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Abstract. We show that the theories of some (ordered) central simple algebras
with involution over real closed fields are model-complete or admit quantifier
elimination, and characterize positive cones in terms of morphisms in models of
some of these theories.
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1. Introduction and preliminaries

In a series of papers ([1, 2, 3, 4, 5]) the author and T. Unger investigated some
properties of central simple algebras with involution that are linked to orderings
on the base field and have strong similarities to classical notions in real algebra:
Signatures of hermitian forms, “ideals” in the Witt group, “orderings” (positive
cones) and valuations (gauges) on the central simple algebra with involution.

It is therefore natural to wonder if some model-theoretic properties, similar to the
ones of ordered fields, could also be found in (ordered) central simple algebras with
involution. This paper is a first investigation in this direction.

1.1. Algebras with involution. All fields in this paper will have characteristic
different from 2. Our main reference for central simple algebras with involutions is
[9], and we simply recall what will be needed in the paper.

By central simple algebra over a field K we mean an K-algebra A with 1 that is
finite-dimensional over K and such that K = Z(A). Such an algebra is isomorphic
to a matrix algebra Mℓ(D), for a unique ℓ ∈ N and a K-division algebra D that is
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unique up to K-isomorphism. A splitting field L of A is an extension L of K such
that A⊗K L ∼=Mm(L) for some m. Such a splitting field always exists (for instance
the algebraic closure of K), and degA := m =

√
dimK A is called the degree of A.

If A is a ring and σ is an involution on A, we denote by

Sym(A, σ) := {a ∈ A | σ(a) = a}
the set of symmetric elements of A.

In this paper, F will always denote a field. By a central simple algebra with
involution over F we mean a pair (A, σ) where A is a finite-dimensional F -algebra
with 1, whose centre Z(A) is a field, and where σ is an involution on A such that
F = Z(A) ∩ Sym(A, σ). Note that σ is then F -linear, and that [Z(A) : F ] ≤ 2. We
call F the base field of (A, σ).

The involution σ is said to be of the first kind if F = Z(A), and of the second
kind if [Z(A) : F ] = 2. A finer classification of involutions is given by their type:

Involutions of the first kind can have two types, described as follows (with the

notation m := degA): orthogonal if dimF Sym(A, σ) =
m(m+ 1)

2
, or symplectic if

dimF Sym(A, σ) =
m(m− 1)

2
), cf. [9, Proposition 2.6]. Involutions of the second

kind are also called of unitary type.

Recall that, by the Skolem-Noether theorem:

Proposition 1.1 ([9, Propositions 2.7 and 2.18]). If σ and γ are two F -linear
involutions on A and are of the same kind, then there is a ∈ A× such that σ =
Int(a) ◦ γ.

We will be particularly interested in central simple algebras with involution whose
base field F is real closed. As recalled above, they are (up to isomorphism) of the
form Mℓ(D) where D is a finite-dimensional division algebra over F . Since F is
real closed D is one of F , F (

√
−1), or (−1,−1)F (where (−1,−1)F denotes the

quaternion algebra over F with usual basis {1, i, j, k} such that i2 = j2 = −1 and
ij = −ji = k). We will denote the canonical F -linear involutions on F (

√
−1) and

(−1,−1)F by − in both cases.

Remark 1.2. Recall that, for a field F :

• F (
√
−1) is a field if and only if a2 + b2 = 0 implies a = b = 0 for every

a, b ∈ F , if and only if the quadratic form ⟨1, 1⟩ is anisotropic.
• (−1,−1)F is a division algebra if and only if a2 + b2 + c2 + d2 = 0 implies
a = b = c = d = 0 for every a, b, c, d ∈ F , if and only if the quadratic form
⟨1, 1, 1, 1⟩ is anisotropic.

Let F be a field such that (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)} is a

division algebra with involution. Let n ∈ N. The involution ϑt on Mn(D) is
orthogonal if (D,ϑ) = (F, id)

symplectic if (D,ϑ) = ((−1,−1)F ,−)

unitary if (D,ϑ) = (F (
√
−1),−).

In any of these three situations, PSD(Mn(D), ϑt) will denote the set of symmetric
positive-definite matrices. We will often simply write PSD if the algebra is clear
from the context.
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1.2. Model-theoretic notation. We will use the standard notation for L-structures
(see for instance [12, p 8]), but will not distinguish between a structure and its base
set: If M is an L-structure, we will denote the base set of M also by M .

If S is a symbol in a language L and M is an L-structure, SM will denote the
interpretation of S in M .

We will work with algebras with involution, and will be interested in various maps
and relations that are naturally considered in this context, for instance the involution
(often denoted σ), the base field (often denoted F ), the reduced trace map (denoted
Trd) etc. Our languages will contain symbols that will be interpreted by such an
involution, field, reduced trace map. . . In order to make them easily recognizable, we
will use the same symbols in the language, but underlined (so: σ, F , Trd, etc).

Frequently, an algebra with involution (A, σ) will be model of a theory whose
language contains more symbols than just σ. We will still denote it by (A, σ), or
even by A, when no confusion will seem likely to arise.

In this paper, “formula” means first-order formula and “theory” means first-order
theory.

1.3. Axiomatization of finite-dimensional central simple algebras.

Lemma 1.3. Let F be a field and let A be a finite-dimensional F -algebra whose
centre is a field. Then A is a central simple algebra over its centre if and only if A
is von Neumann regular.

Proof. Assume that A is a central simple algebra. We know that A ∼= Mn(D) for
some n ∈ N and some Z(A)-division algebra D. Then A is semisimple, and thus von
Neumann regular (see for instance [10, Corollary 4.24]).

Conversely, let A be von Neumann regular. By [10, Theorem 4.25] A is semisimple
(it is Noetherian since dimF A < ∞), so is a finite product of matrix rings over
division rings ([10, Theorem 3.5]). Since its centre is a field and thus not a product
of more than one field, A is a single matrix ring over a division ring, so is central
simple. □

For m ∈ N we define the following two theories:

CSAm := the theory of von Neumann regular rings

∪ {the centre is a field}
∪ {the dimension over the centre is m},

in the language LR of rings and, in the language LCSA-I := LR ∪ {F , σ}:
CSA-Im := the theory of von Neumann regular rings

∪ {the centre is a field, σ is an involution}
∪ {F is the field of all symmetric elements in the centre}
∪ {the dimension over F is m}

(CSA stands for central simple algebra and CSA-I for central simple algebra with
involution). Lemma 1.3 immediately gives:

Corollary 1.4. (1) The models of CSAm are exactly the central simple algebras
of dimension m over their centres.

(2) The models of CSA-Im are exactly the central simple algebras with involution
over F of dimension m over F (where F denotes the interpretation of F in
the model).
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1.4. The reduced trace, the ⋆ operation, and words of matrices. We will
consider two different traces.

(1) The usual matrix trace on Mn(D), where D is a division algebra:

tr((aij)i,j=1,...,n) =

n∑
i=1

aij .

(2) The reduced trace, TrdA, where A is a central simple algebra (see [9, Sec-
tion 1A]; we will often simply write Trd instead of TrdA if the algebra is
clear from the context).

If A is a central simple algebra over K := Z(A), the reduced trace is a
K-linear map from A to K. It is obtained by extending the scalars to a
splitting field L of A, (i.e., K ⊆ L and there is an isomorphism of L-algebras
f : A ⊗K L → Mm(L) for some m), and then by taking the usual trace in
Mm(L). It can be shown that the result does not depend on the choice of L
or of the isomorphism f (in particular the reduced trace is invariant under
isomorphisms of F -algebras). So, for a ∈ A:

TrdA(a) := tr(f(a⊗ 1)).

Remark 1.5. These two traces produce different results for a central simple algebra
of the form Mℓ(D) where D is a division algebra that is not a field (the reduced
trace will have values in Z(Mℓ(D)) = Z(D)), but are equal if D is a field since there
is no need to extend scalars to split the algebra.

Lemma 1.6. Let A be a central simple algebra over K and let f : A → K be
K-linear such that f(xy) = f(yx) for every x, y ∈ A and f(1) = degA. Then
f = TrdA.

Proof. Let L be a splitting field of A. A direct verification shows that (f⊗ id)(xy) =
(f ⊗ id)(yx) for every x, y ∈ A⊗K L ∼=Mm(L) (for some m ∈ N), and we still have
(f ⊗ id)(1) = degA = degMm(L). Therefore, by definition of the reduced trace, it
suffices to show that f ⊗ id is the reduced trace on Mn(L), i.e., it suffices to show
the result for A =Mn(L).

For r, s ∈ {1, . . . ,m}, let Ers be the matrix with 1 at entry (r, s) and 0 elsewhere.
We have, for r ̸= s:

f(Ers) = f(ErrErs) = f(ErsErr) = f(0) = 0.

Furthermore, f(xyx−1) = f(y) by hypothesis, for every y ∈ Mm(L) and x ∈
Mm(L)

×. Therefore, if Pr,s is the permutation matrix corresponding to the trans-
position (r s), we have Pr,sErrPr,s

−1 = Ess, so that

f(Ess) = f(Pr,sErrPr,s
−1) = f(Err).

In particular f(Im) =
∑m

r=1Err = mEss for any s ∈ {1, . . . ,m}.
Since f(Im) = m =

∑m
r=1 f(Err), it follows that f(Err) = 1 for every r, proving

that f = Trd on {Ers}r,s=1,...,m, which is a basis of Mm(L) over L. □

Lemma 1.7. Let A and B be two F -algebras such that A is central simple over
Z(A) and there is an isomorphism of F -algebras f : A→ B. Then, for every a ∈ A,
f(TrdA(a)) = TrdB(f(a)).

Proof. Let f0 := f ↾ Z(A) : Z(A) → Z(B). Using the action of Z(A) on Z(B)
induced by f0, we can build the map g : A′ := A⊗Z(A) Z(B) → B, a⊗ z 7→ f(a)z,
which is an isomorphism of Z(B)-algebras (it is injective since A′ is simple, and
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dimZ(B)A
′ = dimZ(A)A = dimZ(B)B). In particular, if a ∈ A then TrdA′(a⊗ 1) =

TrdB(f(a)).
We now consider the morphism of rings f0 : Z(A) → Z(B). By [16, Theorem 4.3

e)] we have f0(TrdA(a)) = TrdA′(a⊗ 1). The result follows. □

We consider more closely the case of the reduced trace on Mn(D), where D =
(−1,−1)F is a quaternion division algebra over F . A splitting extension of D is
given by L := F (

√
−1), and the map

f0 : D ⊗F L→M2(L),

i⊗ 1 7→
(

0 1
−1 0

)
, j ⊗ 1 7→

(
0

√
−1√

−1 0

)
, k ⊗ 1 7→

(√
−1 0
0 −

√
−1

)
is an isomorphism of L-algebras. It induces an isomorphism f : Mℓ((−1,−1)F ) →
M2ℓ(L) such that, if a = (ars), then f(a) = (f0(ars)). Therefore,

Trd(a) =
ℓ∑

r=1

tr(f0(arr)).

Writing arr = ur,1 + iur,2 + jur,3 + kur,4 with ur,1, . . . , ur,4 ∈ F , we have

tr(f0(arr)) = ur,1 tr(I2) + ur,2 tr(f(i)) + ur,3 tr(f(j)) + ur,4 tr(f(k))

= 2ur,1.

Thus:

(1.1) Trd(a) = 2
n∑
i=1

ur,1 = 2Re(tr(a)) = 2 tr(Re(a)).

We now introduce the ∗ operation, following [11] and [19] (we use Wiegmann’s
notation ∗ from [19] since we will mostly refer to this paper; Lee denotes it by the
function f): Let F be a field such that (−1,−1)F is a division algebra, and let
M ∈ Mn((−1,−1)F ), written as M = M1 + jM2 where M1,M2 ∈ Mn(F (

√
−1)).

We define:

M∗ :=

(
M1 −M2

M2 M1

)
From [11, Section 4], we have

Proposition 1.8. The map X 7→ X∗ is an injective morphism of rings with invo-
lution from (Mn((−1,−1)F ),−t) to (M2n(F (

√
−1)),−t).

Considering a ∈Mn((−1,−1)F ) written as a = a1+ja2 with a1, a2 ∈Mn(F (
√
−1)),

a direct computation shows that

tr(a∗) = tr(a1) + tr(a1) = 2 tr(Re(a)).

Putting this together with (1.1), we obtain:

Lemma 1.9. Let F be a field such that (−1,−1)F is a division algebra, and let
a ∈Mn((−1,−1)F ). Then

Trd(a) = tr(a∗).

We use these observations to reformulate in a uniform way some results from
several authors (see the proof for the references) on unitary similarity of tuples of
matrices. These results are already recalled in [8, Theorem 2.2.2] for the real and
complex cases.
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Theorem 1.10. Let (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)} where F is a

real closed field, and let d ∈ N. Then the following are equivalent, for any X,Y ∈
Mn(D)d:

(1) There is O ∈ Mn(D) such that ϑ(O)tO = In and ϑ(O)tXiO = Yi for i =
1, . . . , d.

(2) For every word w in x1, . . . , xd, ϑ(x1)
t, . . . , ϑ(xd)

t we have Trd(w(X,ϑ(X)t)) =
Trd(w(Y, ϑ(Y )t)).

(3) For every word w in x1, . . . , xd, ϑ(x1)
t, . . . , ϑ(xd)

t of length at most n2, we
have Trd(w(X,ϑ(X)t)) = Trd(w(Y, ϑ(Y )t)).

Proof. We first assume that F = R. Recall from Remark 1.5 that TrdMn(D) = tr
when D = R or C. The equivalence of (1) and (2) is [19, Theorem 4] for D = C,
and [18, Lemma 2 ] for D = R. The degree bounds for D = R and D = C are from
[13, Theorem 7.3], [14, Razmyslov’s Theorem, p. 451].

If (D,ϑ) = ((−1,−1)R,−), the result is a consequence of [19, Theorem 4] together
with [19, Theorem 1], as briefly explained in the final paragraph on the same page
as [19, Theorem 4], since Trd = 2(tr ◦Re) in this case. We give some details since
not many are given, and in order to make it clear that (3) is also covered:

(1)⇒(2): From ŌtXiO = Yi we get ŌtX̄i
t
O = Ȳi

t
for every i. Therefore we

have Ōtw(X, X̄t)O = w(ŌtXO, ŌtX̄tO) = w(Y, Ȳ t), and the result follows since
the reduced trace is invariant under F -algebra isomorphisms.

(2)⇒(3) is clear.
(3)⇒(1): By Lemma 1.9 we have tr(w(X,ϑ(X)t)∗) = tr(w(Y, ϑ(Y )t)∗) for every

word w of length at most n2. Since ∗ is a morphism of algebras with involution (cf.

Proposition 1.8) we get tr(w(X∗, X∗t)) = tr(w(Y ∗, Y ∗t)), i.e., Trd(w(X∗, X∗t)) =

Trd(w(Y ∗, Y ∗t)) since we are taking the trace of complex matrices, cf. Remark 1.5.

By the complex case, we get a unitary matrix U such that U
t
Xi

∗U = Yi
∗ for every

i = 1, . . . , d. By [19, Theorem 1] there is a unitary matrix V in M2n(C) such that

V = O∗ for some O ∈Mn((−1,−1)R) and V
t
Xi

∗V = Yi
∗ for every i = 1, . . . , d (the

proof of [19, Theorem 1] shows that V only depends on U , so is the same for every

i), i.e., O∗tXi
∗O∗ = Yi

∗ for every i = 1, . . . , d. It is direct to check that O is unitary
and, using that ∗ is an injective morphism of algebras with involution, we obtain

first (O
t
XiO)∗ = Y ∗

i and then O
t
XiO = Yi for every i = 1, . . . , d.

For the general case where F is a real closed field, observe that the equivalence of
(1) and (3) can be expressed as a first-order formula in the language of fields, and
thus follows from the case F = R. And it is clear that (1) ⇒ (2) (with the same
proof as above) and that (2) ⇒ (3). □

Remark 1.11. We need to use the reduced trace instead of the usual trace for matrices
with quaternion coefficients, since there are matrices A,B,U ∈M2((−1,−1)R) such

that U
t
U = I2, B = U

t
AU but tr(B) ̸= tr(A), see [20, Example 7.2].

2. Model completeness

2.1. Matrix bases. The matrix algebrasMn(F ),Mn(F (
√
−1)) andMn((−1,−1)F ),

where F is formally real (or even real closed), will play an important role in this
paper.

The essential properties of their canonical bases can be expressed by quantifier-free
formulas. We present these formulas below, as well as two immediate consequences
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(Lemmas 2.1 and 2.2). The results in this section are from [8, Section 2.1.2] for
Mn(F ) and Mn(F (

√
−1)):

(1) Case 1: The algebra Mn(F ). Let B := {Er,s}nr,s=1 be its canonical basis

(the matrix Er,s is the matrix with zeroes everywhere, except for a 1 at
coordinates (r, s)). We have

Mn(F ) |= δ(1)(Er,s)r,s∈{1,...,n},

where

δ(1)(Xr,s)r,s∈{1,...,n} :=
∧
r,s,t

Xr,s ·Xs,t = Xr,t ̸= 0 ∧
∧

r,s,t,ℓs̸=t

Xr,s ·Xt,ℓ = 0.

(2) Case 2: The algebra Mn(F (
√
−1)). Writing i :=

√
−1, the set B :=

{Er,s, Er,si}nr,s=1 is a basis of Mn(F (
√
−1)), and we have

Mn(F (
√
−1) |= δ(2)(Er,s, Er,si)r,s∈{1,...,n},

where

δ(3)(X(1)
r,s ,X

(i)
r,s)r,s∈{1,...,n} :=∧
x,y,z∈{1,i}

δ∈{−1,1}, xy=δz

∧
r,s,t

X(x)
r,s ·X(y)

s,t = δX
(z)
r,t ̸= 0 ∧

∧
r,s,t,ℓ,s̸=t

X(x)
r,s ·X(y)

t,ℓ = 0.

(3) Case 3: The algebra Mn((−1,−1)F ). We denote by {1, i, j, k} the usual
basis of (−1,−1)F . The set B := {Er,s, Er,si, Er,sj, Er,sk}nr,s=1 is a basis of

Mn((−1,−1)F ) and we have

Mn((−1,−1)F ) |= δ(3)(Er,s, Er,si, Er,sj, Er,sk)r,s∈{1,...,n},

where

δ(3)(X(1)
r,s ,X

(i)
r,s , X

(j)
r,s , X

(k)
r,s )r,s∈{1,...,n} :=∧

x,y,z∈{1,i,j,k}
δ∈{−1,1}, xy=δz

∧
r,s,t

X(x)
r,s ·X(y)

s,t = δX
(z)
r,t ̸= 0 ∧

∧
r,s,t,ℓ,s̸=t

X(x)
r,s ·X(y)

t,ℓ = 0.

Lemma 2.1. Let A be an F -algebra.

(1) If {er,s}r,s∈{1,...,n} ⊆ A is such that A |= δ(1)(er,s)r,s∈{1,...,n}. Then the set
{er,s}r,s∈{1,...,n} is linearly independent over F .

(2) Assume that F (
√
−1) is a field (cf. Remark 1.2) and that we have elements

e
(1)
r,s , e

(i)
r,s ∈ A (for r, s ∈ {1, . . . , n}) such that A |= δ(2)(e

(1)
r,s , e

(i)
r,s)r,s∈{1,...,n}.

Then the set {e(1)r,s , e(i)r,s}r,s∈{1,...,n} is linearly independent over F .
(3) Assume that (−1,−1)F is a division algebra (cf. Remark 1.2) and that we

have elements e
(1)
r,s , e

(i)
r,s, e

(j)
r,s , e

(k)
r,s ∈ A (for r, s ∈ {1, . . . , n}) such that

A |= δ(3)(e
(1)
r,s , e

(i)
r,s, e

(j)
r,s , e

(k)
r,s )r,s∈{1,...,n}. Then the set {e(1)r,s , e(i)r,s, e(j)r,s , e(k)r,s }r,s∈{1,...,n}

is linearly independent over F .

Proof. We prove the third statement, since it is the most involved. Assume that, for
some ur,s, vr,s, wr,s, zr,s ∈ F , we have∑

r,s

ur,se
(1)
r,s + vr,se

(i)
r,s + wr,se

(j)
r,s + zr,se

(k)
r,s = 0.
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Let s0, t ∈ {1, . . . , n}. Multiplying on the right by e
(1)
s0,t

we obtain∑
r

ur,s0e
(1)
r,t + vr,s0e

(i)
r,t + wr,s0e

(j)
r,t + zr,s0e

(k)
r,t = 0.

Multiplying this line on the left by e
(1)
t,r0

, e
(i)
t,r0

, e
(j)
t,r0

, or e
(k)
t,r0

, we obtain the following
four equations

ur0,s0e
(1)
t,t + vr0,s0e

(i)
t,t + wr0,s0e

(j)
t,t + zr0,s0e

(k)
t,t = 0(2.1)

ur0,s0e
(i)
t,t − vr0,s0e

(1)
t,t + wr0,s0e

(k)
t,t − zr0,s0e

(j)
t,t = 0(2.2)

ur0,s0e
(j)
t,t − vr0,s0e

(k)
t,t − wr0,s0e

(1)
t,t + zr0,s0e

(i)
t,t = 0(2.3)

ur0,s0e
(k)
t,t + vr0,s0e

(j)
t,t − wr0,s0e

(i)
t,t − zr0,s0e

(1)
t,t = 0.(2.4)

Computing ur0,s0(2.1)− vr0,s0(2.2)− wr0,s0(2.3)− zr0,s0(2.4), we obtain

u2r0,s0 + v2r0,s0 + w2
r0,s0 + w2

r0,s0 = 0,

and the result follows by hypothesis on F . □

Lemma 2.2. Let D ∈ {F, F (
√
−1), (−1,−1)F } with F a field such that D is a

division algebra (see Remark 1.2), and let A = Mn(D). Let B be an L-algebra
for some field L, such that dimF A = dimLB and A is a subring of B. Then
Z(A) = Z(B) ∩A.

Proof. We prove the case D = F , the other two are similar. With notation as
at the start of this section, we have A |= δ(1)(Er,s)r,s∈{1,...,n} and therefore B |=
δ(1)(Er,s), since δ

(1) is quantifier-free. By Lemma 2.1(1) and since dimLB = dimF A,
{Er,s}r,s∈{1,...,n} is a basis of B over L. In particular, for x ∈ A we have

x ∈ Z(A) ⇔ ∀r, s xEr,s = Er,sx in A

⇔ ∀r, s xEr,s = Er,sx in B

⇔ x ∈ Z(B). □

2.2. Model completeness. The objective of this section is Proposition 2.6, which
states that the theories CSAm and CSA-Im are model-complete if we ask that the
centre, respectively the base field, is real closed.

Lemma 2.3. Let D ∈ {F, F (
√
−1), (−1,−1)F } where F is a formally real field. Let

A be an F -algebra and f : A→Mn(D) be an isomorphism of F -algebras. Let B be
an L-algebra for some formally real field L, such that F ⊆ L, A is a subring of B,
and dimF A = dimLB. Then:

(1) There is an isomorphism of L-algebras g such that the following diagram is
commutative:

A
f //

⊆
��

Mn(D)

⊆
��

B g
// Mn(E)

where E :=


L if D = F

L(
√
−1) if D = F (

√
−1)

(−1,−1)F if D = (−1,−1)F

is a division algebra over L,

and the inclusion on the right is the canonical one induced by F ⊆ L.
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(2) If F ≺ L as fields, then the inclusion of A in B is elementary in the language
LR ∪ {Trd} (where Trd is interpreted by the reduced trace in A and B).

Proof. (1) Let E be defined as in the statement, and let i = 1 if D = F , i = 2
if D = F (

√
−1), and i = 3 if D = (−1,−1)F . Since L is formally real,

E is a division algebra. We consider the basis B of Mn(D) introduced in

cases 1, 2, and 3 at the start of Section 2.1. Then A |= δ(i)(f−1(B)), and

thus B |= δ(i)(f−1(B)) since δ(i) is quantifier-free. By Lemma 2.1, f−1(B)
is linearly independent in B over L and is thus a basis of B over L (since
dimF A = dimLB).

The structure constants of Mn(D) for the basis B over F , Mn(E) for the
basis B over L, A for the basis f−1(B) over F , and B for the basis f−1(B)

over L are all specified by the formula δ(i), so are all the same. Since B and
Mn(E) are L-algebras, it follows that the map g : B →Mn(E), f−1(X) 7→ X
for every X ∈ B, is an isomorphism and makes the diagram of the statement
commutative.

(2) Since the LR-structures Mn(D) and Mn(E) are interpretable in the same
way in F and in L, we have Mn(D) ≺Mn(E). The result follows because of
the commutativity of the diagram. □

We need a version of Lemma 2.3 for algebras with involution when the base field
is real closed. It requires first a preliminary lemma.

Lemma 2.4. Let (A, σ) be a central simple algebra with involution over F real
closed, and let n ∈ N and (D,ϑ) ∈ {(F, id), (F (

√
−1),−), ((−1,−1),−)} be such

that A ∼=Mn(D). Then:

(1) σ is of the first kind if and only if A ∼=Mn(F ) or A ∼=Mn((−1,−1)F );
(2) σ is of the second kind if and only if A ∼=Mn(F (

√
−1)).

In particular σ is of the same kind as ϑ and ϑt.

Proof. (1) Assume that σ is of the first kind, so that Z(A) = F and thus Z(A)
is ordered. Therefore Z(A) ̸∼= F (

√
−1), and A ̸∼=Mn(F (

√
−1)).

Assume that A ∼= Mn(F ) or A ∼= Mn((−1,−1)F ). Then Z(A) = F . If σ
is of the second kind, then F has a subfield of index 2, which is impossible
since F is real closed.

(2) It is a reformulation of (1). □

Lemma 2.5. Let (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)} with F real closed.

Let (A, σ) be an F -algebra with involution and f : A → Mn(D) be an isomorphism
of F -algebras. Let (B, τ) be an L-algebra with involution for some real closed field
L, such that (A, σ) is an LCSA-I-substructure of (B, τ) (i.e., F ⊆ L, and (A, σ) ⊆
(B, τ)), and dimF A = dimLB. Then:

(1) The involutions σ and τ are of the same kind.
(2) There are an isomorphism of L-algebras g and a ∈Mn(D)× such that, if

(E, ϑ′) :=


(L, id) if (D,ϑ) = (F, id)

(L(
√
−1),−) if (D,ϑ) = (F (

√
−1),−)

((−1,−1)F ,−) if (D,ϑ) = ((−1,−1)F ,−)
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then the following diagram is commutative

(A, σ)
f //

⊆
��

(Mn(D), Int(a) ◦ ϑt)

⊆
��

(B, τ) g
// (Mn(E), Int(a) ◦ (ϑ′)t)

where the inclusion on the right is the canonical one induced by F ⊆ L, and
all maps respect the reduced trace Trd.

(3) The inclusion of (A, σ) in (B, τ) is elementary in the language LCSA-I∪{Trd}
(where Trd is interpreted in each structure by the reduced trace).

Proof. (1) By Lemma 2.2, Z(A) ⊆ Z(B). If τ is of the first kind, then Z(B) ⊆
Sym(B, τ) and thus Z(A) ⊆ Sym(A, σ), so that σ is of the first kind.

If σ is of the first kind, we have A ∼= Mn(F ) or Mn((−1,−1)F ) by
Lemma 2.4, and thus dimF A = n2 (in the first case) or dimF A = 4n2 (in the
second case). Assume that τ is of the second kind, so that B ∼=Mℓ(F (

√
−1))

and thus dimLB = 2ℓ2. If A ∼= Mn(F ), and since dimF A = dimLB, we
get n2 = 2ℓ2, impossible. If A ∼= Mn((−1,−1)F ) we get 4n2 = 2ℓ2, also
impossible.

(2) By Lemma 2.4, σ is of the same kind as ϑ. Let (E, ϑ′) be the central simple
algebra with involution over L defined in the statement. Note that the
canonical inclusion of Mn(D) in Mn(E) respects the reduced trace Trd.

By Lemma 2.3, we know that there is an isomorphism g of L-algebras
such that the diagram without the involutions is commutative. In particular
τ is of the same kind as ϑ′ by Lemma 2.4.

Let σ′ be the involution Mn(D) such that f : (A, σ) → (Mn(D), σ′) is an
isomorphism of algebras with involution (i.e., σ′ ◦ f = f ◦ σ), and τ ′ be the
involution on Mn(E) such that g : (B, τ) → (Mn(E), τ ′) is an isomorphism
of algebras with involution (i.e., τ ′ ◦ g = g ◦ τ). Note that σ′ is of the
same kind as σ (and thus as ϑ) and that τ ′ is of the same kind as τ (and
thus as ϑ′). Using that g extends f , we obtain that τ ′ extends σ′, so that
(Mn(D), σ′) ⊆ (Mn(E), τ ′).

By the Skolem-Noether theorem (cf. Proposition 1.1), σ′ = Int(a) ◦ ϑt for
some a ∈ Mn(D)×, and τ ′ = Int(b) ◦ ϑ′t for some b ∈ Mn(E)×. Since τ ′

extends σ′ we have Int(a) ◦ ϑt = Int(b) ◦ (ϑ′)t on Mn(D), so that Int(a) =
Int(b) on Mn(D). If B is the basis of Mn(D) over F from the start of
Section 2.1, then B is a basis of Mn(E) over L, and Int(a) = Int(b) on B,
so that Int(a) = Int(b) on Mn(E). In particular we can take a = b, and the
diagram indicated in the statement is commutative in the language LCSA-I.

We still need to check that the maps respect the reduced trace: It is the
case for f and g by Lemma 1.7, it is clear for the canonical inclusion of
Mn(D) in Mn(E), and it is therefore also the case for the inclusion of (A, σ)
into (B, τ) since the diagram commutes.

(3) Since the LCSA-I-structures (Mn(D), Int(a) ◦ ϑt) and (Mn(E), Int(a) ◦ (ϑ′)t)
are interpretable in the same way in F and in L, and F ≺ L, we have
(Mn(D), Int(a) ◦ ϑt) ≺ (Mn(E), Int(a) ◦ (ϑ′)t) in LCSA-I. The result follows
because of the commutativity of the diagram. □

Let
CSAm,rcf := CSAm ∪ {the centre is real closed}



QUANTIFIER ELIMINATION FOR ALGEBRAS WITH INVOLUTION 11

in the language LR, and

CSA-Im,rcf := CSA-Im ∪ {F is real closed}
in the language LCSA-I.

Proposition 2.6. The theories CSAm,rcf and CSA-Im,rcf are model-complete in the
languages LR and LCSA-I, respectively.

More precisely, if M , N are models of CSAm,rcf (respectively CSA-Im,rcf) and
M ⊆ N in LR (respectively LCSA-I), then M ≺ N in LR ∪ {P ,Trd} (respectively
LCSA-I ∪ {P ,Trd}), where P is interpreted by the unique ordering on F and Trd is
interpreted by the reduced trace map in all models.

Proof. Let M ,N |= CSAm,rcf in LR, with M ⊆ N in LR. Then FM ≺ FN as
fields since both are real closed. The result is then Lemma 2.3(2) (since the ordering
on F is definable, as the set of all squares in F ). If M ⊆ N in LCSA-I, with
M ,N |= CSA-Im,rcf, then F

M ≺ FN and the result is Lemma 2.5(3). □

Let
CSAm,of := CSAm ∪ {P is an ordering on the centre}

in the language LR ∪ {P}, and
CSA-Im,of := CSA-Im ∪ {(F , P ) is an ordered field}

in the language LCSA-I ∪ {P}.

Corollary 2.7. The theory CSAm,rcf is the model-companion of CSAm,of.

Proof. It follows from Proposition 2.6, since CSAm,of and CSAm,rcf are clearly cothe-
ories ((A, σ) ⊆ (A ⊗Z(A) L, σ ⊗ id) where L is a real closure of Z(A) at its order-
ing). □

Remark 2.8. The theory CSA-Im,rcf is not the model-companion of CSA-Im,of be-
cause not every model of CSA-Im,of can be embedded in a model of CSA-Im,rcf in
the language LCSA-I ∪ {P}. The problem arises when the centre is a proper ordered
extension of the field of all symmetric elements of the centre (i.e., the interpretation
of F ):

Let A := (A, σ) |= CSA-Im,of with F ⊊ Z(A) = F (α0), where F := FA . We
can assume that α0 is a root of a polynomial X2 − d ∈ F [X]. The problem occurs
when d ∈ P := PA (the ordering on F ). Since α0 ̸∈ F , we have σ(α0) ̸= α0, and
thus σ(α0) = −α0 since α0 is a root of X2 − d. We show that (A, σ) cannot be an
LCSA-I ∪ {P}-substructure of a model B := (B, τ) of CSA-Im,rcf:

Assume it is the case, where L := FB is real closed. Then (L,L2) is an ordered
extension of (F, P ). Since d ∈ P , it has a square root α1 in L. In particular
τ(α1) = α1. We consider two cases:

(1) If α0 ∈ Z(B). Since α1 ∈ Z(B) and both are roots of X2−d, we have α1 = εα0

for some ε ∈ {−1, 1}, which implies τ(α1) = ετ(α0) = εσ(α0) = −εα0 = −α1,
contradiction.

(2) If α0 ̸∈ Z(B). Then α0 and −α0 are different from α1, and thus α0,−α0, α1

are three different roots of X2 − d in the field Z(B)(α0), impossible.

Remark 2.9. This situation (Z(A) = F (α0) where α0 is a root of X2−d with d ∈ P )
leads to another problem when extending the scalars in A from F to a real closure
L of (F, P ). Since d has a square root in L, we obtain

A⊗F L ∼= A⊗Z(A) Z(A)⊗F L ∼= A⊗Z(A) L[X]/(X2 − d)
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∼= (A⊗Z(A) L)× (A⊗Z(A) L),

which is not a simple algebra anymore. This situation does not occur when (A, σ)
is equipped with a positive cone over P , cf. Lemma 3.13.

3. Quantifier elimination

We turn our attention to quantifier elimination with the help of a simple extension
of [8, Theorem 2.2.4] (our Proposition 3.3). We then point out some potential prob-
lems, which can be avoided by introducing “orderings” (positive cones) on algebras
with involution, and specifying the type of the involution (Proposition 3.17).

Definition 3.1. Let (D,ϑ) be a division algebra with involution over F formally
real. We say that (D,ϑ) is

(1) of real type if (D,ϑ) = (F, id);
(2) of complex type if (D,ϑ) = (F (

√
−1),−);

(3) of quaternion type if (D,ϑ) = ((−1,−1)F ,−).

Lemma 3.2. Let (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)} where F is a real

closed field. Let M be elementarily equivalent to (Mn(D), ϑt) in L := LCSA-I ∪
{P ,Trd}, where P is interpreted in Mn(D) by the order on F , and Trd by the
reduced trace map.

Then there is an L-isomorphism ϕM : M → (Mn(DM ), (ϑM )t,Trd), where
(DM , ϑM ) is a sub-division algebra with involution of M over FM that is of the
same type as (D,ϑ) (note that FM is real closed).

Proof. Let N be the LCSA-I ∪ {P ,Trd}-structure (Mn(D), ϑt). It follows from
Lemma 1.6 that “Trd is the reduced trace” can be expressed by a first-order for-
mula (depending on n and D). We define three LCSA-I ∪ {P ,Trd}-formulas (with

reference to Section 2.1 for the formula δ(1)):

Ωorthogonal := (centre = F ) ∧ Trd is the reduced trace ∧

∃e11, . . . , enn
{
δ(1)(e11, . . . , enn) ∧ {e11, . . . , enn} is an F -basis ∧

σ = t
}

Ωunitary := ∃i
{
i2 = −1 ∧ (centre = F (i)) ∧ Trd is the reduced trace ∧

∃e11, . . . , enn δ(1)(e11, . . . , enn)∧

{e11, . . . , enn} is a basis over the centre ∧ σ = −t
}

Ωsymplectic := (centre = F ) ∧ Trd is the reduced trace ∧

∃i, j, k∃e11, . . . , enn
{
i2 = j2 = −1 ∧ ij = −ji = k ∧

SpanF {1, i, j, k} is a division algebra ∧ δ(1)(e11, . . . , enn) ∧
i, j, k commute with e11, . . . , enn ∧

{e11, . . . , enn} is a basis over SpanF {1, i, j, k} ∧ σ = −t
}

Let Ω be the only one of the above three formulas such that N |= Ω. Then M |= Ω
and the map ϕM is M →Mn(DM ), d ∈ DM 7→ d, ers 7→ Ers (the matrix with 1 at
entry (r, s) and 0 elsewhere). The map ϕM is an isomorphism of FM -algebras since
the formula Ω specifies the structure constants. It therefore respects the reduced
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trace, and it is clear that it respects the ordering on FM . Finally, FM is real closed
since FM ≡ FN . □

The following result is a special case of [8, Theorem 2.2.4] in the case of matrices
over real closed fields and algebraically closed fields, but also covers the additional
case of matrices over real quaternions. While the proof is the same as that of [8,
Theorem 2.2.4] (using Theorem 1.10 instead of [8, Theorem 2.2.2] in order to include
the quaternion case), we still reproduce the relevant parts of it for the convenience
of the reader, since it is reasonably short.

Proposition 3.3. Let (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)}, where F is

a real closed field. Let T be the theory (without parameters) of (Mn(D), ϑt) in
L := LCSA-I ∪ {P ,Trd}, where P is interpreted as the order on F , and Trd as the
reduced trace map.

Then T has quantifier elimination in L.

Proof. We first observe that T is model-complete: Let M , N be models of T such
that M ⊆ N as L-structures. Then M , N are models of CSA-Im,rcf for some m
and thus M ≺ N in LCSA-I ∪ {P ,Trd} by Proposition 2.6.

Therefore, it suffices to show that it has the amalgamation property over finitely
generated substructures (this follows from [12, Theorem 3.1.4], where the proof of
ii) implies i) shows that the common substructure can be taken finitely generated).
Let M ,N |= T and let A be a finitely generated L-substructure of M and N .

By Lemma 3.2, there are L-isomorphisms

ϕ : M → (Mn(DM ), ϑM
t,Trd) and ψ : N → (Mn(DN ), ϑN

t,Trd)

where (DM , ϑM ) and (DN , ϑN ) are over the real closed fields FM and FN , respec-
tively, and are of the same type as (D,ϑ). Therefore, we have

(Mn(DM ), ϑM
t,Trd) (Mn(DN ), ϑN

t,Trd)

A

ϕ↾A

hh

ψ↾A

66

Let R be the subring of A generated by the image of TrdA = TrdM ↾ A . It is
commutative since ϕ(R) is included in the field Z(M ). Since the theory of real closed
fields has quantifier elimination, it has the amalgamation property over substructures
([7, Proposition 3.5.19]), so there are a real closed field Ω and LR-embeddings ε :
FM → Ω, δ : FN → Ω such that the following diagram commutes:

Ω

FM

ε

==

FN

δ

aa

R
ϕ↾R

aa

ψ↾R

==

Let (DΩ, ϑΩ) be the division algebra with involution over Ω of the same type as
(D,ϑ) (and thus as (M , ϑM ) and (N , ϑN )). Both ε and δ induce canonical maps
from (DM , ϑM ) to (DΩ, ϑΩ) and from (DN , ϑN ) to (DΩ, ϑΩ), and thus canonical
maps

εn : (Mn(DM ), ϑM
t) → (Mn(DΩ), ϑΩ

t) and δn : (Mn(DN ), ϑN
t) → (Mn(DΩ), ϑΩ

t).
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It is clear that εn and δn are L-embeddings.

Since A is finitely generated, there are X1, . . . , Xd ∈ A such that A is generated
by X1, . . . , Xd as L-structure.

Claim: There is O ∈Mn(DΩ) such that ϑΩ(O)tO = In and ϑΩ(O)tεn(ϕ(Xi))O =
δn(ψ(Xi)) for i = 1, . . . , d.

Proof of the claim: Let Yi := εn(ϕ(Xi)) and Zi := δn(ϕ(Xi)). By Theorem 1.10
it suffices to show that

(3.1)
TrdMn(DΩ)(w(Y1, . . . , Yd,ϑΩ(Y1)

t, . . . , ϑΩ(Yd)
t))) =

TrdMn(DΩ)(w(Z1, . . . , Zd, ϑΩ(Z1)
t, . . . , ϑΩ(Zd)

t)))

for every word w(x1, . . . , xd, x
′
1, . . . , x

′
d). Consider

X := w(X1, . . . , Xd, σ
M (X1), . . . , σ

M (Xd)) ∈ A .

We have

TrdMn(DΩ)(εn(ϕ(X))) = ε(TrdMn(DM )(ϕ(X))) (by definition of εn)

= ε(ϕ(TrdA (X))) (since ϕ is an L-morphism)

= δ(ψ(TrdA (X))) (since ε ◦ ϕ ↾ R = δ ◦ ψ ↾ R),

while

TrdMn(DΩ)(δn(ψ(X))) = δ(TrdMn(DN )(ψ(X))) (by definition of δn)

= δ(ψ(TrdA (X))) (since ψ is an L-morphism).

Therefore TrdMn(DΩ)(εn(ϕ(X))) = TrdMn(DΩ)(δn(ψ(X))), proving (3.1) since ϕ, ψ,
εn and δn are L-embeddings. End of the proof of the Claim.

Taking O as in the claim, the map ξ : Mn(DΩ) → Mn(DΩ), X 7→ ϑΩ(O)tXO is
an L-automorphism of Mn(DΩ) (since the reduced trace is invariant under isomor-
phisms of Z(DΩ)-algebras). Using the Claim, we have ξ ◦ εn ◦ ϕ = δn ◦ψ on A , i.e.,
the maps ξ ◦ εn ◦ ϕ ↾ A and δn ◦ ψ ↾ A form an amalgamation of M and N over
A . □

We will now consider quantifier elimination for some theories of central simple
algebras with involution. We are interested in situations where the base field is
ordered, so we will naturally have these theories specify that it is real closed. The
main two difficulties are presented in the following remark.

Remark 3.4. Assume that T is a theory of central simple algebra with involution,
such that CSA-Im,rcf ⊆ T and T admits quantifier elimination:

(1) If structures like (M2n(F ),
t) and (Mn((−1,−1)F ),−t) are models of T . In

this case the amalgamation property applied to

(M2n(F ),
t) (Mn((−1,−1)F ),−t)

(Q, id)

ff 66

would give a common elementary extension of the structures (M2n(F ),
t)

and (Mn((−1,−1)F ),−t), which is not possible since the two involutions are
of different types (which can be expressed by a first-order property in the
language LR ∪ {σ}). So we need to avoid such (or similar) situations.
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(2) A model M of T with FM real closed will be isomorphic to (Mn(D), Int(a)◦
ϑt) (using the notation of Lemma 2.5) for some a ∈ Mn(D)×. In order to
use Proposition 3.3, we would like to be able to go back to an algebra of
the type (Mn(D

′), ϑ′t) (for some division algebra with involution (D′, ϑ′) of
the same type as (D,ϑ)), so we need a way to get some control on how the
involution is scaled by Int(a).

We will see in Section 3.3 that specifying the type of the involution (logically)
solves the first problem. The second will be solved by introducing a positive cone,
which will (on top of specifying an ordering on the base field) give some control
over the involution, due to the links between positive cones and positive involutions
(Remark 3.6(2) and Corollary 3.10(1)).

3.1. Positive cones and positive involutions. Positive cones on algebras with
involution have been introduced in [4] as an attempt to define a notion of ordering
that corresponds to signatures of hermitian forms. They are also closely linked to
positive involutions.

Definition 3.5 ([4, Definition 3.1]). Let (A, σ) be a central simple algebra with
involution over F . A prepositive cone P on (A, σ) is a subset P of Sym(A, σ) such
that

(P1) P ̸= ∅;
(P2) P + P ⊆ P;
(P3) σ(a) · P · a ⊆ P for every a ∈ A;
(P4) PF := {u ∈ F | uP ⊆ P} is an ordering on F .
(P5) P ∩ −P = {0} (we say that P is proper).

A prepositive cone P is over P ∈ XF (the set of all orderings on F ) if PF = P ,
and a positive cone is a prepositive cone that is maximal with respect to inclusion.

We recall the following long list of results about positive cones. Most of them are
direct or appear in some other papers.

Remark 3.6. (1) If P is a positive cone on (A, σ) and a ∈ P \ {0}, then PF =
P ′
F := {u ∈ F | ua ∈ P}. Indeed, we clearly have PF ⊆ P ′

F , and if
u ∈ P ′

F \ PF , then −u ∈ PF and thus ua,−ua ∈ P, contradicting (P5).
(2) It is possible for a positive cone not to contain the element 1. This depends on

the involution (see Proposition 3.8(1)). For instance, if a ∈ Sym(A, σ)∩A×,
then P is a positive cone on (A, σ) if and only if aP is a positive cone on
(A, Int(a) ◦ σ) ([4, Proposition 4.4]). This makes it easy to produce positive
cones that contain the element 1 and positive cones that do not.

(3) If P ∈ XF there may not be a positive cone over P . The set of orderings
over which there are no positive cones is the set Nil[A, σ] of orderings in XF

for which the signature of all hermitian forms is zero ([4, Proposition 6.6]).
The set Nil[A, σ] is actually a clopen subset of XF ([1, Corollary 6.5]).

(4) For P ∈ XF \Nil[A, σ], there are exactly two positive cones over P . If P is
one of them, the other one is −P ([4, Theorem 7.5]). This freedom to choose
the sign comes from the link between signatures of hermitian forms and
positive cones, and corresponds to the fact that the signature of hermitian
forms at P is only determined up to sign ([1, Start of Section 3.3]).

(5) Let (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)} with F real closed. The

only two positive cones on (Mn(D), ϑt) over the unique ordering of F are PSD
and NSD, the sets of positive semidefine, respectively negative semidefinite
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matrices. This follows from the previous item since it can be checked that
the set of PSD matrices is a positive cone over the unique ordering of F (it is
clearly a pre-positive cone; if PSD ⊊ P with P positive cone, using the fact
that symmetric matrices can be diagonalized by congruences, we can assume
by (P3) that P contains a diagonal matrix with at least one negative entry.
Using (P3) to only keep this negative entry we then obtain a non-zero NSD
matrix in P, contradicting (P5)).

(6) For (D,ϑ) as in (5), the set of positive semidefinite matrices in Mn(D) is
equal to HS(Mn(D), ϑt) := {ϑ(a)ta | a ∈ Mn(D)}, the set of hermitian
squares in (Mn(D).ϑt). This is due to the principal axis theorem (which also
holds for quaternions, cf. [20, Corollary 6.2]).

We will also more generally consider hermitian squares in an algebra with
involution (A, σ) and write

HS(A, σ) := {σ(a)a | a ∈ A}.

Definition 3.7 ([15, Definition 1.1]). Let (A, σ) be a central simple algebra with
involution over F , and let P ∈ XF . The involution σ is called positive at P if the form
A × A → Z(A), (x, y) 7→ Trd(σ(x)y) is positive semidefinite at P (hence positive
definite at P since it is nonsingular). For more details we refer to [3, Section 4].

We recall the following, which is obtained out of various results in [3, 4]:

Proposition 3.8. Let F be a formally real field.

(1) Let (A, σ) be a central simple algebra with involution over F and let P ∈ XF .
Then σ is positive at P if and only if there is a positive cone P on (A, σ)
over P such that 1 ∈ P.

Let (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)}.

(2) The involution ϑt on Mn(D) is positive at every P ∈ XF .
(3) Let a ∈ Sym(Mn(D), ϑt)× be such that Int(a) ◦ ϑt is positive at P . Then a

is a PSD or NSD matrix in Mn(D) (and, up to replacing a by −a, we can
assume that a is PSD).

Proof. (1) By [3, Corollary 4.6] σ is positive at P if and only if | signηP ⟨1⟩σ| = nP .
And by [4, final line of Theorem 7.5], | signηP ⟨1⟩σ| = mP if and only if 1
belongs to some positive cone over P . The link between both statements
comes from the fact that mP = nP , cf. [4, Proposition 6.7].

(2) Let P ∈ XF . The result follows from the first item, since 1 ∈ PSD which is
a positive cone on (Mn(D), ϑt) over P by Remark 3.6(5).

We make two observations for the proof of the final item:

(i) In the special case of (Mn(D), ϑt) with (D,ϑ) as indicated in the statement, the
signature of a hermitian form ⟨a⟩ϑt is (up to sign) equal to the usual Sylvester
signature of the matrix a (this is presented in [3], page 343: identifying sym-
metric matrices in Mn(D) with hermitian forms, the signature is –up to sign–
the map signP in equation (2.2), and the link with Sylvester signatures in the
cases considered in this proposition is the final bullet point on that page).

(ii) The integer nP defined in [4, (6.1)] is equal to n, again because of the precise
form of the algebra Mn(D) chosen in this proposition.

Using these, we have

(3) By [3, Proposition 4.8] (where σu is defined just before [3, Proposition 4.4])
we have signηP ⟨a−1⟩ϑt = ±nP , which is equal to ±n by (ii) above. Since
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⟨a−1⟩ϑt ∼= ⟨a⟩ϑt , we have signηP ⟨a−1⟩ϑt = signηP ⟨a⟩ϑt , and thus signηP ⟨a⟩ϑt =
±n. By (i), it follows that a is PSD if this signature is equal to n, and NSD
if it is equal to −n. □

Lemma 3.9. (1) Let (A, σ) be an algebra with involution over F , and let a ∈ A×

be such that a−1 = σ(b)b for some b ∈ A. Then Int(b) is an isomorphism of
F -algebras with involution from (A, Int(a) ◦ σ) to (A, σ).

(2) Let (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)} where F is a real closed

field, and let a be an invertible PSD matrix in Mn(D). Then the F -algebras
with involution (Mn(D), Int(a) ◦ ϑt) and (Mn(D), ϑt) are isomorphic.

Proof. (1) We simply have to check that Int(b) ◦ Int(a) ◦ σ = σ ◦ Int(b), but this
is a direct verification.

(2) The matrix a−1 is also PSD and, by the principal axis theorem (which holds
inMn(D); see [20, Corollary 6.2] for the quaternion case), there is b ∈Mn(D)
such that a−1 = ϑ(b)tb. The result now follows from the previous item. □

The next result shows how positive cones give us the control on the involution
that we would like to have in order to get quantifier elimination (see Remark 3.4(2)).

Corollary 3.10. Let (A, σ) be a central simple algebra with involution over F real
closed, and let P be a positive cone on (A, σ) over the unique ordering of F , such
that 1 ∈ P. Then

(1) There are (D,ϑ) ∈ {(F, id), (F (
√
−1),−), ((−1,−1)F ,−)} and an isomor-

phism f : (A, σ) → (Mn(D), ϑt) of F -algebras with involution such that
f(P) = PSD.

(2) P is equal to HS(A, σ) := {σ(a)a | a ∈ A}, the set of hermitian squares in
(A, σ).

Proof. (1) Since F is real closed there is an isomorphism f : A→Mn(D), where
(D,ϑ) ∈ {(F, id), (F (

√
−1),−), ((−1,−1)F ,−)}. Under this isomorphism,

the involution σ becomes Int(a)◦ϑt, so that f is an isomorphism of algebras
with involution from (A, σ) to (Mn(D), Int(a) ◦ ϑt).

By Proposition 3.8(1) and then (3), the involution σ is positive at P , and
thus we can take for a a PSD matrix. We then obtain from Lemma 3.9
an isomorphism of F -algebras with involution g : (A, σ) → (Mn(D), ϑt). In
particular g(P) is a positive cone on (Mn(D), ϑt) over F and 1 ∈ g(P), so
that g(P) = PSD (cf. Remark 3.6(5)).

(2) This is clear since any element of PSD is of the form ϑ(a)ta inMn(D) by the
principal axis theorem (see [20, Corollary 6.2] for the quaternion case). □

For the purpose of obtaining a first-order theory, we check that the fact that a
unary relation is a positive cone can be expressed by a first-order formula in models
of CSA-Im:

Lemma 3.11. Let m ∈ N.
(1) There is an LR ∪ {σ,P}-formula PCm such that for every A |= CSA-Im

and every interpretation PA of P in A : A |= PCm if and only if PA is
a positive cone on (A, σ).

(2) There is an LR∪{σ,P, P}-formula PC’m such that for every A |= CSA-Im,of
and every interpretation PA of P in A : A |= PC’m if and only if PA is
a positive cone on (A, σ) over PA .
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Proof. We prove the first statement (the second is obtained by taking the conjunction
of PMm and “P = PF ”, which is first-order in LR ∪ {P ,P}). We introduce some
notation first:

Let A = (A, σ) as algebra with involution over F . If P is a prepositive cone on
(A, σ) (over some ordering P := PF ), and a ∈ Sym(A, σ), we define

P[a] := {p+
k∑
i=1

uiσ(xi)axi | p ∈ P, k ∈ N, ui ∈ PF , xi ∈ A}.

It is easily seen that P[a] satisfies properties (P1) up to (P4) of the definition of
prepositive cone, and will be the smallest prepositive cone over P containing both
P and a if it is proper (i.e., satisfies (P5)).

The statement “P is a prepositive cone” is clearly first-order, so we only need to
express that it is a maximal prepositive cone. This can be done by expressing:

∀a ∈ Sym(A, σ) \ P P[a] = Sym(A, σ),

which itself can be expressed by a first-order formula if “z ∈ P[a]” can. By defini-
tion, P[a] is the convex cone over PF generated by the set

P ∪ {σ(x)ax | x ∈ A}.

This is a convex cone in A (with respect to the ordering PF ), and dimF A = m,
so by Carathéodory’s theorem (which holds for ordered fields, see for instance the
proof of [6, Chapter I, Theorem 2.3]), for z ∈ A we have

z ∈ P[a]

⇔

∃p ∈ P∃u1, x1, . . . , um+1, xm+1

m+1∧
i=1

ui ∈ PF ∧ z = p+
m+1∑
i=1

uiσ(xi)axi,

which is first-order since “u ∈ PF ” clearly is. □

3.2. Model-completeness. We define the theory of ordered central simple algebras
with involution of dimension m, and the same theory over a real closed field, in the
language LOCSA-I := LCSA-I ∪ {P}, to be:

OCSA-Im := CSA-Im ∪ {P is a positive cone}, and

OCSA-Im,rcf := CSA-Im,rcf ∪ {P is a positive cone}
(with reference to Lemma 3.11 for the axiomatization of “P is a positive cone”).

Proposition 3.12. The theory OCSA-Im,rcf is model-complete in LCSA-I ∪ {P},
and the theory OCSA-Im,rcf ∪ {Trd is the reduced trace} (cf. Lemma 1.6) is model-
complete in LCSA-I ∪ {P,Trd}.

Proof. Let M ⊆ N be two models of OCSA-Im,rcf. By Lemma 2.5, we have a
diagram as in statement (2) of this Lemma. We know that ±PSD(Mn(D), ϑt) =
±HS(Mn(D), ϑt) are the only positive cones on (Mn(D), ϑt) over the unique ordering
of F (see Remark 3.6(6) and (5)), and thus that ±aHS(Mn(D), ϑt) are the only
positive cones on (Mn(D), Int(a)◦ϑt) over the unique ordering of F (Remark 3.6(2)),

so that f(PM ) = εaHS(Mn(D), ϑt) for some ε ∈ {−1, 1}. Similarly, g(PN ) =

δaHS(Mn(E), (ϑ′)t) for some δ ∈ {−1, 1}. Since f(PM ) ⊆ g(PN ), we have δ = ε.

Therefore PM = f−1(a)HS(M , σM ) and PN = f−1(a)HS(N , σN ) are defined by
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the same LCSA-I-formula (with parameter a) in M and N . Both statements then
follow from Lemma 2.5(3). □

Lemma 3.13. Let (A, σ) be a central algebra with involution over F , and let P be
a positive cone on (A, σ) over P ∈ XF . Let (L,Q) be an ordered extension of (F, P ).
Then A⊗F L is a central simple algebra.

Proof. If F = Z(A) the result is clear (see for instance [9, Theorem 1.1(3) and
(4)]), so we can assume that F ̸= Z(A), i.e., that σ is of the second kind. In

particular Z(A) = F (
√
d) for some d ∈ F . By hypothesis P ∈ XF \Nil[A, σ] (see [4,

Proposition 6.6], where X̃F := XF \Nil[A, σ]), so that d ̸∈ P by [4, Proposition 8.4].

Therefore
√
d ̸∈ L (since

√
d is not in the real closure of (F, P )) and

A⊗F L = A⊗Z(A) Z(A)⊗F L = A⊗Z(A) L[X]/(X2 − d) = A⊗Z(A) L(
√
d),

which is central simple (see again [17, Chapter 8, Corollary 5.1]). □

Corollary 3.14. The theory OCSA-Im,rcf is the model-companion of OCSA-Im,
and the theory OCSA-Im,rcf ∪ {Trd is the reduced trace} is the model-companion of
OCSA-Im ∪ {Trd is the reduced trace}.

Proof. We only prove the second statement, since the first one is similar.
By Proposition 3.12 it suffices to show that OCSA-Im∪{Trd is the reduced trace}

and OCSA-Im,rcf ∪ {Trd is the reduced trace} are cotheories. Let M = (A, σ) be a

model of OCSA-Im, let F := FM , let P ∈ XF be such that PM is over P , and let
FP be a real closure of F at P . By Lemma 3.13, the algebra (A ⊗F L, σ ⊗ id) is
a central simple algebra with involution, and by [4, Proposition 5.8], it is equipped
with a positive cone containing P ⊗ 1. It is thus a model of OCSA-Im,rcf and the
inclusion A→ A⊗F L, a 7→ a⊗ 1 is a morphism in the language LCSA-I ∪{P,Trd},
since this map preserves the reduced trace by definition of the reduced trace. □

Recall from Remark 3.4(1) that OCSA-Im,rcf does not have the amalgamation
property over substructures (take the PSD matrices for positive cone on (Mn(R), t)
and on (Mn((−1,−1)R,−t) to turn them into models of OCSA-Im,rcf), and in par-
ticular does not have quantifier elimination (see [7, Proposition 3.5.19]).

3.3. Quantifier elimination with an involution of specified type.

Definition 3.15. We introduce a new constant symbol a and define the following
theories in the language LCSA-I ∪ {P,Trd, a}, where we specify the type of the
involution:

OCSA-I+m,rcf := OCSA-Im,rcf ∪{Trd is the reduced trace}∪ {a ∈ P, a is invertible}

and

OCSA-OI+m,rcf := OCSA-I+m,rcf ∪ {σ is an orthogonal involution}

OCSA-SI+m,rcf := OCSA-I+m,rcf ∪ {σ is a symplectic involution}

OCSA-UI+m,rcf := OCSA-I+m,rcf ∪ {σ is a unitary involution}

(with reference to Lemma 1.6 for the axiomatization of the reduced trace). Note
that every positive cone contains an invertible element by [4, Lemma 3.6].
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Remark 3.16. We can replace a by 1 in the theories above, so that the models
will have positive cones that contain 1 (and will correspond to situations where the
involution is positive, see Proposition 3.8(1). In this case there is no need to add
the new constant a to the language.

Proposition 3.17. The theories OCSA-OI+m,rcf, OCSA-SI+m,rcf and OCSA-UI+m,rcf
each have quantifier elimination in the language LCSA-I ∪ {Trd,P}.

Proof. We only prove it for OCSA-OI+m,rcf, since the others are similar.

By Proposition 3.12, the theory OCSA-OI+m,rcf is model-complete in the language

LCSA-I ∪ {P,Trd}, so we only need to show that it has the amalgamation property
over substructures. Let M ,N |= OCSA-OI+m,rcf and let A be a common LCSA-I ∪
{Trd,P}-substructure of M and N . Let ιM and ιN be the inclusions of A in M
and N , respectively.

In order to simplify the notation, we write a for the element aM = aA = aN , F
for the field FM , and L for the field FN .

We turn M and N into LCSA-I ∪ {P ,Trd,P}-structures by interpreting P in
M and N by the set defined by the quantifier-free LCSA-I ∪ {P}-formula (cf. Re-
mark 3.6(1)):

x ∈ F ∧ xa ∈ P.

Since this formula is quantifier-free, A is an LCSA-I ∪ {P ,Trd,P}-substructure of
M and N , i.e., the maps ιM and ιN are LCSA-I ∪ {P ,Trd,P}-morphisms.

Scaling the involutions by a, we obtain the following diagram (we only indicate
the base set, the involution, and the positive cone in each entry):

M ′ := (M , Int(a) ◦ σM , aPM ) N ′ := (N , Int(a) ◦ σN , aPN )

A ′ := (A , Int(a) ◦ σA , aPA )

ιM

ii

ιN

55

It is clear that ιM and ιN are still LCSA-I ∪ {P ,Trd,P}-morphisms. Moreover,

aPM is a positive cone on (M , Int(a) ◦ σM ) by [4, Proposition 4.4], and contains

1 (indeed a2 ∈ aPM so that, using that σM (a) = a and property (P3) of positive

cones, σM (a−1)a2a−1 = 1 ∈ aPM ). Similarly, 1 ∈ aPN .
Observe that the involution Int(a)◦σ is of the same type as σ since a is symmetric

(it follows from a ∈ P), by [9, Proposition 2.7(3)]. Therefore, by Corollary 3.10, we
have two LCSA-I ∪{P ,Trd,P}-isomorphisms (whose images are Mn(F ) and Mn(E)
since the involution is orthogonal, see the end of Section 1.1):

ϕ : M ′ → (Mn(F ),
t,PSD) and ψ : N ′ → (Mn(L),

t,PSD)

where Trd is interpreted by the reduced trace in Mn(F ) and Mn(L), and the maps
ϕ and ψ respect Trd by Lemma 1.7.

The two LCSA-I ∪ {P ,Trd}-structures (Mn(F ),
t, F,Trd) and (Mn(L),

t, L,Trd)
are models of the theory of (Mn(F ),−t, F,Trd) (F ≡ L and both structures are
interpretable in the same way in F and L) and ϕ ◦ ιM as well as ψ ◦ ιN are LCSA-I ∪
{P ,Trd}-morphisms.

By Proposition 3.3, we can amalgamate this diagram using two LCSA-I∪{P ,Trd}-
morphisms λ :Mn(F ) →Mn(K) and µ :Mn(L) →Mn(K). Since PSD is the set of
hermitian squares in all three structures (Corollary 3.10(2)), λ and µ respect PSD,
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so that the following diagram consists of LCSA-I ∪ {P ,Trd,P}-morphisms:

(Mn(K), t,PSD)

(Mn(F ),
t,PSD)

λ
55

(Mn(L),
t,PSD)

µ
ii

M

ϕ

OO

N

ψ

OO

A

ιM

ii

ιN

55

We now “scale back” and check that the morphisms (which are the same at the
level of the elements) are still morphisms in the language LCSA-I ∪ {P ,Trd,P}:

(Mn(K), Int(λ ◦ ϕ(a−1)) ◦ t, λ ◦ ϕ(a−1)PSD)

(Mn(F ), Int(ϕ(a
−1)) ◦ t, ϕ(a−1)PSD)

λ
55

(Mn(L), Int(ψ(a
−1)) ◦ t, ψ(a−1)PSD)

µ
ii

M

ϕ

OO

N

ψ

OO

A

ιM

ii

ιN

55

The morphisms fix the elements of F pointwise, so are clearly morphisms for {F , P}.
We check for the involutions and the positive cones:

• The map ϕ. For the positive cones, we want ϕ(PM ) ⊆ ϕ(a−1)PSD, which

is clear since ϕ(aPM ) ⊆ PSD by construction of ϕ. For the involutions, we
want ϕ ◦ σ(x) = Int(ϕ(a−1)) ◦ t ◦ ϕ(x) for every x ∈ M . We successively
have, for every x′ ∈ M :

ϕ ◦ Int(a) ◦ σM (x′) = t ◦ ϕ(x′) (by definition of ϕ)

⇔ ϕ(aσM (x′)a−1) = ϕ(x′)t

⇔ ϕ(σM (a−1x′a)) = ϕ(x′)t (using that σM (a) = a)

⇔ ϕ ◦ σM (x) = ϕ(axa−1)t (where x := a−1x′a)

⇔ ϕ ◦ σM (x) = ϕ(a−1)tϕ(x)tϕ(a)t

⇔ ϕ ◦ σM (x) = Int(ϕ(a−1)t) ◦ t ◦ ϕ(x)

and the result follows since ϕ(a)t = ϕ(a) (indeed, using that ϕ◦Int(a)◦σM =
t ◦ ϕ by definition of ϕ, we obtain ϕ(a) = ϕ(aσM (a)a−1) = ϕ(a)t).

• The map ψ: It is the exact same argument as for ϕ.
• The map λ. It is clear for the positive cones. For the involutions, we want
λ ◦ Int(ϕ(a−1)) ◦ t = Int(λ ◦ϕ(a−1)) ◦ t ◦λ. Let x ∈Mn(F ). Then, using that
t ◦ λ = λ ◦ t (by definition of λ), we get

Int(λ ◦ ϕ(a−1)) ◦ t ◦ λ(x) = λ ◦ ϕ(a−1)λ(x)tλ ◦ ϕ(a)
= λ(ϕ(a−1)xtϕ(a))
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= λ ◦ Int(ϕ(a−1)) ◦ t(x).
• The map µ. Recall that by choice of λ and µ we have µ◦ψ(a) = λ◦ϕ(a) and
thus µ ◦ ψ(a−1) = λ ◦ ϕ(a−1). For the positive cones, and since µ(PSD) ⊆
PSD, we have µ(ψ(a−1)PSD) = µ ◦ ψ(a−1)µ(PSD) ⊆ λ ◦ ϕ(a−1)PSD. For
the involutions, we want µ ◦ Int(ψ(a−1)) ◦ t = Int(λ ◦ ϕ(a−1)) ◦ t ◦ µ, i.e.,
µ ◦ Int(ψ(a−1)) ◦ t = Int(µ ◦ ψ(a−1)) ◦ t ◦ µ. Using that t ◦ µ = µ ◦ t (by
definition of µ), we get

Int(µ ◦ ψ(a−1)) ◦ t ◦ µ(x) = µ ◦ ψ(a−1)µ(x)tµ ◦ ψ(a)
= µ(ψ(a−1)xtψ(a))

= µ ◦ Int(ψ(a−1)) ◦ t(x). □

Corollary 3.18. Each of the final three theories from Definition 3.15 is the model-
companion of the same theory where we do not specify that F is real closed.

Proof. We prove it for T := OCSA-SI+m,rcf, the argument is the same for the other

two. Let T0 be this theory whithout specifying that F is real closed. We know that
T is model-complete by Proposition 3.17, so we only have to show that T and T0
are cotheories: Let (A, σ) be a central simple algebra with involution over F that is
a model of T0, so that there is a positive cone P on (A, σ). Let L be a real closure
of F at the ordering PF . Then (A ⊗F L, σ ⊗ id) is a central simple algebra with
involution over L (see Lemma 3.13), is equipped with a positive cone Q containing
P⊗1 ([4, Proposition 5.8]), and is thus a model of T that contains (A, σ,P,Trd, a)
as an LCSA-I∪{P,Trd, a}-substructure (the reduced trace of an element of a remains
the same after scalar extension, by definition of the reduced trace). □

4. Correspondence between positive cones and morphisms

The model-completeness of OCSA-Im,rcf makes it interesting to point out that
positive cones on algebras with involution are in bijection with morphisms of LCSA-I-
structures into models of OCSA-Im,rcf.

Lemma 4.1. Let (A, σ) be a central simple algebra with involution over F and let
P ∈ XF . Let FP be a real closure of F at P ∈ XF . Then:

(1) If σ is symplectic, Nil[A, σ] = {P | A⊗F FP ∼=Mn(FP )}.
(2) If σ is orthogonal, Nil[A, σ] = {P | A⊗F FP ∼=Mn((−1,−1)FP

)}.
(3) If σ is unitary,

Nil[A, σ] = {P | A⊗F FP ∼=Mn(FP )×Mn(FP ) or

A⊗F FP ∼=Mn/2((−1,−1)FP
)⊗Mn/2((−1,−1)FP

)}.

Proof. The original definition of Nil[A, σ] ([1, Definition 3.7]) is the list given in the
Lemma (where the case Mn/2((−1,−1)FP

) ⊗Mn/2((−1,−1)FP
) for σ unitary was

missing, an omission corrected in [2, p. 499]). The fact that this original definition
coincides with the one used in this paper (the set of orderings at which the signatures
of all hermitian forms are zero) is [1, Theorem 6.1]. □

Proposition 4.2. Let (A, σ) |= CSA-Im, (B, τ) |= OCSA-Im,rcf and let f : A → B
be a morphism of LCSA-I-structures, i.e., f is a morphism of rings with involution
such that f(FA) ⊆ FB. Then f−1(PB) is a positive cone on (A, σ) over PA.

Proof. We write (F, P ) := (FA, PA) and L := FB, with Q the unique ordering on
L. We first prove that P ̸∈ Nil[A, σ]. For this we consider two cases:
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(1) If σ is of the first kind, i.e., F = Z(A). We extend f to f ′ : A ⊗F L → B,
f ′(a ⊗ ℓ) = f(a)ℓ (using the action of F on L via f for the tensor product). Since
F = Z(A), A⊗F L is simple, and f ′ is injective and therefore bijective (recall that
dimLA⊗F L = dimF A = dimLB). Since f ′ is easily seen to respect the involutions,
f ′ is an isomorphism of algebras with involution from (A ⊗F L, σ ⊗ id) to (B, τ).
Therefore, by Lemma 4.1, and since Q ̸∈ Nil[B, τ ], we have P ̸∈ Nil[A, σ].

(2) If σ is of the second kind, i.e., Z(A) = F (
√
d) for some d ∈ F . Therefore

σ(
√
d) = −

√
d, and thus τ(f(

√
d)) = −f(

√
d). Assume that P ∈ Nil[A, σ], so that

d ∈ P ([4, Proposition 8.4]). Since
√
d is invertible in A, f(

√
d) is invertible in B.

Moreover f(
√
d)2 = f(d) ∈ L. Since f is a morphism of ordered fields from (F, P )

to (L,Q) real closed, we have f(
√
d) ∈ Q and there is α ∈ L such that α2 = f(d).

Therefore, in the field L(f(
√
d)) the elements α,−α, f(

√
d) are roots of X2 − f(d),

so that f(
√
d) = ±α ∈ L and thus τ(f(

√
d)) = f(

√
d), contradiction.

Since P ̸∈ Nil[A, σ], there is a positive cone P on (A, σ) over P , and A ⊗F L is
simple by Lemma 3.13. Going back to the argument presented in (1) above, the map
f ′ is then an isomorphism of algebras with involutions, even if σ is of the second
kind.

By [4, Proposition 5.8] there is a positive cone on (A⊗FL, σ⊗id) overQ containing
P ⊗ 1 (the Proposition is written for an inclusion of fields, but applies also here:
replace A by A⊗F f(F ), then use the inclusion from f(F ) into L), and thus there is
a positive cone S on (B, τ) over Q such that f ′(P ⊗ 1) ⊆ S. Since Q and −Q are
the only positive cones on (B, τ) over Q, up to replacing P by −P we must have
f ′(P ⊗ 1) ⊆ Q. It follows that P ⊆ f−1(Q), and thus that P = f−1(Q) since P
is a positive cone and f−1(Q) is easily seen to be a prepositive cone ((P1), (P2),
(P3) are clear, (P5) holds since f is injective because A is simple, and for (P4) it
suffices to check that P ⊆ (f−1(Q))F , the other inclusion following from (P5)). □

Conversely, every positive cone on (A, σ) can be obtained in this way:

Proposition 4.3. Let (A, σ) |= CSA-Im and let P be a positive cone on (A, σ)
over P ∈ XFA . Then there is a model (B, τ) of OCSA-Im,rcf and a morphism of

LCSA-I-structures f : (A, σ) → (B, τ) such that P = f−1(PB).

Proof. Let F := FA, and take for f the canonical map A → A ⊗F FP , a 7→ a ⊗ 1,
where FP is a real closure of F at PA. The FP -algebra A⊗F FP is central simple by
Lemma 3.13 and by [4, Proposition 5.9] there is a positive cone Q on (A⊗FFP , σ⊗id)
over the unique ordering of FP , so that f(P) ⊆ Q. Let B be the natural LCSA-I-
structure on (A⊗F FP , σ⊗ id), in which we also interpret the symbol P by Q, thus
turning (B, τ) into a model of OCSA-Im,rcf.

We check that P = f−1(Q). By construction, we have P ⊆ f−1(Q). It is easy
to see that f−1(Q) is a prepositive cone on (A, σ) over P . Since P is a positive
cone on (A, σ) over P , we must have P = f−1(Q). □
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