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Abstract. ℵ0-stable ℵ0-categorical linked quaternionic mappings are studied

and are shown to correspond (in some sense) to special groups which are ℵ0-
stable, ℵ0-categorical, satisfy AP (3) and have finite 2-symbol length. They

are also related to special groups whose isometry relation is a finite union of
cosets, which are then considered on their own, as well as their links with

pseudofinite, profinite and weakly normal special groups.

The algebraic theory of quadratic forms is naturally divided into the reduced
theory of quadratic forms (corresponding to the theory of quadratic forms over
formally real Pythagorean fields) and the non-(necessarily) reduced theory. The
former, with its links with the theory of orderings is much more developed, and a
striking example of this is Marshall’s classification of spaces of orderings of finite
chain length ([20]). In the language of other axiomatisations of the algebraic theory
of quadratic forms, it tells us that Witt rings, or special groups, or linked quater-
nionic mappings that are reduced and of finite chain length are completely classified.
There is no corresponding result for the non-reduced theory. However, reduced as
well as non-reduced special groups and linked quaternionic mappings are models of
first-order theories, and Marshall’s classification tells us that stable reduced special
groups are exactly those that are reduced and of finite chain length, and are also
ℵ0-stable and ℵ0-categorical (see the remark after theorem 4.3). In this paper we
first consider ℵ0-stable ℵ0-categorical, not necessarily reduced, linked quaternionic
mappings. We show that they correspond to ℵ0-stable ℵ0-categorical special groups
satisfying AP (3) and an extra condition (related, in the field case, to the genera-
tion of the 2-torsion part of the Brauer group by quaternion algebras), themselves
related to special groups whose isometry relation is a finite union of cosets. We
then investigate these special groups using the control this hypothesis gives us on
their definable subsets and show some of their links with profinite, pseudofinite and
weakly normal special groups (these results are gathered in theorem 4.3). We also
consider some local-global principles (theorem 3.23 and its corollaries).

This paper relies on results originally coming from the model theory of modules,
and of course on the axiomatic theory of quadratic forms, via the notions of linked
quaternionic mapping and special group. The facts used from these topics are
briefly recalled in the first section.

I would like to thank Karim Becher, Max Dickmann, Detlev Hoffmann and
Francisco Miraglia for some very helpful discussions, as well as the referee, whose
comments greatly helped improve this paper.

1. Preliminaries

1.1. Notions from the model theory of modules.
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Definition 1.1. Let L be a first-order language.
(1) A positive-primitive L-formula (pp-formula for short) is a formula of the

form

∃x̄
n∧
i=1

θi(x̄),

where the θi(x̄) are atomic L-formulas and n ∈ N.
(2) A (partial) positive-primitive type (pp-type for short) is a consistent set

of positive-primitive formulas. If M is an L-structure and ā is a tuple
of elements of M , the pp-type of ā in M , denoted ppM (ā), is the set of
pp-formulas belonging to the complete type of a over M .

(3) Let M and N be L-structures and let f : M → N be an L-morphism. f is
called pure if for every positive-primitive formula φ(ū) (without parameters)
and every m̄ ∈M

N |= φ(f(m̄))⇒M |= φ(m̄).

(4) An L-structure M is algebraically compact (see [26], theorem 2.8 p. 28)
if every system of atomic formulas with parameters in M which is finitely
satisfied in M actually has a solution in M . The system may be in any
number (finite or infinite) of unknowns.

We use a largely standard notation for the space of types: If T is a complete
theory in a first-order language L and A is a subset of a model of T , we denote by
Sn(T,A) the set of n-types over A with respect to T . We simply write Sn(T ) when
A is empty, or Sn(A) if T is clear from the context.

We will be interested in the case of vector spaces equipped with some predicates
representing subspaces.

Let K be a finite field (which is fixed until section 1.2.1), let LK := {0,+} ∪
{a}a∈K be the language of vector spaces over K (the symbols a are unary function
symbols which will represent the scalar product by elements of K, as is usual in the
language of modules) and let TK be the theory consisting of the axioms of vector
spaces over K in the language LK .
We fix m,n1, . . . , nm ∈ N and we expand LK to L0 := LK ∪ {U1, . . . , Um} where
Ui is an ni-ary relation symbol for i = 1, . . . ,m. Let T0 be TK together with the
axioms expressing that the interpretation of each Ui is a K-subvector space.
We recall the following property of T0:

Proposition 1.2. If V is an ℵ0-categorical model of T0 then V is ℵ0-stable.

Proof. By [13, theorem 2], Th(V ) admits quantifier elimination modulo pp-formulas
in the language L0. The characterization of ℵ0-stability for modules (see for instance
[26, theorem 3.1 (c)]) also holds for the L0-structure V (with the same proof). It
follows that ℵ0-categoricity implies ℵ0-stability. �

It is easy to check that the following version of [26, theorem 2.8] still holds (with
the same proof, besides obvious modifications due to the slightly different context).

Theorem 1.3 ([26], theorem 2.8). Let L be any language. The following are equiv-
alent, for any L-structure N :

(1) N is algebraically compact;
(2) Every partial pp-type (in one variable) over N which is finitely satisfied in

N is actually realised in N ;
(3) N is injective over pure embeddings, that is, if A,B are L-structures and

f : A → N , g : A → B are L-morphisms with g pure, then there is an
L-morphism h : B → N such that f = h ◦ g;
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(4) If M is an L-structure, ā is in M , b̄ is in N (the tuples ā, b̄ can be infinite)
and ppM (ā) ⊆ ppN (b̄) then there is an L-morphism f : M → N with
f(ā) = b̄.

If N is an L0-structure model of T0 then the previous four properties are also
equivalent to:

(5) If N is purely embedded in another model M of T0 then this embedding is
split, i.e. M = N ×M ′ (as L0-structures) for some model M ′ of T0.

1.2. Witt rings, linked quaternionic mappings and special groups. We
assume that the reader is somewhat familiar with abstract Witt rings, as defined
in [19], even though we recall their definition and a few facts:

Definition 1.4. An abstract Witt ring is a pair (W,G) where W is a commutative
ring with unity, G is a subgroup of exponent 2, containing −1, of the multiplicative
group W× of invertible elements, and such that:

(1) G generates W additively;
(2) The properties AP (1) and AP (2) hold in W (see the definition of AP (k)

below);
(3) For every n ∈ N and every a1, . . . , an, b1, . . . , bn ∈ G, if a1 + · · · + an =

b1 + · · ·+ bn then there exist a, b, c3, . . . , cn ∈ G such that a1 + a = b1 + b
and a2 +· · ·+an = a+c3 +· · ·+cn (and then b2 +· · ·+bn = b+c3 +· · ·+cn).

If (W,G) is an abstract Witt ring then I is its ideal of even-dimensional forms:

I := {a1 + · · ·+ a2n | n ∈ N, a1, . . . , a2n ∈ G}.
If (W,G) is the Witt ring of some field, then (W,G) has the following property
(proved by Arason and Pfister, see [2, Haupsatz]) for every k ∈ N:

If a1 + · · ·+ an ∈ Ik for some a1, . . . , an ∈ G and n < 2k,
then a1 + · · ·+ an = 0.

(AP (k))

In general, it is an open question whether an abstract Witt ring (W,G) is always
the Witt ring of some field, and we only know that (W,G) satisfies AP (1) and
AP (2). It is not known whether AP (1) and AP (2) imply AP (k) for other values of
k in the non-reduced case (they do in the reduced case, in the sense that a reduced
Witt ring satisfies AP (k) for every k ∈ N, see [19] corollary 4.15, or [8] theorem
7.31).

We now briefly present two other axiomatisations of the algebraic theory of
quadratic forms. The first one, linked quaternionic mappings is due to Marshall
and Yucas (see [21]) and is (à priori) stronger than abstract Witt rings, since it
corresponds to abstract Witt rings satisfying AP (3). The second axiomatisation,
special groups, is due to Dickmann and Miraglia (see [8]), and is equivalent to
abstract Witt rings in the sense that the category of special groups is isomorphic
to the category of abstract Witt rings.

Definition 1.5. (1) A linked quaternionic mapping is a triple (G,B, q), where
G and B are abelian groups of exponent 2, such that G has a distinguished
element−1 and q is a map fromG×G toB satisfying, for every a, b, c, d ∈ G:
(a) q is symmetric and bilinear;
(b) q(a, a) = q(a,−1);
(c) q(a, b) = q(c, d)⇒ ∃x ∈ G q(a, b) = q(a, x) ∧ q(c, d) = q(c, x).

(2) A special group is a structure (G, ·, 1,−1,≡), where (G, ·, 1,−1) is a group
of exponent 2 written multiplicatively (which we will often consider as a
vector space over F2), with a distinguished element −1, and ≡ is a binary
relation between pairs of elements of G (so actually a 4-ary relation), called
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the binary isometry relation, such that the following axioms are satisfied,
for every a, b, c, d, x ∈ G:

(SG0) ≡ is an equivalence relation;
(SG1) 〈a, b〉 ≡ 〈b, a〉;
(SG2) 〈a,−a〉 ≡ 〈1,−1〉;
(SG3) 〈a, b〉 ≡ 〈c, d〉 ⇒ ab = cd;
(SG4) 〈a, b〉 ≡ 〈c, d〉 ⇒ 〈a,−c〉 ≡ 〈−b, d〉;
(SG5) 〈a, b〉 ≡ 〈c, d〉 ⇒ 〈ax, bx〉 ≡ 〈cx, dx〉;
(SG6) The isometry relation of forms of dimension 3 (see (1) below) is tran-

sitive.

Remark 1.6. (1) If G is a group with distinguished element −1 and a ∈ G,
we write −a for −1 · a.

(2) These objects are all models of first-order theories in the appropriate lan-
guages (see (1) below for the expression of the special group axiom SG6 as
a first-order sentence). The language of quaternionic mappings is LQM :=
{G,B, ·,+, 1, 0,−1, q}, where (G, ·, 1) and (B,+, 0) are groups of exponent
2 together with the obvious interpretations for −1 and q, while the lan-
guage of special groups is LSG := {·, 1,−1,≡}, once again with the obvious
interpretations.

It is possible, starting with any one of these two structures, to define an abstract
Witt ring associated to it, denoted by W (G). The procedure is in both cases as
follows: We first define a (diagonal) quadratic form to be a tuple 〈a1, . . . , an〉 of
elements of G and we define the sum and tensor product of diagonal forms in the
usual way:

〈a1, . . . , an〉 ⊕ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉,
〈a1, . . . , an〉 ⊗ 〈b1, . . . , bm〉 = 〈a1b1, . . . , a1bm, a2b1, . . . , anbm〉.

The isometry of forms of dimension 2 is then defined, for linked quaternionic map-
pings by 〈a, b〉 ≡ 〈c, d〉 ⇔ (ab = cd ∧ q(a, b) = q(c, d)), and for special groups by
the 4-ary relation of the special group. The isometry between forms of dimension
n ≥ 3 is defined by induction as follows:

〈a1, . . . , an〉 ≡ 〈b1, . . . , bn〉
⇔

∃x, y, c3, . . . , cn ∈ G 〈a1, x〉 ≡ 〈b1, y〉∧〈a2, . . . , an〉 ≡ 〈x, c3, . . . , cn〉∧
〈b2, . . . , bn〉 ≡ 〈y, c3, . . . , cn〉.

(1)

The notion of Witt-equivalence is defined from isometry in the usual way and the
abstract Witt ring is the set of all forms modulo Witt equivalence (see [21] section
3 for linked quaternionic mappings, and [8] section 1.25 for special groups).
An important difference between these two axiomatisations is that in the case of
special groups, the associated Witt ring satisfies the properties AP (1) and AP (2)
(see [8, section 1.25] together with [19, p. 63]), while in the case of a quaternionic
mapping it also satisfies AP (3) (see [21, corollary 3.7]).

Conversely, if (W,G) is an abstract Witt ring, it is possible to define a special
group from (W,G) as follows: the underlying group of G is that of the abstract
Witt ring, and ≡ is defined by 〈a, b〉 ≡ 〈c, d〉 if and only if a+ b = c+ d in the Witt
ring (see [7]).
To define a quaternionic mapping from an abstract Witt ring, we need the abstract
Witt ring to satisfy the extra axiom AP (3). If this is the case, then the quaternionic
mapping is obtained as follows: G is the group G given by the abstract Witt ring,
B is the group I2/I3 and q is the map (a, b) 7→ (1− a)(1− b) + I3.
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1.2.1. On special groups. Since most of the remainder of this paper will be con-
cerned with special groups, we reformulate this last construction directly in terms
of special groups, and recall some of the main results about them. If G is a special
group, we denote by I(G) the ideal of even dimensional forms in the Witt ring of
G:

I(G) := {〈a1, . . . , a2n〉 | n ∈ N, a1, . . . a2n ∈ G} ⊆W (G),

and consider the following map associated to G:

qG : G×G → I(G)2/I(G)3

(a, b) 7→ 〈1,−a〉 ⊗ 〈1,−b〉+ I(G)3.

If G satisfies AP (3) then (G, I(G)2/I(G)3, qG) is a linked quaternionic mapping.
Let n ∈ N. Then I(G)n is additively generated by the Pfister forms of degree n,

which by definition are the forms

〈〈a1, . . . , an〉〉 := 〈1, a1〉 ⊗ . . .⊗ 〈1, an〉,

with a1, . . . , an ∈ G. We also denote such a form by 〈〈ā〉〉, where ā = (a1, . . . , an).
Using this notation, we see that the property AP (3) can be expressed by the fol-
lowing set of first-order LSG-sentences:

{∀a1, . . . , a6 ∈ G
(
∃b̄1, . . . , b̄n ∈ G3 〈a1, . . . , a6〉 = 〈〈b̄1〉〉+ · · ·+ 〈〈b̄n〉〉

)
→ 〈a1, . . . , a6〉 is hyperbolic}n∈N,

where the equality sign denotes Witt equivalence.
Recall that we have I(G)2 = {φ ∈ I(G) | d±φ = 1}, where d±〈a1, . . . , an〉 :=

(−1)n(n−1)/2a1 . . . an is the signed discriminant of 〈a1, . . . , an〉 (see [19, corollary
3.9]).

There are two important constructions used to build new special groups: prod-
uct, which is the usual product of first-order structures, and extension (see [8] page
90 and example 1.10). A special group built up from finite special groups by ap-
plying a finite number of times the operations of product and extension is called a
special group of finite type.

Definition 1.7. Let G be a special group.

(1) For a form φ = 〈a1, . . . , an〉 over G, the set of elements represented by φ is

DG(φ) := {b ∈ G | ∃b2, . . . , bn φ ≡ 〈b, b2, . . . , bn〉}

(we also write D(φ) if the special group is clear from the context).
(2) G is called reduced if −1 6= 1 and DG〈1, 1〉 = {1}.
(3) The chain length of G, cl(G), is the largest integer n such that there exist

a0, . . . , an ∈ G with DG〈1, a0〉 ( . . . ( DG〈1, an〉, if such an integer exists,
and ∞ otherwise.

Remark 1.8. (1) For a special group G, it is equivalent to know its binary
isometry relation or its binary representation relation. This follows from
the equivalence:

〈a, b〉 ≡ 〈c, d〉 ⇔ (ac ∈ DG〈1, cd〉 ∧ ab = cd).

(2) There is only one structure of reduced special group on the 2-element multi-
plicative group {−1, 1} and it is characterised by D〈1, 1〉 = {1}. We denote
this reduced special group by Z2.

(3) Every special group of finite type has finite chain length. This is easily
checked by induction on the construction of the special group.
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Reduced special groups form a category that is isomorphic to the category of
(abstract) spaces of orderings defined by Marshall (see [22] or [1] for the definition
and [8] chapter 3 for the isomorphism) and the importance of the operations of
product and extension comes from the following result, due to Marshall (see [20],
where it is proved for spaces of orderings; this proof can also be found in [1, 22]):

Theorem 1.9 (Marshall). Let G be a reduced special group of finite chain length.
Then G is built up from Z2 by applying a finite number of times the operations of
product and extension (and is in particular of finite type).

From a model-theoretic point of view, any special group of finite type is ℵ0-
categorical and ℵ0-stable (see [3] corollary 4.5). Moreover, it is easy to check by
induction on the construction of such a special group that its isometry relation (seen
as a subset of G4) is a finite union of cosets of subgroups of G4, from which follows
that every definable subset of Gn is a boolean combination of cosets of subgroups
of Gn, for every n ∈ N.

We need the notion of Pfister index of a quadratic form or a special group, which
was introduced and developed in [9]:

Definition 1.10. (1) For an integer n ≥ 0 and a quadratic form φ over G, the
Pfister index of degree n of φ in G, I(n, φ,G), is the least integer k such
that φ is Witt-equivalent to a linear combination, with coefficients in G, of
k Pfister forms of degree n, if φ ∈ In(G), and 0 otherwise.

(2) For each integer m ≥ 1, the m-Pfister index of G in degree n is:

I(n,m,G) = sup{I(n, φ,G) | φ is a form of dimension m} ∈ N ∪ {0,∞}.

Definition 1.11. Let (G,B, q) be a linked quaternionic mapping. The 2-symbol
length of (G,B, q), denoted by λ(G,B, q), is the least integer k such that every
element of 〈Im q〉 can be written as a sum of k elements of Im q, if such an integer
exists, and ∞ otherwise (where 〈X〉 denotes the subgroup of B generated by a set
X ⊆ B).
Similarly, the 2-symbol length of a special group G, denoted by λ(G), is the least
integer k such that every element of 〈Im qG〉 can be written as a sum of k elements
of Im qG, if such an integer exists, and ∞ otherwise.

This notion in the case of a field F , where B = Br2(F ) and q(a, b) is the class of
the quaternion algebra (a, b)F in Br(F ) (where Br(F ) denotes the Brauer group
of F and Br2(F ) denotes its 2-torsion part) can be found in [5], but also in [24]
(where it is called the 2-linkage number) or in [16].
If (G, I(G)2/I(G)3, qG) is the linked quaternionic mapping associated to a special
group G satisfying AP (3), then, of course, λ(G, I(G)2/I(G)3, qG) = λ(G), but
it seems unclear whether λ(G) = λ(G,B, q) when G is the special group of an
arbitrary quaternionic mapping (G,B, q). The following lemma shows that one
inequality always holds:

Lemma 1.12. Let (G,B, q) be a quaternionic mapping and let G be the special
group defined from it. Then λ(G,B, q) ≤ λ(G).

Proof. We can assume that λ(G) is finite. By [19, lemma 3.15 and theorem 3.16],
the quaternionic mapping qG : G × G → I(G)2/I(G)3 is the universal Steinberg
symbol of G (see the definitions p. 50 and 51 in [19]). There is then a group
homomorphism f : I(G)2/I(G)→ B such that the diagram
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G×G
�
�
�3

Q
Q
Qs

I(G)2/I(G)3

B

?

f

qG

q

is commutative.
Consider now w =

∑n
i=1 q(ai, bi) ∈ 〈Im q〉. We have w = f(

∑n
i=1 qG(ai, bi)) and

by hypothesis there are c1, d1, . . . , cλ(G), dλ(G) ∈ G such that
∑n
i=1 qG(ai, bi) =∑λ(G)

i=1 qG(ci, di), from which follows, by applying f , that w =
∑λ(G)
i=1 q(ci, di). �

We now present some basic properties of the 2-symbol length.

Lemma 1.13. Let {Ki}i∈I be a set of special groups. We have:
(1) If λ(Ki0) ≥ λ0 for some i0 ∈ I then λ(

∏
i∈I Ki) ≥ λ0;

(2) If the following two conditions are satisfied

∀i ∈ I λ(Ki) ≤ λ0 and

∀n ∈ N ∃N ∈ N ∀i ∈ I I(3, n+ 4λ0,Ki) ≤ N,

then λ(
∏
i∈I Ki) ≤ λ0.

Proof. We write K for
∏
i∈I Ki.

(1) By hypothesis there are l ≥ λ0 and D0 := 〈ai0,1, . . . , ai0,2n〉 + I(Ki0)3 ∈∑l
i=1 Im qKi0

\
∑λ0−1
i=1 Im qKi0

(the notation A\B denotes the set-theoretic
difference). Define 〈ai,1, . . . , ai,2n〉 := nH ∈ W (Ki) for i ∈ I \ {i0} and
let D := 〈(ai,1)i∈I , . . . , (ai,2n)i∈I〉 ∈ W (K). Suppose now that λ(K) < λ0.
Then D can be written as

(2) D = 〈〈(bi,1)i∈I , (ci,1)i∈I〉〉+ · · ·+ 〈〈(bi,λ0−1)i∈I , (ci,λ0−1)i∈I〉〉+ φ,

for some (bi,j)i∈I , (ci,j)i∈I ∈ K and φ ∈ I(K)3.
Applying to the equality (2) the map π : W (K)→W (Ki0) induced by the
projection K → Ki0 we get

D0 = 〈〈bi0,1, ci0,1〉〉+ · · ·+ 〈〈bi0,λ0−1, ci0,λ0−1〉〉+ π(φ),

and writing φ as a sum of Pfister forms of degree 3 over K we see that π(φ)
is a sum of Pfister forms of degree 3 over Ki0 and thus belongs to I(Ki0)3.
From this follows that D0 ∈

∑λ0−1
i=1 Im qKi0

, a contradiction.
(2) Let D = 〈(ai,1)i∈I , . . . , (ai,n)i∈I〉 + I(K)3 ∈ I(K)2/I(K)3. For i ∈ I we

have, by assumption:

〈ai,1, . . . , ai,n〉 =

〈〈bi,1, ci,1〉〉+ · · ·+ 〈〈bi,λ0 , ci,λ0〉〉+ αi,1〈〈d̄i,1〉〉+ · · ·+ αi,ki
〈〈d̄i,ki

〉〉,

for some bi,j , ci,j , αi,j ∈ Ki and d̄i,j ∈ K3
i . By hypothesis, we can assume

that ki = N for every i ∈ I (because the form 〈ai,1, . . . , ai,n〉−〈〈bi,1, ci,1〉〉−
· · · − 〈〈bi,λ0 , ci,λ0〉〉 has dimension n+ 4λ0), from which follows

〈(ai,1)i∈I , . . . , (ai,n)i∈I〉 =

〈〈(bi,1)i∈I , (ci,1)i∈I〉〉+ · · ·+ 〈〈(bi,λ0)i∈I , (ci,λ0)i∈I〉〉+
(αi,1)i∈I〈〈(d̄i,1)i∈I〉〉+ · · ·+ (αi,N )i∈I〈〈(d̄i,N )i∈I〉〉,



8 VINCENT ASTIER

proving that D ∈
∑λ0
i=1 Im qK .

�

Lemma 1.14. Let G and H be special groups. Then
(1) If f : G→ H is a surjective morphism of special groups then λ(H) ≤ λ(G).
(2) If f : G→ H is a pure morphism of special groups then λ(G) ≤ λ(H).
(3) If G is finite then λ(G) ≤ |G|2.

Proof. (1) We can assume that λ(G) is finite. Let w =
∑n
i=1〈〈ai, bi〉〉 be an

element of I(H)2. Since f is surjective, there are ci, di ∈ G such that
w =

∑n
i=1〈〈f(ci), f(di)〉〉. By hypothesis we find e1, f1, . . . , eλ(G), fλ(G) ∈

G such that
∑n
i=1〈〈ci, di〉〉 =

∑λ(G)
j=1 〈〈ej , fj〉〉 mod I(G)3, i.e. there exist

ᾱ1, . . . , ᾱk ∈ G3 and r, s ∈ N such that

G |=
n⊕
i=1

〈〈ci, di〉〉 ⊕ r〈−1, 1〉 ≡ s〈−1, 1〉 ⊕
λ(G)⊕
j=1

〈〈ej , fj〉〉 ⊕
k⊕
l=1

〈〈ᾱl〉〉.

Applying f to this existential positive formula shows that w is the sum of
at most λ(G) elements of Im qH modulo I(H)3.

(2) We can assume that λ(H) is finite. Let w ∈ 〈Im qG〉, w = w0 + I(G)3 for
some w0 ∈ I(G)2. We consider the map

ξ : I(G)2/I(G)3 → I(H)2/I(H)3

φ+ I(G)3 7→ f(φ) + I(H)3.

It is well-defined since I(G)3 ⊆ I(H)3 and it is a morphism of groups. By
hypothesis we have, for k = λ(H), ξ(w) = qH(h̄1) + · · ·+ qH(h̄k) for some
h̄1, . . . , h̄k ∈ H2, which means that, for some l ∈ N and ā1, . . . , āl ∈ H3

f(w0) = 〈〈−h̄1〉〉+ · · ·+ 〈〈−h̄k〉〉+
l∑
i=1

〈〈āi〉〉 in the Witt ring of H.

This in turn means that there are r, s ∈ N such that

H |= ∃h̄1, . . . , h̄k ∈ H2 ∃ā1, . . . , āl ∈ H3

f(w0)⊕ r〈1,−1〉 ≡ s〈1,−1〉 ⊕ 〈〈−h̄1〉〉 ⊕ · · · ⊕ 〈〈−h̄k〉〉 ⊕
⊕l

i=1〈〈āi〉〉.
This formula is positive-existential in LSG and using the purity of f , we
get that G satisfies the same formula (with w0 instead of f(w0)), proving
that w is a sum of at most λ(H) elements of Im qG.

(3) 〈Im qG〉 is a vector space over F2 and is generated by {qG(a1, a2) | a1, a2 ∈
G} which has cardinality at most |G|2.

�

We conclude this section by checking that Kahn’s result [16, théorème 2] linking
the u-invariant and the 2-symbol length still holds for special groups. The proofs
work in exactly the same way, but we reproduce them here, due to the different
context. We begin by checking the translation of lemma 5 from [23] to our setting.
To do so we use the Witt invariant for abstract Witt rings, denoted by w, as defined
in [19] p. 53 (note that the map denoted by s in [19] is the map we call qG for a
special group G).

Lemma 1.15. Let G be a special group with associated quaternionic mapping qG.
(1) Let f ∈ I(G)2 be of dimension 2m > 0. Then w(f) is a sum of m − 1

elements of Im qG;
(2) Let D ∈ I(G)2/I(G)3 be a sum of m−1 elements of Im qG for some m ∈ N.

Then there exists a quadratic form f over G, of dimension 2m, such that
f ∈ I(G)2 and w(f) = D.
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Proof. (1) We proceed by induction onm. Ifm = 1 then (by AP(2)) f is the hy-
perbolic plane H and w(f) = 0 is the sum of 0 elements of Im qG. If m > 1,
write f = 〈a1, . . . , a2m〉 = 〈a1, a2, a3, a1a2a3〉 + 〈−a1a2a3, a4, . . . , a2m〉 in
W (G). We know d±f = d±〈a1, a2, a3, a1a2a3〉 = 1 and hence d±〈−a1a2a3, a4, . . . , a2m〉 =
1 so all three forms belong to I(G)2. By [19, proposition 3.11] we get w(f) =
w(〈a1, a2, a3, a1a2a3〉)+w(〈−a1a2a3, a4, . . . , a2m〉). Since 〈a1, a2, a3, a1a2a3〉 =
a1〈〈a1a2, a1a3〉〉 we see that w(〈a1, a2, a3, a1a3a3〉 = qG(−a1a2,−a1a3) ([19,
lemma 3.13]), while we know by induction that w(〈−a1a2a3, a4 . . . , a2m〉)
is a sum of m− 2 elements of Im qG.

(2) The proof is by induction on m. If m = 1 then D = 0 = w(H). Assume
now that D = D′ + qG(a, b) where D′ is a sum of m− 2 elements of Im qG.
By induction D′ = w(ψ) for some form ψ ∈ I(G)2 of dimension 2(m − 1).
Let c ∈ DGψ. Then ψ ⊥ 〈−c, ac, bc,−abc〉 is isotropic, so isometric to
φ ⊥ H for some form φ of dimension 2m. Since d±φ = d±(φ ⊥ H) =
d±(ψ ⊥ 〈−c, ac, bc,−abc〉) = d±ψ = 1 we know that φ ∈ I(G)2. And
w(φ) = w(φ ⊥ H) = w(ψ ⊥ 〈−c, ac, bc,−abc〉) = w(ψ)+w(−c〈〈−a,−b〉〉) =
D′ + qG(a, b) = D.

�

Corollary 1.16 ([16], théorème 2). Let G be a special group and let

u(G) := sup{dimφ | φ anisotopic form over G} ∈ N ∪ {∞}.

Then u(G) ≥ 2(λ(G) + 1).

Proof. Assume first λ(G) is finite and let m = λ(G) + 1. By definition of λ(G)
there is D ∈

∑m−1
i=1 Im qG \

∑m−2
i=1 Im qG. By the second part of lemma 1.15 there is

f ∈ I(G)2 of dimension 2m such that D = w(f). Suppose now that f is isotropic.
Then f = f ′ ⊕ H for some form f ′ which is then in I(G)2 and has dimension
2(m − 1). By the first part of lemma 1.15, w(f ′) ∈

∑m−2
i=1 Im qG, a contradiction

since w(f ′) = w(f) = D. So f , of dimension 2m = 2(λ(G)+1), is anisotropic. This
gives u(G) ≥ 2(λ(G) + 1). The case λ(G) =∞ is similar. �

2. ℵ0-stable ℵ0-categorical linked quaternionic mappings

The idea is simply to apply [4, theorem 56]:

Definition 2.1. Let b : U × V → W be a bilinear map of abelian groups. We say
that b is trivial-by-finite if there are subgroups U0 of U and V0 of V such that the
index of U0 in U and the index of V0 in V are finite, and b : U0 × V0 → {0}.

Theorem 2.2 ([4], theorem 56). Let (G,B, q) be an ℵ0-stable ℵ0-categorical quater-
nionic mapping. Then q is trivial-by-finite.

Proposition 2.3. Let G be the special group associated to an ℵ0-stable ℵ0-categorical
quaternionic mapping (G,B, q). Then

(1) G is ℵ0-stable and ℵ0-categorical.
(2) The isometry relation of G is a finite union of cosets of G4.
(3) λ(G,B, q) is finite.

Proof. (1) G is ℵ0-stable and ℵ0-categorical since it is definable in (G,B, q).
(2) It is easy to check that the isometry relation is a finite union of cosets of

subgroups of G4 if and only if the representation relation is a finite union
of cosets of subgroups of G2. So it is enough to show the conclusion for the
representation relation, i.e. for ker q. By theorem 2.2 there is a subspace U
of G (considered as a vector space over F2) of finite codimension such that
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q � U ×U = 0. Let E be a complement of U in G (E is then finite) and let
e, e′ ∈ E, u, u′ ∈ U . Then

q(e · u, e′ · u′) = 0
⇔ q(e, u′) + q(u, e′) = −q(e, e′)
⇔ (u, u′) ∈ g−1

e,e′(−q(e, e′))

where ge,e′ : G × G → B, (u, u′) 7→ q(e, u′) + q(u, e′) is a linear map. In
particular g−1

e,e′(−q(e, e′)) is a coset of G×G and

q−1(0) =
⋃

e,e′∈E
(e, e′) · g−1

e,e′(−q(e, e
′)),

is a finite union of cosets since E is finite.
(3) Consider the definable subsets

Am := {b ∈ B | ∃a1, b1, . . . , am, bm ∈ G (b =
m∑
i=1

q(ai, bi))}.

If λ(G,B, q) = ∞ then the sequence A0 ⊆ A1 ⊆ A2 · · · has a strictly
increasing subsequence, giving an infinite number of types over ∅, a contra-
diction to the ℵ0-categoricity of (G,B, q).

�

We are now interested in the converse and want to determine which special
groups give rise to ℵ0-stable ℵ0-categorical linked quaternionic mappings.

Lemma 2.4. Let G be an ℵ0-categorical special group. Then I(n,m,G) is finite
for every n,m ∈ N.

Proof. This is a direct consequence of the fact that, for a1, . . . , am ∈ G, the property
I(n, 〈a1, . . . , am〉, G) ≤ k can be expressed by a first-order formula with parameters
a1, . . . , am in the language of special groups: Suppose that I(n,m,G) is infinite.
Then for every k ∈ N there is (a1, . . . , am) ∈ Gm such that I(n, 〈a1, . . . , am〉, G) > k.
In particular |Sm(∅)| ≥ ℵ0, which contradicts ℵ0-categoricity. �

Lemma 2.5. Let G be an ℵ0-categorical special group of finite 2-symbol length.
Then the mapping associated to G, qG, is interpretable in G.

Proof. Let k := λ(G). Then

I(G)2/I(G)3 = {〈〈a1, b1〉〉+ · · ·+ 〈〈ak, bk〉〉+ I(G)3 | a1, b1, . . . , ak, bk ∈ G}.
Since qG(a, b) = 〈〈−a,−b〉〉 + I(G)3 ∈ I(G)2/I(G)3, we only have to show that
I(G)2/I(G)3 is interpretable in G. As a set, it is equal to G2k/E, where an element
(a1, b1, . . . , ak, bk) ∈ G2k represents the quadratic form 〈〈a1, b1〉〉 + · · · + 〈〈ak, bk〉〉
and E is the equivalence relation

(a1, b1, . . . , ak, bk) E(c1, d1, . . . , ck, dk)
⇔

〈〈a1, b1〉〉+ · · ·+ 〈〈ak, bk〉〉 − 〈〈c1, d1〉〉 − · · · − 〈〈ck, dk〉〉 ∈ I(G)3.(∗)

The quadratic form in (∗) has dimension 8k and by lemma 2.4 we know that
I(3, 8k,G) = l < ℵ0. From this we see that (∗) is equivalent to the first-order
LSG-formula

∃ᾱ1, . . . , ᾱl ∈ G3 ∃β1, . . . , βl ∈ G
〈〈a1, b1〉〉+ · · ·+ 〈〈ak, bk〉〉 − 〈〈c1, d1〉〉 − · · · − 〈〈ck, dk〉〉 =

β1〈〈ᾱ1〉〉+ · · ·+ βl〈〈ᾱl〉〉
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(the equality is actually in the Witt ring, and the LSG-formula has to express it in
terms of Witt-equivalence, but this is possible since the dimensions of the forms on
both sides of the equality are fixed).
To complete the proof we have to check that sum in I(G)2/I(G)3 can also be ex-
pressed by a first-order formula. For (a1, b1, . . . , ak, bk), (c1, d1, . . . , ck, dk), (e1, f1, . . . , ek, fk)
in G2k we have 〈〈a1, b1〉〉+ · · ·+ 〈〈ak, bk〉〉+ 〈〈c1, d1〉〉+ · · ·+ 〈〈ck, dk〉〉 = 〈〈e1, f1〉〉+
· · ·+ 〈〈ek, fk〉〉 in I(G)2/I(G)3 if and only if 〈〈a1, b1〉〉+ · · ·+ 〈〈ck, dk〉〉−〈〈e1, f1〉〉−
· · · − 〈〈ek, fk〉〉 ∈ I(G)3, which can, as above, be expressed by a first-order LSG-
formula. �

Proposition 2.6. Let G be a special group satisfying AP (3) and assume that G is
ℵ0-stable ℵ0-categorical of finite 2-symbol length. Then its associated linked quater-
nionic mapping, (G, I(G)2/I(G)3, qG), is ℵ0-stable and ℵ0-categorical.

Proof. Since G satisfies AP (3), we know that (G, I(G)2/I(G)3, qG) is a linked
quaternionic mapping. By lemma 2.5 it is interpretable in G, so it is ℵ0-stable
and ℵ0-categorical. �

We now consider the reduced case:

Corollary 2.7. Let (G,B, q) be a reduced ℵ0-stable ℵ0-categorical quaternionic
mapping. Then G is finite.

Proof. We know by theorem 2.2 that (G,B, q) is trivial-by-finite. Let U be a
subgroup of finite index of G, such that q � U × U = 0. Let u ∈ U . Then
q(u, u) = 0, i.e. u ∈ DG〈1,−u〉, i.e. u ∈ DG〈1, 1〉 = {1}. So U = {1} and G is
finite. �

Remark 2.8. Recalling that the ℵ0-stable reduced special groups are the reduced
special groups of finite type, and that they are ℵ0-categorical (see [3] corollary 4.5
and the paragraph following it, together with proposition 6.2), shows that if G
is a finite reduced special group and H is an infinite group of exponent 2, then
λ(G[H]) =∞ (otherwise (G[H], I(G[H])2/I(G[H])3, qG[H]) would be interpretable
in G[H] which is ℵ0-stable and ℵ0-categorical, so would be itself ℵ0-stable and ℵ0-
categorical, implying that G[H] should be finite).
The condition that a linked quaternionic mapping is ℵ0-stable and ℵ0-categorical
is then quite restrictive. However, the condition appearing in proposition 2.3 that
the isometry relation is a finite union of cosets is weaker (see remark 3.2) but still
produces very manageable special groups, which will be our main object of study
for the rest of the paper.

3. Special groups whose isometry relation is a finite union of cosets

Definition 3.1. We denote by SGFC the class of ℵ0-categorical special groups
whose representation relation is a finite union of cosets.

We check easily that for a special group G the representation relation is a union
of m cosets if and only if the isometry relation is a union of m cosets.
We consider the representation relation of a special group G as a subset RG of G2:
RG := {(a, b) ∈ G2 | a ∈ DG〈1, b〉}.

The simplest examples of special groups in SGFC are the special groups of finite
type: If G is such a special group, we can see by induction on the construction of
G that its representation relation is a finite union of cosets. The only non obvious
step is the extension, and for this it is enough to see that the standard presentation
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of the representation relation of G[H] (see [8] p. 10) can be reformulated as follows:

RG[H] ={(g′h′, gh) ∈ (G×H)2 | h = 1 ∧ h′ = 1 ∧ (g′, g) ∈ RG}
∪ {(g′h′, gh) ∈ (G×H)2 | h = 1 ∧ g = −1}
∪ {(g′h′, gh) ∈ (G×H)2 | g′h′ ∈ {1, gh}}.

Note that all special groups of finite type are ℵ0-categorical (and hence in SGFC)
since they are obtained from ℵ0-categorical structures by a finite number of products
and extensions, which are generalized products in the sense of [10] (see for instance
[3, lemma 2.6]).

Remark 3.2. It follows that there are special groups (even reduced special groups)
G whose isometry relation is a finite union of cosets but whose associated quater-
nionic mapping (G, I(G)2/I(G)3, qG) is not ℵ0-stable and ℵ0-categorical: just take
G = G0[H] where G0 is any finite reduced special group and H is an infinite group
of exponent 2. Its isometry relation is a finite union of cosets, but λ(G0[H]) = ∞
by remark 2.8.

Lemma 3.3. Let G ∈ SGFC . To G we associate two languages

Lm = {1,−1, ·, ā1, . . . , ām,∆1, . . . ,∆m}, and

L−m = {1, ·,∆1, . . . ,∆m},

and there is an interpretation in G of these symbols that turns G into an Lm-
structure with the following properties

(1) RG =
⋃m
i=1 ā

G
i ∆G

i , where āGi ∈ G2 and ∆G
i is a subgroup of G2 (the nota-

tion is a little abusive: each āi denotes in fact two constant symbols since
āGi ∈ G2);

(2) each ∆G
i is LSG-definable in G;

(3) G is ℵ0-categorical and ℵ0-stable as Lm- and LSG-structure.
Any future reference to G as an Lm-structure will assume an interpretation of the
symbols possessing the three properties listed above.

Proof. Since the relation RG is a finite union of cosets of subgroups of G2, we know
that G is one-based (see [14]). In particular RG is a finite boolean combination of
cosets of LSG-definable subgroups of G2 ([14, theorem 4.1]). We now use the same
argument as in Theorem 4.3 (in this paper) 2 ⇒ 1: Since RG is a finite union of
cosets, it is closed for the topology introduced there, and the same proof shows that
the finite boolean combination of LSG-definable cosets that describes RG can be
chosen to be a finite union of LSG-definable cosets. The Lm-structure G is then ℵ0-
categorical (since G is ℵ0-categorical in LSG), and the ℵ0-stability (as Lm-structure
and then as LSG-structure by interpretation) follows by Proposition 1.2. �

Proposition 3.4. SGFC is closed under elementary equivalence in the language
LSG of special groups.

Proof. Let G ∈ SGFC and let K be a special group such that G ≡ K in LSG.
Let Lm be a language associated to G. By the Keisler-Shelah theorem there is a
set I and an ultrafilter U on I such that GI/U ∼= KI/U in LSG. Let G′ = GI/U
and K ′ = KI/U . Since G is an Lm-structure, G′ is naturally an Lm-structure
such that G ≺ G′ in Lm, and RG =

⋃m
i=1 ā

G
i ∆G

i implies RG′ =
⋃m
i=1 ā

G′

i ∆G′

i .
Let f be the isomorphism of special groups between G′ and K ′. Then RK′ =⋃m
i=1 f(āG

′

i )f(∆G′

i ), which shows that the isometry relation of K ′ is a finite union
of cosets. Since RK = RK

′ ∩K2, the isometry relation of K is also a finite union
of cosets (and the number of cosets can be bounded by m). �
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3.1. Using the model theory of modules.

Proposition 3.5. Let G ∈ SGFC . Then G is algebraically compact in the lan-
guages Lm and LSG. In particular, if L = Lm or LSG then every pure L-morphism
f : G→ H (where H is an L-structure) has a retract which is an L-morphism.

Proof. We first prove algebraic compactness. Using the equivalence between 1. and
2. in theorem 1.3, it is enough to show that for every n ∈ ω the subsets of Gn de-
fined by a pp-formula satisfy the descending chain condition (DCC; i.e. there is no
infinite strictly descending chain of pp-definable subsets of Gn) for the languages
Lm and LSG.
We start with Lm: The subsets of Gn defined by pp-formulas are cosets of definable
subgroups of Gn, and satisfy the DCC since G is an ℵ0-stable group.
For the language LSG: Since RG is a finite union of cosets it is easy to see that the
subsets defined by LSG-pp-formulas are finite unions of cosets which are themselves
defined by Lm-pp-formulas. We conclude using [25, lemma 2.7], whose terminology
we follow:
Let Γ be the set of Lm-pp-formulas. Then cl1(Γ), the closure of Γ under substitution
of variables and conjunctions, is equal to Γ and has the DCC. By [25, lemma 2.7],
cl2(Γ), the closure of Γ under substitution of variables and positive boolean combi-
nations, also has the DCC. In particular, since every LSG-pp-formula is equivalent
to some formula in cl2(Γ), the subsets of Gn defined by LSG-pp-formulas have the
DCC.

The second part of the proposition follows at once from theorem 1.3, 1 ⇔ 4, if
we take for b̄ an enumeration of G and for ā the tuple f(b̄). �

The results in this section are inspired by the fact that if G ∈ SGFC , then G,
considered as an L−m-structure (with RG =

⋃m
i=1 ā

G
i ∆G

i ), is an abelian structure in
the sense of [11]. Since the properties of abelian structures are close to those of
modules, some results from the model theory of modules apply to G. The main
one comes from [12]:

Theorem 3.6 ([12], theorem 7). If A is an R-module then S2(Th(A)) is finite
if and only if there are finite R-modules A1, . . . , An and cardinals α1, . . . , αn such
that A = A

(α1)
1 ⊕ · · · ⊕A(αn)

n .

This result remains valid for a special group in SGFC , in the language L−m:

Proposition 3.7. Let G ∈ SGFC and let Lm be a language associated to G. Then
there exist n ∈ ω, finite L−m-substructures G1, . . . , Gn of G and cardinals α1, . . . , αn
such that G = G

(α1)
1 × · · · ×G(αn)

n as a L−m-structure.

Proof. We work in the language L−m. S2(Th(G)) is finite since Th(G) is ℵ0-
categorical (see lemma 3.3). The proof consists in checking that all the results
used in the proof of theorem 7 in Garavaglia’s paper [12] remain valid for special
groups in SGFC in the language L−m. The key property that makes everything work
is that every pure L−m-substructure of G is a direct factor of G (in the language
L−m), as recalled in theorem 1.3 5. �

We use proposition 3.7 to built retracts of the inclusion of some substructures
of G. A special case of [8, lemma 5.17] will be useful:

Lemma 3.8. Let G0 be a LSG-substructure of a special group G and let σ : G →
G0 be an LSG-morphism which is a retract of the inclusion of G0 in G. Then
G = G0 × kerσ as groups and

(1) G0 is a special group;
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(2) The LSG-structure induced on G/ kerσ (by RG/ kerσ := σ(RG)) coincides
with the LSG-structure of G0.

Proof. It suffices to observe that, in the notation of [8, lemma 5.17], G (our G0)
needs only be an LSG-structure. The fact that it is then necessarily a special group
follows from [8, lemma 5.17 i)]. �

The following is an easy consequence of proposition 3.7:

Lemma 3.9. Let G ∈ SGFC and let Lm be a language associated to G, Lm =
{1,−1, ·, ā1, . . . , ām,∆1, . . . ,∆m}. Write

(3) G = G
(α1)
1 × · · · ×G(αn)

n

as L−m-structure, as in proposition 3.7. Let Jk ⊆ αk for k = 1, . . . , n, and assume
−1, ā1, . . . , ām ∈ H := G

(J1)
1 × . . . × G

(Jn)
n (where G

(Ji)
i denotes the subspace of

G
(αi)
i consisting of elements whose coordinates are 1 outside of Ji). Consider now

the LSG-structure induced on H by its inclusion in G. Then the canonical projection
from G onto H induced by (3) in a LSG-morphism, a retract of the inclusion of H
in G, and H is a special group.

Proof. Let σ be the canonical projection from G onto H induced by (3). σ is
clearly a retract of the inclusion of H in G. We only have to check that σ is an
LSG-morphism, since lemma 3.8 will then give that H is a special group:

σ(RG) = σ(
⋃m
i=1 āi∆i)

=
⋃m
i=1 σ(āi∆i)

=
⋃m
i=1 āi σ(∆i) since σ(āi) = āi

⊆
⋃m
i=1 āi∆i since σ is an L−m-morphism

⊆ RG.

�

Proposition 3.10. Let G ∈ SGFC . For every finite subset A of G there is a finite
special subgroup GA of G, GA containing A, and a morphism of special groups
σ : G→ GA which is a retract of the inclusion of GA in G.

Proof. Since A is finite there are a finite number of factors from the decomposition
of G given in 3.9 (3), say H1, . . . ,Hk, such that

A ∪ {−1, ā1, . . . , ām} ⊆ H1 × · · · ×Hk ⊆ G,

Let GA := H1 × · · · ×Hk and let σ be the projection from G onto GA induced by
the decomposition of G. Lemma 3.9 then yields the conclusion. �

Definition 3.11. For a special group G and a special subgroup K of G, we denote
by XG,K the set of special group morphisms from G to K which are retracts of the
inclusion of K in G. If σ ∈ XG,K we define Gσ := K.
X+
G denotes the union of all XG,K for K finite special subgroup of G.

The following two results are straightforward consequences of proposition 3.10:

Lemma 3.12. Let G ∈ SGFC . For every existential sentence φ(ḡ) with parameters
ḡ in G, there is a finite special subgroup G0 of G containing ḡ such that

G |= φ(ḡ)⇔ G0 |= φ(ḡ).

Proposition 3.13. Let G ∈ SGFC . For every positive existential sentence φ(ḡ)
with parameters ḡ in G we have

G |= φ(ḡ)⇔ ∀σ ∈ X+
G Gσ |= φ(σ(ḡ)).
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Proposition 3.14. Let G ∈ SGFC , G∗ =
∏
{Gσ | σ ∈ X+

G} and ν : G → G∗,
g 7→ (σ(g))σ∈X+

G
. Then ν is a monomorphism of special groups and, identifying ν

with an inclusion, we have G ≺∃+ G∗, i.e. for every positive existential formula
φ(ḡ) with parameters in G, G |= φ(ḡ) if and only if G∗ |= φ(ν(ḡ)).
In particular ν is a complete morphism of special groups and ν reflects the isotropy
of quadratic forms.

Proof. Only the implication from right to left requires a justification. Let φ(ḡ) =
∃z̄

∨m
i=1(

∧ni

j=1 θi,j(z̄, ḡ)) be a positive existential formula with parameters ḡ ∈ G,
where the θi,j are atomic LSG-formulas. Assume G∗ |= φ(ν(ḡ)). Then there exists
i0 ∈ {1, . . . ,m} such that G∗ =

∏
Gσ |= ∃z̄

∧ni0
j=1 θi0,j(z̄, ν(ḡ)). This is a pp-

formula and the satisfaction of such formulas is preserved under projections, so

∀σ ∈ X+
G , Gσ |= ∃z̄

ni0∧
j=1

θi0,j(z̄, σ(ḡ)).

Let σ0 ∈ X+
G be such that ḡ ∈ Gσ0 (such a σ exists by proposition 3.10). We then

have σ0(ḡ) = ḡ andGσ0 |= ∃z̄
∧ni0
j=1 θi0,j(z̄, ḡ), which impliesG |= ∃z̄

∧ni0
j=1 θi0,j(z̄, ḡ)

and G |= φ(ḡ). �

G∗, equipped with the product topology of the discrete topologies on each Gσ,
is compact, Hausdorff, totally disconnected, and the isometry relation is a closed
subset of G∗2. G∗ is in fact a profinite special group (which have been considered
in the reduced case in [17], chapitre 1, section 9, and, in the non-reduced case, in
[9], §3.4, pp. 233-237) and it is possible to get a little bit more concerning them:

Definition 3.15. A special group is profinite if it is the projective limit of finite
special groups (such a projective limit is always a special group; see [9, Theorem
3.24]).

We recall the following simple case of more general result appearing in [18]:

Theorem 3.16 ([18], Theorem 2.3). Let lim←−Gi be the projective limit of an inverse
system of finite special groups {Gi}i∈I . Then there is an ultrafilter U on I such
that the map

lim←−Gi →
∏
i∈I

Gi/U , (gi)i∈I 7→ (gi)i∈I mod U

is pure.

Proposition 3.17. Let m ∈ N and let G ∈ SGFC . Then G is an elementary
substructure of a projective limit of finite special subgroups of G, all belonging to
SGFC .

Proof. Proposition 3.7 gives the following decomposition of G as a L−m-structure:

(4) G = G
(α1)
1 × · · · ×G(αn)

n .

There is then a finite number of factors appearing in this decomposition, say
L1, . . . , Lk, such that

−1, ā1, . . . , ām ∈ L1 × · · · × Lk.
Let G0 := L1× · · · ×Lk. By lemma 3.9, the projection from G onto G0 induced by
the above decomposition of G is an LSG-morphism, and G0 is a special group.

Changing the notation in (4) we write

(5) G = G0 ×H(α1)
1 × · · · ×H(αn)

n as L−mstructures,

where the Hi are finite L−m-substructures of G (the αi’s in (5) may be different from
those in (4)).
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We record the following fact which is a direct application of lemma 3.9, since
−1, ā1, . . . , ām ∈ G0:
Fact 1: If {Li}i∈I is a (possibly infinite) set of factors appearing in the product
H

(α1)
1 ×· · ·×H(αn)

n then the natural retract of the natural inclusion of G0×⊕i∈ILi
into G is a morphism of special groups and G0×⊕i∈ILi is a special subgroup of G.

But it is possible to show, for L−m-structures over a group of exponent 2 the
same result about elimination of quantifiers modulo positive-primitive formulas as
the one for modules, and this with the same proof (see for instance [15] theorem
6.14 p. 99, [13], or [26] corollary 2.16 p. 37). This result has the same consequences
as for modules and in particular

H
(α1)
1 × · · · ×H(αn)

n ≡ Hα1
1 × · · · ×Hαn

n in L−m

(a proof of this for modules can be found in [15], theorem 6.19 p. 106).
Moreover, the inclusion of H(α1)

1 × · · · ×H(αn)
n in Hα1

1 × · · · ×Hαn
n is pure in L−m,

and since these two L−m-structures are elementarily equivalent, we have

H
(α1)
1 × · · · ×H(αn)

n ≺ Hα1
1 × · · · ×Hαn

n in L−m

(a proof of this result for modules can be found in [26], corollary 2.26 p. 40).
Using that products of structures preserve elementary equivalence and since the
constants in Lm are in G0 we get

G = G0 ×H(α1)
1 × · · · ×H(αn)

n ≺ G0 ×Hα1
1 × · · · ×Hαn

n =: G′ in Lm.

This elementary inclusion also holds for LSG (which is definable in Lm). In partic-
ular the right hand side structure is a special group.

To prove the result we just have to check that G0 × Hα1
1 × · · · × Hαn

n is a
profinite special group. We change the notation for easier reading and write
G = G0 ×

⊕
i∈I Hi, G′ = G0 ×

∏
i∈I Hi as L−m-structures, and we define GJ :=

G0 ×
∏
i∈J Hi ×

∏
i∈I\J{1} for every finite subset J of I. The GJ are finite special

subgroups of G and belong to SGFC (see fact 1).
We also denote by pJ : G′ → GJ the canonical projection (which will also be seen
as a map from G′ to G′), and if J1, J2 are finite subsets of I such that J1 ⊆ J2,
then pJ2J1 will denote the canonical projection from GJ2 onto GJ1 . The maps pJ
and pJ2J1 are LSG-morphisms (apply the obvious modification of fact 1 to G′). It
is clear that the GJ , together with the morphisms pJ2J1 , form a projective system
of finite special groups. We equip each GJ with the discrete topology. The proof
that G′ ∼= lim←− (GJ , pJ2J1) as topological groups is standard. The fact that they are
isomorphic as LSG-structures has been done in [17], proposition 1.9.11, 1) ⇒ 2);
we reproduce it here since it is unpublished:
Let f : G′ → lim←− (GJ , pJ2J1), f(a) = (pJ(a))J be the isomorphism of groups be-
tween G′ and lim←− (GJ , pJ2J1). We check that it is an LSG-monomorphism. Let
a, b ∈ G′. If a ∈ DG′〈1, b〉 then f(a) ∈ D〈1, f(b)〉 because the pJ are morphisms
of special groups. Assume now f(a) ∈ D〈1, f(b)〉, i.e. pJ(a) ∈ DGJ

〈1, pJ(b)〉
for every finite subset J of I. So (pJ(a), pJ(b)) ∈ RGJ ⊆ RG

′
for every fi-

nite subset J of I. But (a, b) is in the closure (for the product topology) of
{(pJ(a), pJ(b)) | J finite subset of I} and we just saw that this subset is included
in RG

′
, which is closed. So (a, b) ∈ RG′ , i.e. a ∈ DG′〈1, b〉. �

Corollary 3.18. Let m ∈ N and let G ∈ SGFC . Then G is a pure substructure of
an ultraproduct of finite special groups belonging to SGFC .

Proof. By proposition 3.17 and theorem 3.16. �

Remark 3.19. We also know that a special group G in SGFC is an inductive limit
of finite special groups belonging to SGFC : We can use proposition 3.10 or just
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the fact that G is ℵ0-stable and ℵ0-categorical, because then corollary 7.4 from [6]
gives that for every finite subset A of G there is a finite special subgroup GA of G,
containing A. If A varies among all finite subsets of G we get an inductive system
of finite special groups whose limit is G.

3.2. Retracts and local-global principles. We now use the decomposition of
special groups in SGFC given in the preceding section and profit of the ease with
which it allows us to build retracts to present some results about preservation and
reflection of some kinds of formulas.

Proposition 3.20. Let G ∈ SGFC . Then for every N ∈ N there is a finite special
subgroup GN of G such that

(1) XG,GN
6= ∅;

(2) For every pp-formula φ(ḡ) in LSG with at most N conjunctions and with
parameters ḡ in G we have

G |= φ(ḡ) if and only if ∀σ ∈ XG,GN
GN |= φ(σ(ḡ)).

The following lemmas will be needed in the proof:

Lemma 3.21. Let l, d ∈ N, p = ld−1 + 1 and let δ̄1, . . . , δ̄p be pairwise distinct
elements of {1, . . . , l}d. Then for every k ∈ {1, . . . , d} there exist two elements
δ̄i, δ̄j which only differ by their k-th coordinates.

Proof. We can take k = 1. Assume that for every 1 ≤ i 6= j ≤ p, δ̄i and δ̄j differ on
a coordinate different from the first one. If we now remove the first coordinate from
every δ̄i, we get ld−1 +1 different elements in {1, . . . , l}d−1, which is impossible. �

Lemma 3.22. Let M ∈ N and let A1, . . . , AM be sets. Assume u1, . . . , u(M+1)k be-
long to the union

⋃M
j=1Aj. Then there are (M+1)k−1+1 elements of {u1, . . . , u(M+1)k}

belonging to the same set Ai.

Proof. Since M(M + 1)k−1 < (M + 1)k, one of the Ai must contain more than
(M + 1)k−1 elements. �

Proof of proposition 3.20. As in the beginning of the proof of proposition 3.17, we
can write

(6) G = G0 ×H(α1)
1 × · · · ×H(αn)

n in L−m,

where G0 and the Hi are finite L−m-substructures of G. We can also assume that
α1, . . . , αn are all infinite (taking a larger G0 if necessary), and that G0 was chosen
such that the constants of Lm are elements of G0.
In particular a subgroup ∆G

i has the form ∆G0
i × (∆H1

i )(α1) × · · · × (∆Hn
i )(αn)

because the decomposition (6) is in the language L−m, and the corresponding coset
is āi∆G0

i × (∆H1
i )(α1) × · · · × (∆Hn

i )(αn) (since āi ∈ G0).

To simplify notation we start with the case

(7) G = G0 ×H(α)
1 .

The proof is split into three steps, and we will indicate at the end how to proceed
in the general case.

1) For our first step we consider the general form of such a formula φ(ḡ) and
define GN . The formula φ(ḡ) is of the form

∃x̄
N1∧
i=1

Ti(x̄, ḡ) ∈ R ∧
N2∧
i=1

t′i(x̄, ḡ) = 1,
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where the t′i are LSG-terms, the Ti are pairs (ti,1, ti,2) of LSG-terms and R is the
representation relation seen as a binary relation. By considering (if necessary) −1
as one of the parameters ḡ we can assume that the terms t′i, ti,j are actually terms
in the language {·, 1}. Such a term t(z̄) in the language {·, 1} has the property
t(ā)t(b̄) = t(āb̄) for every ā, b̄ ∈ G. So φ(ḡ) can be seen as

(8) ∃x̄ T̄ (x̄, ḡ) ∈ RN1 × {1}N2 ,

where T̄ = T1 × · · · × TN1 × t′1 × · · · × t′N2
has the property T̄ (ā)T̄ (b̄) = T̄ (āb̄) for

every ā, b̄ ∈ G`(x̄)+`(ḡ) (where `(z̄) is the length of the tuple z̄), and

(9) RN1 × {1}N2 =
M⋃
i=1

ωiΩi

is a finite union of cosets inG2N1+N2 . Note that ωi ∈ G2N1+N2
0 since the constants of

Lm are inG0, and that Ωi is a product of some ∆G
j and {1}. Since the decomposition

(7) is in L−m, we get ωiΩi = ωiΩG0
i × (ΩH1

i )(α), for i = 1, . . . ,M .
Clearly M ≤ mN1 ≤ mN , so we can assume M = mN . We take GN := G0 ×HM

1

(it only depends on N since G is fixed), which we consider as the subgroup of
G0 ×H(α)

1 consisting of the first M + 1 coordinates. Note that

RGN =
M⋃
i=1

ωiΩ′i, with Ω′i := ΩG0
i × (ΩHi

i )M .

Using (7) and since ḡ is a finite tuple, there is k ∈ N∪{0} such that ḡ ∈ G0×HM+k
1 .

2) Our second step consists in defining well-chosen retracts of the inclusion of
GN in G, which we will then exclusively use:

Let σ0 be the projection on the M + 1 first coordinates from G = G0 × H(α)
1

onto G0 ×HM
1 . It is an L−m-morphism and a retract of the inclusion of GN in G,

and thus a morphism of special groups (see lemma 3.9).
We denote by (ai)i<α an element of G0 × H(α)

1 , with a0 ∈ G0 and ai ∈ H1 for
1 ≤ i < α, and we define for k1 ≥ 1 and 1 ≤ i1 ≤M :

pM+k1 i1 : G0 ×H(α)
1 −→ GN := G0 ×HM

1

(ai)i<α 7−→ (1, . . . , 1, aM+k1 , 1, . . . , 1)

(aM+k1 is put in the i1-th coordinate). pM+k1 i1 is clearly an L−m-morphism.
So for every 1 ≤ k1, . . . , kl ≤ k and every 1 ≤ i1, . . . , il ≤M , we have a projection

σ0pM+k1 i1 · · · pM+kl il in the language L−m from G = G0 × H(α)
1 onto G0 × HM

1 .
It is then, as for σ0, a morphism of special groups. We will only consider retracts
of this form, which we call “useful retracts.” If we define pM+k 0 := 1, then every
useful retract is of the form σ0pM+1 i1 · · · pM+k ik and is uniquely determined by
the k-tuple (i1, . . . , ik) ∈ {0, . . . ,M}k.

3) Our third step is the actual proof, for which we now have all the necessary
tools. We clearly have XG,GN

6= ∅ (it contains every useful retract). For the second
statement of the proposition, the implication from left to right is obvious. Assume
now that for every σ ∈ XG,G0×HM

1
, G0×HM

1 |= φ(σ(ḡ)). We will find a realisation
in G of the existential quantifier in φ(ḡ) by induction on k (which was defined at
the end of step 1):

• k = 0. The result is clear, since we then have ḡ ∈ GN , σ0(ḡ) = ḡ and
GN |= φ(σ0(ḡ)) if and only if G |= φ(ḡ).
• k ≥ 1. We are looking for a realization of the tuple x̄ from ∃x̄ T̄ (x̄, ḡ) ∈⋃M

i=1 ωiΩi.
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There are (M + 1)k useful retracts, say σi for i = 1, . . . , (M + 1)k, and we
have, by hypothesis, for i = 1, . . . , (M + 1)k:

G0 ×HM
1 |= ∃x̄ T̄ (x̄, σi(ḡ)) ∈

M⋃
j=1

ωjΩ′j .

By lemma 3.22 there are one coset and at least (M + 1)k−1 + 1 =: p useful
retracts (we can assume they are ω1Ω′1 and σ1, . . . , σp) such that

G0 ×HM
1 |= ∃x̄ T̄ (x̄, σi(ḡ)) ∈ ω1Ω′1, for i = 1, . . . , p.

As mentioned above, each of these retracts is determined by an element
of {0, . . . ,M}k. We are then considering p = (M + 1)k−1 + 1 elements of
{0, . . . ,M}k. By lemma 3.21, there are two of them which only differ by one
coordinate, say the first. Let δ̄ := (δ1, δ2, . . . , δk) and δ̄′ := (δ′1, δ2, . . . , δk)
be these two elements, representing the retracts γ and τ , with δ1 6= δ′1. One
of δ1, δ′1 is different from 0 so we assume δ1 6= 0.

We then have

G0 ×HM
1 |= ∃x̄ T̄ (x̄, γ(ḡ)) ∈ ω1ΩG0

1 × (ΩH1
1 )M ,

G0 ×HM
1 |= ∃x̄ T̄ (x̄, τ(ḡ)) ∈ ω1ΩG0

1 × (ΩH1
1 )M ,

i.e. there exist ā, b̄ ∈ G0 ×HM
1 such that:

G0 ×HM
1 |= T̄ (ā, γ(ḡ)) ∈ ω1ΩG0

1 × (ΩH1
1 )M ,

G0 ×HM
1 |= T̄ (b̄, τ(ḡ)) ∈ ω1ΩG0

1 × (ΩH1
1 )M .

In particular, looking at the δ1-th coordinate:

T̄ (āδ1 , ḡδ1 ḡM+1h̄) ∈ ΩH1
1 and T̄ (b̄δ1 , ḡδ1 h̄) ∈ ΩH1

1 ,

where h̄ is a product of elements of {gM+2, . . . , gM+k} (since δ̄ and δ̄′ only
differ by their first coordinates). Taking the product of these last two terms
we get

T̄ (āδ1 b̄δ1 , ḡM+1) ∈ ΩH1
1 ,

and we choose x̄M+1 := āδ1 b̄δ1 .
The idea is now to “forget” the M + 1-st coordinate. It leaves us with at
least (M+1)k−2+1 useful retracts belonging to the same coset. We are then
back to the case k − 1 where a realisation exists by induction hypothesis.

This completes the proof in the case G = G0×H(α)
1 . If G = G0×H(α1)

1 ×· · ·×H(αn)
n

a similar proof will work if we consider the retracts of the inclusion of G = G0 ×
HM

1 × · · · ×HM
n in G. �

The result of proposition 3.20 can be improved in two steps. The first one consists
in using positive existential formulas instead of pp-formulas: A positive existential
LSG-formula is of the form

∃x̄ (
l1∧
i=1

T1,i(x̄, ḡ) ∈ R ∧
l′1∧
i=1

t′1,i(x̄, ḡ) = 1) ∨ · · ·

∨ (
ln∧
i=1

Tn,i(x̄, ḡ) ∈ R ∧
l′n∧
i=1

t′n,i(x̄, ḡ) = 1),

where the t′i,j(x̄, ḡ) are LSG-terms and the Ti,j are pairs of LSG-terms. The formula
can then be written

∃x̄ f1(x̄, ḡ) ∈ B1 ∨ · · · ∨ fn(x̄, ḡ) ∈ Bn,
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for fk = Tk,1 × · · · × Tk,lk × t′k,1 × · · · × t′k,l′k and Bk = Rlk × {1}l′k (note that Bk
is a subset of Gpk where pk = 2lk + l′k and is a finite union of cosets). The positive
existential formula can then be written as follows:

∃x̄ (f1(x̄, ḡ), . . . , fn(x̄, ḡ)) ∈ B1 ×Gp2 × · · · ×Gpn∪
Gp1 ×B2 ×Gp3 × · · · ×Gpn∪
· · · ∪Gp1 × · · · ×Gpn−1 ×Bn.

But this describes the same situation as in lines (8) and (9) in the proof of propo-
sition 3.20. We then just have to follow the proof after that point.

The second step consists in observing that since the parameters remain un-
changed along the proof of proposition 3.20 and can be freely chosen, we can
universally quantify our formula. This gives the following version of proposition
3.20:

Theorem 3.23. Let G ∈ SGFC . Then for every N ∈ N there is a finite special
subgroup GN of G such that

(1) XG,GN
6= ∅;

(2) For every ∀∃+-formula φ(ḡ) with at most N atomic subformulas and with
parameters in G:

G |= φ(ḡ) if and only if ∀σ ∈ XG,GN
GN |= φ(σ(ḡ)).

We immediately deduce

Corollary 3.24. Let G ∈ SGFC . Then
• For every N ∈ N there is a finite special subgroup KN of G such that, for

every pair of quadratic forms f, g over G of dimension at most N :

f ≡G g if and only if ∀σ ∈ XG,KN
σ(f) ≡KN

σ(g).

• For every N ∈ N there is a finite special subgroup K ′N of G such that for
every quadratic form f over G of dimension at most N :

f is anisotropic in G if and only if ∀σ ∈ XG,K′N
σ(f) is anisotropic in K ′N .

Proof. Both statements follow from theorem 3.23, as isometry and isotropy are
expressed by positive-existential formulas whose number of atomic subformulas is
bounded by a function of the dimension of the forms. �

The second assertion in the corollary is similar to the isotropy theorem (see [20]),
but the special group K ′N does not depend on the coefficients of the quadratic form.
In case G is reduced and hence of finite chain length (reduced SGFC-groups are
ℵ0-stable, hence of finite chain length), we obtain the following dual formulation of
Corollary 3.24 in terms of spaces of orderings:

Corollary 3.25. Let (X,G) be a space of orderings of finite chain length. Then
for every N ∈ N there is a finite subspace Y of X such that for every quadratic
form f with coefficients in G and dimension at most N :

f is isotropic over X if and only if f is isotropic over Y.

4. Weakly normal special groups

Weakly normal groups have been studied in [14], where the following character-
isation is proved (theorem 4.1):
A group G (in a language containing the language of groups) is weakly normal if
every definable subset of Gn is a finite boolean combination of cosets of definable
subgroups of Gn, for every n ∈ N.

This suggests exploring possible links between weakly normal special groups and
SGFC . We start with a simple observation:
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Lemma 4.1. Let G be a special group. Then
(1) G is weakly normal if and only if RG is a finite boolean combination of

cosets.
(2) If G is weakly normal and ℵ0-categorical then G is ℵ0-stable.

Proof. (1) The left to right implication is clear by the above mentioned char-
acterization. Suppose now that RG is a boolean combination of cosets of
the subgroups A1, . . . , An of G2. Let L1 be the language of groups with
predicates for A1, . . . , An. Then the LSG-structure G is interpretable in the
L1-structure G, which is weakly normal (every definable set is a boolean
combination of definable cosets). In particular, G does not type-interpret a
pseudoplane in L1 ([14, proposition 1.1]), and also does not type-interpret
a pseudoplane in LSG since LSG is definable in L1. Proposition 1.1 of [14]
shows, then, that the special group G is weakly normal.

(2) By [14, Theorem 4.1] there are LSG-definable subgroups A1, . . . , An of G2

such that RG is a finite boolean combination of cosets of A1, . . . , An. The
special group G is then interpretable in the group G equipped with predi-
cates for A1, . . . , An (which is ℵ0-categorical by interpretation). Since the
underlying group is of exponent 2 —hence a F2-vector space— this latter
structure is also ℵ0-stable by Proposition 1.2.

�

Definition 4.2. A special group G is called residually finite if for every LSG-atomic
formula θ(ā) with parameters ā ∈ G such that G 6|= θ(ā) there is a finite special
group H and a morphism of special groups f : G→ H such that H 6|= θ(f(ā)).

We conclude the paper by summing up some of the equivalences proved so far
and linking them to weakly normal special groups:

Theorem 4.3. Let G be a special group. Then the following statements are equiv-
alent:

(1) The isometry relation of G is a finite union of cosets;
(2) G is weakly normal and residually finite;

If furthermore G satisfies AP (3) and is ℵ0-categorical then the following statements
are equivalent:

(5) The isometry relation of G is a finite union of cosets of subgroups of G4

and G has finite 2-symbol length;
(6) G is weakly normal of finite 2-symbol length;
(7) G is ℵ0-stable, ℵ0-categorical and of finite 2-symbol length;
(8) (G, I(G)2/I(G)3, qG) is an ℵ0-stable ℵ0-categorical quaternionic mapping.
(9) G is the special group associated to an ℵ0-stable ℵ0-categorical quaternionic

mapping.

Proof. For the first part of the theorem: 1 implies 2 by lemma 4.1 and proposition
3.13, so we only need to check that 2 implies 1. We assume 2, and we consider the
topology on G whose basis of open sets is given by the cosets of finite index. Since
G is residually finite, RG is closed for this topology, so RG = RG. Since RG is a
boolean combination of cosets we have

RG =
n⋃
i=1

(
ki⋂
r=1

Ωi,r ∩
li⋂
s=1

(G2 \ Γi,s)

)

=
n⋃
i=1

(
Ωi ∩

li⋂
s=1

(G2 \ Γi,s)

)
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where the Ωi,r,Ωi,Γi,s are cosets in G2. We can also assume (up to some rewriting
of the expression of RG as boolean combination of cosets) that for every i = 1, . . . , n,
s = 1, . . . , li, the cosets Γi,s have infinite index in Ωi. Taking now the topological
closure on both sides of this equality, we get

RG =
n⋃
i=1

(
Ωi ∩

li⋂
s=1

(G2 \ Γi,s)

)

=
n⋃
i=1

(
Ωi \

li⋃
s=1

Γi,s

)

=
n⋃
i=1

Ωi (see fact below),

so RG is a finite union of cosets.
Fact: If n ∈ N and Ω,Γ1, . . . ,Γn are cosets of G2 such that Γi has infinite index in
Ω for i = 1, . . . , n, then Ω \

⋃n
i=1 Γi = Ω.

Proof of the fact: Ω is the intersection of all cosets of finite index containing Ω, so is
closed. Consider now a ∈ Ω, and let H be a coset of finite index in G2 containing a.
If we show that H ∩ (Ω \

⋃n
i=1 Γi) 6= ∅, then a ∈ Ω \

⋃n
i=1 Γi and the fact is proved.

Assume H ∩ (Ω \
⋃n
i=1 Γi) = ∅. Then Ω∩H ⊆

⋃n
i=1 Γi. But Ω∩H has finite index

in Ω (since H has finite index in G2 and Ω ∩ H is nonempty), while
⋃n
i=1 Γi has

infinite index in Ω (by Neumann’s lemma, see for instance [26, Theorem 2.12]), a
contradiction which proves the fact.

We now consider the second part of the theorem, so we assume that G satisfies
AP (3). Then (G, I(G)2/I(G)3, qG) is a linked quaternionic mapping. We have 5
implies 6 by definition of weak normality, 6 implies 7 by lemma 4.1, 7 implies 8 by
proposition 2.6. 8 implies 9 is clear and 9 implies 5 by proposition 2.3. �

Remark 4.4. In the case of reduced special groups:
• The statements 1 and 2 are equivalent to G being stable, i.e. of finite chain

length, i.e. built from Z2 by using a finite number of times the operations of
product and extension (see [3], corollary 4.5 and the subsequent paragraph).

• The statements 5, 6, 7, 8 and 9 are all equivalent to G being finite (see
corollary 2.7).
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