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1 Introduction and basic notions

We consider sheaves of special groups (mainly over Boolean spaces). These
are connected to the sheaves of abstract Witt rings considered by Marshall
in [9], used therein in particular to classify spaces of orderings with a finite
number of accumulation points. Our approach allows us to show that the
so-called “question 1” (see [11, 1]) has a positive answer for these spaces. We
conclude these notes by computing the behaviour of the Boolean hull functor
when applied to a sheaf of special groups. The author would like to thank
the referee for some very helpful comments.

Our references are [3] for special groups and the Boolean hull functor, and
[10] for spaces of orderings. The functorial link between (reduced) special
groups and spaces of orderings –a categorical duality– can be found in [3,
Chapter 3]. If G is a (reduced) special group we denote by (XG, G) (or
simply XG) its associated space of orderings. Conversely, if Y is a space of
orderings, we denote by GY its associated reduced special group.

Definition 1.1 Let G be a special group and let Satf (G) be the set of satu-
rated subgroups of finite index in G. We say that G is pure in the product of
its finite quotients (ppfq, for short) if the canonical map

G →
∏

∆∈Satf (G) G/∆

a 7→ (a/∆)∆∈Satf (G)

is pure, that is, reflects positive existential formulas with parameters in G.
We naturally refer to this property as the property ppfq, and say that G is a
ppfq special group.

Then question 1 in [11] is simply if all reduced special groups are ppfq. Note
that Gladki and Marshall have shown in [5] that the answer is in general
negative, i.e. that some reduced special groups are not ppfq.
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Definition 1.2 (see [4], Part I) Let L be a first-order language containing
a binary relation symbol for the equality and let X be a non-empty topolog-
ical space. We consider the category of opens in X where the morphisms
are the inclusions, and the category of L-structures where the morphisms
are the morphisms of L-structures. A sheaf of L-structures over X is a
contravariant functor Γ from the category of opens in X to the category of
L-structures (we denote the image of an open C by Γ(C) and the image of
an inclusion C ⊆ D of opens by rD,C : Γ(D) → Γ(C)) which satisfies the
following properties:

1. Γ(∅) is the L-structure with only one element, in which every atomic
formula is true;

2. (Sheaf property) For any C = ∪i∈ICi where C, Ci are opens in X
for i in some index set I and any n ∈ N:
If ḡi ∈ Γ(Ci)

n, i ∈ I, are such that rCj ,Cj∩Ck
(ḡj) = rCk,Cj∩Ck

(ḡk) for
every j, k ∈ I then there is ḡ ∈ Γ(C)n such that rC,Ci

(ḡ) = ḡi for every
i ∈ I, and for every atomic L-formula θ(x̄) (the tuples x̄ and ḡ may be
of different lengths):
Γ(C) |= θ(ḡ) if and only if for every i ∈ I Γ(Ci) |= θ(ḡi).
(Remark that this implies that ḡ is unique since L contains the equality.)

If Γ is a sheaf over X, D ⊆ C are two opens in X and f ∈ Γ(C), we will
often write f instead of rC,D(f) if the context is clear enough to prevent any
confusions.

For x ∈ X, the opens C containing x form a direct system and the direct
limits Γ(x) := lim→x∈CΓ(C) are called the stalks of the sheaf. If C is an
open containing x ∈ X, we denote by rC,x the canonical L-morphism from
Γ(C) to Γ(x), and for convenience we write f(x) for rC,x(f) if f ∈ Γ(C). The
next lemma gathers a few well-known facts.

Lemma 1.3 1. Let x ∈ X and a ∈ Γ(x). Then there exists an open C in
X, C 3 x, and f ∈ Γ(C) such that f(x) = a.

2. Let C = ∪̇i∈ICi where C, Ci are opens in X for i in some index set
I. Then Γ(C) =

∏
i∈I Γ(Ci) as L-structures (the map used for the

identification being g 7→ (rC,Ci
(g))i∈I).

3. Let C be open in X. Then the map Γ(C) →
∏

x∈C Γ(x), f 7→ (f(x))x∈C

identifies Γ(C) with an L-substructure of
∏

x∈C Γ(x).

Proof: (1) is clear by the definition of Γ(x) as a direct limit, and (2) is a
direct consequence of the sheaf property.
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(3) Let θ(ḡ) be an atomic L-formula with parameters ḡ ∈ Γ(C). Suppose
that Γ(C) |= θ(ḡ). Then by definition of Γ(x) as direct limit we get Γ(x) |=
θ(ḡ(x)), for every x ∈ C, which implies

∏
x∈C Γ(x) |= θ(ḡ).

Suppose now that
∏

x∈C Γ(x) |= θ(ḡ), i.e. Γ(x) |= θ(ḡ(x)), for every x ∈ C.
Let x ∈ C. By definition of Γ(x) there is some open Dx in C such that
Γ(Dx) |= θ(ḡ). We have C = ∪x∈CDx, and by the sheaf property Γ(C) |= θ(ḡ)
if and only if Γ(Dx) |= θ(ḡ) for every x ∈ C, which is true. �

Remark: Using lemma 1.3, we see that an equivalent formulation of the
sheaf property is the conjunction of the two conditions:

1. Let C = ∪i∈ICi where C, Ci are opens in X for i in some index set I
and let gi ∈ Γ(Ci), i ∈ I, be such that rCj ,Cj∩Ck

(gj) = rCk,Cj∩Ck
(gk) for

every j, k ∈ I. Then there is g ∈ Γ(C) such that rC,Ci
(g) = gi for every

i ∈ I (“gluing” property).

2. Γ(C) is an L-substructure of
∏

x∈C Γ(x), for every open C in X.

Finally, we recall that a positive-primitive formula (pp-formula for short)
in a language L is of the form

∃x̄
n∧

i=1

Ri(t̄i(x̄)),

where the Ri are relations symbols of L and the t̄i(x̄) are tuples of L-terms.
It is easy to check that if f : M → N is an L-morphism between two
L-structures M and N , f is reflects positive existential formulas with pa-
rameters in M if and only if f reflect pp-formulas with parameters in M . In
particular, it is enought to consider pp-formulas in the definition of property
ppfq.

2 Concerning positive-primitive formulas and

property ppfq

The following proposition is an easy extension of [12, Proposition 3.4]:

Proposition 2.1 Let Γ be a sheaf of L-structures over a Boolean space X.
Then the inclusion of Γ(X) in

∏
x∈X Γ(x) is a pure L-morphism.

Proof: Let ḡ ∈ Γ(X) and let φ(ḡ) be a positive-primitive formula of the
form ∃v̄ θ(ḡ, v̄) where θ is a conjunction of atomic formulas with parameters
ḡ, such that

∏
x∈X Γ(x) |= φ(ḡ), i.e. Γ(x) |= φ(ḡ(x)) for every x ∈ X
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(since φ(ḡ) is positive-primitive). For x ∈ X let v̄x ∈ Γ(x) be such that
Γ(x) |= θ(ḡ(x), v̄x). Then by lemma 1.3 (1) there is a clopen neighbourhood
Nx of x and λ̄x ∈ Γ(Nx) such that λ̄x(x) = v̄x. By the definition of Γ(x)
as direct limit there is a clopen Mx containing x such that Mx ⊆ Nx and
Γ(Mx) |= θ(ḡ, λ̄x).
The sets Mx (x ∈ X) cover X which has dimension 0 since it is Boolean.
So by [6] p. 54 B) there is a finite partition {M1, . . . ,Mn} of X into clopen
sets such that for every 1 ≤ i ≤ n there exists x ∈ X with Mi ⊆ Mx. In
particular there is some λ̄i ∈ Γ(Mi) such that Γ(Mi) |= θ(ḡ, λ̄i).

Let λ̄ := (λ̄1, . . . , λ̄n) in the decomposition Γ(X) =
∏n

i=1 Γ(Mi) (see
lemma 1.3 (2)). We have Γ(X) |= θ(ḡ, λ̄) (since Γ(Mi) |= θ(ḡ, λ̄i) for ev-
ery i and θ is an atomic formula), so Γ(X) |= φ(ḡ). �

By a sheaf of special groups, respectively reduced special groups, we
mean a sheaf such that the image of a non-empty open set is always a special
group, respectively a reduced special group (and the image of the empty set
is the only special group with one element).

If we consider a sheaf Γ of special groups (respectively reduced special
groups) over X, the stalks will be special groups (respectively reduced special
groups) since these two classes are closed under direct limits.

Conversely, if Γ is a sheaf of LSG-structures over X Boolean and the stalks
of Γ are all special groups (repectively reduced special groups), then Γ(X)
is a special group (respectively a reduced special group) since Γ(X) is pure
in

∏
x∈X Γ(x) which is a special group (and is reduced if and only if all the

stalks are reduced).
Suppose now that Γ is a sheaf of reduced special groups over X (which

need not be Boolean) and consider a clopen C in X. Then by lemma 1.3 we
have Γ(X) = Γ(C)×Γ(X \C) as special groups, so Γ(C) is a Pfister quotient
of Γ(X). If x ∈ X has a system of neighborhoods consisting of clopen sets
Ci, i ∈ I, then Γ(x) = lim

−→
Γ(Ci) is also a Pfister quotient of Γ(X). In terms

of spaces of orderings: XΓ(C) and XΓ(x) are subspaces of XΓ(X).

Theorem 2.2 Let Γ be a sheaf of reduced special groups over a Boolean space
X and let C be a clopen in X.

1. If every stalk Γ(x), for x ∈ C, is a ppfq reduced special group, then
Γ(C) is a ppfq reduced special group.

2. The following two conditions are equivalent:

(a) Γ(x) is ppfq, for every x ∈ C.

(b) For every x ∈ C, there is a clopen D in C, D 3 x, such that Γ(D)
is ppfq.
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Proof:

1. Since the class of special groups with the ppfq property is closed un-
der products (it can be seen using, for instance, [1, Proposition 5]),∏

x∈C Γ(x) is a special group with the ppfq property. But Γ(C) is pure
in it by Proposition 2.1, so is ppfq by [1, Proposition 3].

2. “(a) ⇒ (b)” is clear since the first point of the theorem tells us that
for every clopen D of C, Γ(D) is ppfq.
“(b) ⇒ (a)” Let x ∈ C and let D be a clopen in C containing x such
that Γ(D) is ppfq. By the paragraph preceding the lemma, Γ(x) is a
Pfister quotient of Γ(D), so is ppfq by [1, Proposition 6]. �

We now wish to use Marshall’s results in [9, Chapter 8]. For this we check
briefly that sheaves of reduced Witt rings correspond to sheaves of reduced
special groups via the functor sending reduced Witt rings to reduced special
groups (see [7] or [2]):
Let W be a sheaf of reduced Witt rings over a Boolean space X, and write
W (C) for the image of the clopen C under W and rW

D,C for the image under
W of the inclusion of clopens C ⊆ D. Let G be the functor which sends a
clopen C in X to G(C) the reduced special group of W (C), and an inclusion
C ⊆ D of clopens in X to rG

D,C the morphism of special groups associated to
the morphism of Witt rings rW

D,C . We only need to check the sheaf property
for G (we use the reformulation presented after Lemma 1.3):
Let C = ∪i∈ICi, where C, Ci are clopens in X and gi ∈ Γ(Ci) (for all i ∈ I),
such that rG

Cj ,Cj∩Ck
(gj) = rG

Ck,Cj∩Ck
(gk) for every j, k ∈ I. Since for A ⊆ B

clopens in X, G(A) ⊆ W (A) and rG
B,A = rW

B,A � G(B), we can apply the sheaf
property for W . This gives an element g ∈ W (C) such that rW

C,Ci
(g) = gi

for every i ∈ I and we have to check that g ∈ G(C). For this, observe that
rW
C,Ci

(g) = gi ∈ G(Ci) ⊆ W (Ci) for every i ∈ I, which implies that gi(x)
belongs to the reduced special group of W (x) for every x ∈ Ci and every
i ∈ I. So g(x) belongs to the reduced special group of W (x) for every x ∈ C.
But morphisms of abstract Witt rings preserve the underlying special group,
so we can consider sheaves of abstract Witt rings to be in the language LWR

of rings expanded by a predicate for the special group. Since W (C) is an
LWR-substructure of

∏
x∈C W (x) by Lemma 1.3, we get that g is in G(C),

the special group of W (C).
The rest of the sheaf property comes easily from the fact that if G is a special
group and a, b ∈ G then a ∈ DG〈1, b〉 if and only if a(1 + b) = 1 + b in the
Witt ring of G.

Following Marshall’s terminology (see [9] p. 217), we say that a special
group of the form Γ(X), where Γ is a sheaf of special groups over a Boolean
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space X, is obtained by sheaf formation from the stalks of the sheaf.

Corollary 2.3 Let G be a reduced special group whose space of orderings has
only a finite number of accumulation points. Then G is ppfq.

Proof: By [9, Proposition 8.17 together with Corollary 6.25] and using the
correspondence between abstract Witt rings and special groups, such a spe-
cial group is built up from the special group Z2 by using a finite number of
times the operations of extension and sheaf formation. Since both operations
preserve the property ppfq (see [11, Proposition 2.3] for the extension; The-
orem 2.2 proves it for sheaf formations) and the reduced special group Z2 is
ppfq, the result follows. �

3 Boolean hull and sheaves

We conclude this note by computing the behaviour of the Boolean hull functor
(see [3, Chapter 4, Section 2]) on sheaves and is related to [3, Theorem 6.34],
which computes the Boolean hull of Boolean filtered powers of reduced special
groups. We use the following notation: If G is a special group with associated
space of orderings XG and ḡ = (g1, . . . , gn) ∈ G, XG(ḡ) denotes the following
basic clopen of XG:

{σ ∈ XG | σ(g1) = · · · = σ(gn) = 1}.

Proposition 3.1 Let Γ be a sheaf of special groups over a Boolean space
X. Let ΓB be the map which sends a clopen C in X to the Boolean algebra
BΓ(C), the empty set to the one-element Boolean algebra, and which associates
to every C ⊆ D clopens in X the morphism of Boolean algebras B(rD,C) :
BΓ(D) → BΓ(C). Then ΓB is a sheaf of Boolean algebras.

Proof: For ease of notation we write XU for XΓ(U). Since the Boolean hull
operation is a functor, the only property we have to check to see that ΓB is
a sheaf is the sheaf property. We check its reformulation stated after lemma
1.3:
Let C = ∪j∈JCj where C and Cj, j ∈ J , are clopens in X, and suppose
we have bj ∈ BΓ(Cj), j ∈ J , such that for every j, k ∈ J B(rCj ,Cj∩Ck

)(bj) =
B(rCk,Cj∩Ck

)(bk). Is there then some b ∈ BΓ(C) such that B(rC,Cj
)(b) = bj for

every j ∈ J?
We now reformulate the hypothesis using the definition of the Boolean hull
functor: If U ⊆ V are clopens in X, XU is a subspace of XV and BΓ(U),
BΓ(V ) are the Boolean algebras of clopens in XU , XV . Since the map rV,U

is the Pfister quotient which corresponds to the inclusion of XU in XV as a
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subspace, the map B(rV,U) from BΓ(V ) to BΓ(U) just sends a clopen in XV

to its intersection with XU . So the hypothesis of the sheaf property can be
reformulated as follows:
We have bj clopens in XCj

, j ∈ J , such that for every j, k ∈ J bj ∩XCj∩Ck
=

bk ∩XCj∩Ck
. And we are looking for some clopen b in XC such that for every

j ∈ J b ∩XCj
= bj.

Using [9, Proposition 8.2], we know that XD = ∪̇x∈DXx for every clopen
D in X, (where Xx is the space of orderings of Γ(x)). In particular XC =
∪j∈JXCj

and we define b = ∪j∈Jbj. We first check that b is clopen in XC ,
and for this we use the following:
Fact 1: Let j ∈ J and let A be open in XCj

. Since XCj
⊆ XC we have

A ⊆ XC . Then A is open in XC .
Proof of the fact: Let σ ∈ A. Since A is open in XCj

there is ḡj ∈ Γ(Cj) such
that σ ∈ XCj

(ḡj) ⊆ A. Define ḡ = (ḡj,−1) ∈ Γ(C) = Γ(Cj) × Γ(C \ Cj).
Then XC(ḡ) = XCj

(ḡj) and σ ∈ XC(ḡ) ⊆ A. End of the proof of Fact 1.
Applying Fact 1, each bj is open in XC and then b = ∪j∈Jbj is open in

XC . We now need a second fact:
Fact 2: XC \ b = ∪j∈J(XCj

\ bj).
Proof of the fact: “⊆” Let σ ∈ XC \ b. Then σ ∈ XCj

for some j ∈ J and
σ 6∈ bj (otherwise σ ∈ b).
“⊇” Let σ ∈ XCj

\ bj for some j ∈ J . Since XCj
⊆ XC we have σ ∈ XC .

Suppose σ ∈ b. Then σ ∈ bk ⊆ XCk
for some k 6= j. Now σ ∈ XCj

∩XCk
=

XCj∩Ck
(because for D clopen XD = ∪x∈DXx by [9, Proposition 8.2]). So

σ ∈ bk ∩ XCj∩Ck
which is equal to bj ∩ XCj∩Ck

by hypothesis and we get
σ ∈ bj, a contradiction. End of the proof of Fact 2.

Since the bj are clopens in XCj
, the two facts then describe XC \ b as a

union of opens of XC , so XC\b is open in XC . We now check that b∩XCj
= bj

for every j ∈ J : b ∩XCj
= (∪k∈Jbk) ∩XCj

= ∪k∈J(bk ∩XCj
), which clearly

contains bj ∩XCj
= bj. For the other inclusion we have

bk ∩XCj
= bk ∩XCj

∩XCk
= bk ∩XCj∩Ck

= bj ∩XCj∩Ck
⊆ bj.

The Boolean hull operation is a functor, so the map rC,x : Γ(C) → Γ(x) =
lim→D clopen3x

Γ(D) is sent to the map from BΓ(C) to BΓ(x) = ΓB(x) given

by the definition of ΓB(x) as direct limit, i.e. this last map is B(rC,x). So
to check the second condition of the reformulation of the sheaf property,
we have to check that f : BΓ(C) →

∏
x∈C BΓ(x), b 7→ (B(rC,x)(b))x∈C is a

monomorphism of Boolean algebras. Since rC,x is the map corresponding to
the inclusion of Xx in XC as a subspace, the map B(rC,x) just sends a clopen
of XC to its intersection with Xx. So the map f is in fact:
f : {clopens of XC} →

∏
x∈C{clopens of Xx}, b 7→ (b ∩ Xx)x∈C . This is

clearly a monomorphism of Boolean algebras since XC = ∪̇x∈CXx by [9,
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Proposition 8.2]. �
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