamenta Mathematicae, 81(1):73–89, 1973. Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, I.
- [9] Murray Marshall. Abstract Witt rings, volume 57 of Queen's Papers in Pure and Applied Mathematics. Queen's University, Kingston, Ont., 1980.

- [10] Murray A. Marshall. Spaces of orderings and abstract real spectra, volume 1636 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.
- [11] Murray A. Marshall. Open questions in the theory of spaces of orderings. J. Symbolic Logic, 67(1):341–352, 2002.
- [12] R. S. Pierce. Modules over commutative regular rings. Memoirs of the American Mathematical Society, No. 70. American Mathematical Society, Providence, R.I., 1967.