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Chapter 1

Sets and functions

In this chapter we quickly recall some basic notions and notation about sets and
functions. You should be familiar with most of it from first year.

1.1 Sets

For us, a set is simply be a collection of objects. These objects can be anything
and are called the elements of the set. (This is a very intuitive notion of set,
that will be sufficient for us. A precise study of the notion of set is beyond the
scope of this course and is rather non-trivial. If you feel so inclined you may try
to look up something called Russell’s paradox)

There are two main notations used for defining sets. In the first one, a set
is given by listing all its elements, and in the second one the set is given by
describing its elements.

Set given by listing its elements

This is done for instance as follows:

{1,−π, ?}, {1, 2, 3, 4}, {the colour blue,−1, the sun (the actual one)}.

The ellipsis (. . .) can be used to indicate that the list of elements goes
on “in the obvious way”, for instance:

{1, 2, 3, 4, . . .}

denotes the set of all positive integers (also denoted by N).
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Set given by describing its elements

This is usually done by giving a property that characterizes the elements
of the set. For instance

{n | n is a positive integer, and 3 divides n}

denotes the set {3, 6, 9, 12, . . .} (and reads “the set of all n such that n
is a positive integer and 3 divides n”). . More generaly, this is done by
indicating a letter that will be used in the property, and then indicating
the property: The notation

{x | some property involving x}

(sometimes written

{x : some property involving x}

)
means “the set of all elements (which we call x in the following property)
such that the given property is true for x”. In this case, if we want to
know if some object (any kind of object) is in the set, we temporarilly
call it x and check if the property is true for this value of x. If it is, the
element belongs to the set, if not, the element does not belong to the set.

Both notations use the curly brackets { and }. They indicate that you are
defining a set.

Example 1.1. 1. N = {1, 2, 3, . . .} the set of all positive integers.

2. Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .} the set of all integers.

3. Q = {a/b | a, b are integers, b 6= 0}, the set of all rational numbers.

4. R denotes the set of all real numbers (it is more complicated to give a
precise description of it).

Some variations on the above notation are common and are usualy clear, for
instance

{x2 | x ∈ R and x > 3}

denotes the set of all squares of elements of R that are greater than 3 (it is equal
to (9,∞)).

Remark 1.2. An important feature of the definition of set is that a set is
completely determined by the elements that it contains. In other words, if two
sets contain the same elements, they are equal:

{1, 2} = {1, 2, 2, 2} = {2, 1}, {1, 2, 3} 6= {1, 2, 3, 4}.

As you can see, it means in particular that:

1. Repeating an element does not change the set;
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2. The order in which the elements are listed does not matter.

Definition 1.3. The empty set is the set that does not contain any element.
Using the notation introduced above, it can be written {}, but the most common
notation for it is ∅ (an “O” with a diagonal bar).

The notation a ∈ B is short for “a is in B” (or “a belongs to B”, or “a is
an element of B”). It means that B is a set, and that a is an element of B. We
write a 6∈ B to denote that a is not an element of B. So, for instance:

3 ∈ N, −1 6∈ N, 4 6∈ {−10, ?, π}.

If S and T are both sets, the notation S ⊆ T (or S ⊂ T ) means that every
element of S is also in T , and we say that S is contained in T (or that S is
included in T , or that S is a subset of T ). Similarly, the notation S 6⊆ T
means that S is not a subset of T , i.e., that there is at least one element of S
that is not in T . For instance

{1, 2} ⊆ {1, 2, 3}, {1, 2} ⊆ {1, 2}, N ⊆ Q,

but
{−1, 2} 6⊆ N, Q 6⊆ {1, 2, 3}.

Remark 1.4. Observe that if A is any set, then the empty set is a subset of
A. Why? Because if it were not the case, then there would be an element in the
empty set that is not in A (by definition of being a subset). But the empty set
does not contain any element, so it is not possible.

We say that S is a proper subset of T if S ⊆ T and S 6= T (i.e. every
element of S is in T , and there is at least one element of T that is not in S).
This is denoted by S ( T or S $ T .

Finaly, if S is a finite set, we denote by |S| the number of elements in S. If
S is infinite, we write |S| = ∞. This number |S| is called the cardinality of
S.

1.2 Union and intersection

If A and B are two sets, we can build:

1. The union of S and T , denoted S ∪ T . It is the set that consists of all
the elements of S together with all the elements of T :

S ∪ T = {x | x ∈ S or x ∈ T}.

For instance
{−3, 4} ∪ N = {−3, 1, 2, 3, 4, 5, . . .},

{1, 2} ∪ {?,−6} = {1, 2, ?,−6}.
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2. The intersection of S and T , denoted S ∩ T . It is the set that consists
of all the elements that are in both S and T :

S ∩ T = {x | x ∈ S and x ∈ T}.

For instance
{−3, 4} ∩ N = {4},

{1, 2} ∩ {?,−6} = ∅.

1.3 Cartesian product

(Named after René Descartes. We will simply say “product”.)
A pair of elements (more precisely, an ordered pair of elements) consists of

two elements (which can be absolutely anything, as usual), where one of them is
the first element and the other the second element. So the order of the elements
is important.

If a and b are these elements, the pair where a is the first element and b the
second is denoted by (a, b). Similarly, the pair where b is the first element and
a the second is denoted by (b, a).

The order matters, so (10, 3) 6= (3, 10).
You should already be familiar with this concept: Pairs of real numbers are

used to identify points in the plane. As you can see, the order does matter:

0 1 2 3 4

1

2

3 (1, 3)

(3, 1)

The concept of pairs is very useful, and there is no reason to only use it with
real numbers. It is also used to build the elements of what is called the product
of two sets:

Definition 1.5. If S and T are sets, the product of S by T (in this order),
denoted S × T , is the set of all pairs having as first element an element from S
and as second element an element from T , so

S × T = {(x, y) | x ∈ S and y ∈ T}.

Example 1.6.

{−3, ?} × {1, 2, 3} = {(−3, 1), (−3, 2), (−3, 3), (?, 1), (?, 2), (?, 3)}.
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Observe that if S and T are finite, then |S × T | = |S| · |T |.
The same construction can be used for more than 2 sets:

Definition 1.7. An ordered list of n elements is called an n-tuple (so a pair is
a 2-tuple), and if S1, S2, . . . , Sn are sets, the product S1 × S2 × · · · × Sn is the
set of all n-tuples consisting of and element of S1, an element of S2, . . . , an
element of Sn. For instance, if S, T, U are sets:

S × T × U = {(x, y, z) | x ∈ S, y ∈ T, z ∈ U}.

1.4 Functions

Given two sets S and T , a function (also called a map) from S to T is “some-
thing” that associates an element of T to each element of S. If the function is
called f , we denote this by f : S → T , and the element from T associated to an
element a from S is denoted by f(a) (and is called the image of a by f).

This “something” can be anything that associates an element of T to each
element of S: A formula, a procedure explcitely described, or something com-
pletely arbitrary. A common compact notation for indicating how f is defined
is:

f : S → T, x 7→ “how to get f(x) out of x”,

see examples below.

Examples 1.8. 1. f : N→ N given by f(n) = n+ 1. A compact notation is
for instance f : N→ N, n 7→ n+ 1.

2. g : R → R given by g(x) = sin(x) + x2 − 1. A compact notation is for
instance g : R→ R, x 7→ sin(x) + x2 − 1.

3. f : Z→ N given by f(−1) = 3, f(12) = 1 and f(x) = |x| if x is different
from −1 and 12. A “compact” notation could be f : Z → N, −1 7→
3, 12 7→ 1, x 7→ |x| if x is not −1 or 12, but would be rather cumbersome
here.

4. ϕ : {−1, ?} → R given by ϕ(−1) = π and ϕ(?) = 0.

5. f : R → R, x 7→
√
x is not a map, because it is not defined for every

element of R (only for the non-negative ones), but f : [0,∞) → R, x 7→√
x is a map.

6. If S is a set, the map S → S, x 7→ x is called the identity map (on S)
and is denoted by IdS (or simply Id if the set S is clear from the context).

Definition 1.9. If f : S → T is a function, the set S is called the domain of
f and the set T its codomain. The set of all the images of elements of S is
called the image of f and is denoted f(S):

f(S) = {f(x) | x ∈ S}.

Definition 1.10. Let f and g be two maps. We say that f and g are equal
(and write f = g) if:
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1. They have the same domain and codomain;

2. They agree on each element of the domain, i.e. if the domain is S: f(x) =
g(x) for every x ∈ S.

Two properties of maps are particularly important:

Definition 1.11. Let f : S → T be a map.

1. We say that f is injective if for all x, y ∈ S, if x 6= y then f(x) 6= f(y).
It is equivalent to saying that for all x, y ∈ S, if f(x) = f(y), then x = y.

2. We say that f is surjective if every element of T can be obtained as f(x)
for some x ∈ S. In other words, if f(S) = T .

3. A map that is both injective and surjective is called bijective.

You may encounter the terminology “one to one” for injective and “onto”
for surjective, but we will avoid using it.

Example 1.12. 1. f : R → R, x 7→ x + 1 is injective, since f(x) = f(y)
implies x = y. It is also surjective, since every element of R is in the
image of f .

2. f : R→ [0,∞), x 7→ x2 is not injective (since different elements of R can
have the same image) and is surjective. However, g : R → R, x 7→ x2 is
not surjective. Observe that the maps f and g are different (they do not
have the same codomain).

Lemma 1.13. Let f : S → T be an injective map. Then |S| = |f(S)|.

Proof. We first consider the case where S is finite, so S = {x1, . . . , xn} where
the xi are all different. By definition f(S) = {f(x1), . . . , f(xn)}, so |f(S)| ≤ n.
We now check that f(x1), . . . , f(xn) are all different: If it where not the case,
we would have f(xi) = f(xj) for some xi 6= xj , but it is impossible since f is
injective. Therefore f(S) has n elements.

If S is infinite: Let T be a subset of S with n elements (where n ∈ N). Then
by the argument above f(T ) has n elements. But f(T ) ⊆ f(S), so f(S) has at
least n elements, for every n ∈ N , i.e. f(S) =∞.

Corollary 1.14. Let f : S → T be a map where S and T are finite with the
same number of elements. Then f injective is equivalent to f surjective.

Proof. If f is injective: By the previous lemma we know that |f(S)| = |S|.
Since |S| = |T | we get |f(S)| = |T |. So f(S) ⊆ T and both have the same finite
number of elements, which shows that f(S) = T , i.e. that f is surjective.

If f is surjective. Write S = {x1, . . . , xn}, with the xi all different. Then
f(S) = {f(x1), . . . , f(xn)}. Since f(S) = T and |T | = |S| = n, we have
|f(S)| = n, so the f(xi) must be all different, i.e. f is injective.

Definition 1.15. Let f : S → T and g : T → W be maps. The composition
of f with g, denoted g ◦ f is the map

g ◦ f : S →W, x 7→ g(f(x)).
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Observe that it is computed from right to left: You first apply f to x, then
feed the result (i.e., f(x)) into g.

Definition 1.16. Let f : S → T . A map g : T → S is called the inverse of f
if f ◦ g = IdT and g ◦ f = IdS.
(In other words: f(g(x)) = x for every x ∈ T and g(f(y)) = y for every y ∈ S.)
The map g is denoted by f−1.

We say that f is invertible if it has an inverse.

Remark 1.17. In the previous definition, we called g the inverse of f . We can
do this because it is not very hard to check that if f is invertible, then it has
only one inverse: If both g and g′ are inverses of f , then we must have g = g′.
This is left as an exercise (use that g(f(y)) = y and that f is surjective).

Proposition 1.18. 1. Let f be a map. Then f has an inverse if and only
if f is bijective.

2. Let f : S → T and g : T → U be bijective maps. Then g ◦ f is bijective
and (g ◦ f)−1 = f−1 ◦ g−1
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Chapter 2

Random remarks on
mathematical notation,
terminology, and proofs

2.1 “Or”

The meaning of the word “or” in English can be exclusive or inclusive. Consider
the following statements:

� On a chessboard the rook can move horizontally or vertically.

In this case the “or” is inclusive: both are possible.

� We will meet at 5pm or at 6pm.

In this case the word is (usually) exclusive: it is one or the other, but not
both.

In mathematics, the convention is to always use the inclusive or.
In other words, if A and B are statements, then the statement

A or B

is true in the following cases:

A is true, B is true, both A and B are true.

In particular, it is false exactly when both A and B are false.

Example 2.1.

� “2 > 1 or 2 > 0” is true (this is the one that can seem odd if you are more
used to the exclusive or);

� “2 > 3 or 2 > 0” is true;

� “2 > 1 or 2 > 5” is true;

� “2 > 4 or 2 > 5” is false.

13
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2.2 Implication

We say that a statement A implies a statement B (or that B follows from A,
and I am sure that there are other ways to put it) if the following holds:

If A is true, then B is true.

The mathematical abbreviation for this is:

A⇒ B.

In words: “A implies B”, or “B follows from A”, or ”if A is true then B is
true” (again, there are probably other ways to say it).

Example 2.2. � If x is a prime number, then 10 does not divide x. It is
the implication A ⇒ B, where A is “x is a prime number” and B is “10
does not divide x”.

� If x is a positive real number, then x is a square. It is the implication
A⇒ B, where A is “x is a positive real number” and B is “x is a square”.

Note that it is of course possible to write false implications. For instance

If x is a human, then x has blue eyes.

It is obviously false since there are humans with (for instance) brown eyes.

So: In general, how can we see if an implication A ⇒ B is false? We must
find a case where A is true, but where B is false. (Indeed, the implication must
then be incorrect, because if it were correct: since A is true, we would have that
B is true.)

To go back to the previous example: Take a human x with brown eyes. Then
A is true (x is a human), but B is false (x does not have blue eyes). Therefore
A⇒ B is a false statement.

Finally, how do you prove that a statement in the form A⇒ B is true?
You start with the data that might also be given in the question, and you

assume that A is true. And with all of this you find an argument that justifies
that B is true.

2.3 Equivalence

We say that two statements A and B are equivalent when

(A implies B) and (B implies A).

The mathematical abbreviation for this is

A⇔ B.
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It means that if A is true, then B is true, and if B is true then A is true. It
is exactly the same as saying “A⇒ B and B ⇒ A”.

Some common ways to express it in words in mathematics texts: “A and B
are equivalent”, “A is equivalent to B”, “A if and only if B”.

How do you prove that a statement of the form A ⇔ B is true? The most
basic way (which works most of the time, but may not always be the most
efficient) is to prove both A⇒ B and B ⇒ A.

Sometimes it is possible to find an argument of the form:

A⇔ C1

⇔ C2

...

⇔ Ck

⇔ B

which mean that at each step, each statement is clearly equivalent to the previ-
ous one. But it requires taking great care that the steps are small enough that
each successive equivalence is clear.

Finally, how can you see if a statement of the form A⇔ B is false? It would
mean that (A⇒ B and B ⇒ A) is false, so that at least one (but maybe both)
of the statements A⇒ B, B ⇒ A is false (see the previous section for this).

2.4 Quantifiers

The quantifiers are the symbols ∀ and ∃. They are both abbreviations. The first
one means “for all” (or “for every”) and the second one means “there exists”
(or “there is”).

The only small difficulty is to know the range of ∀ or ∃. By this I mean:
If we say (for instance) ∀z, does is mean “for every integer z”, or for “every
function z”, or. . . In general it is clear from the context, or it is written carefully
in the statement.

Example 2.3. For instance, if we know that we are working with real numbers,
then the following statement is true

∀g g ≥ 0 or g < 0.

But this statement is not true anymore if we are working with (for instance)
functions from R to R. Which means that we may need to be a bit more precise
if the context does not give enough information.

So here are two other ways to write the same statement, with the very same
meaning, but written a bit differently to make sure that is is clear that g is a real
number (there are of course other ways to write it. The only important thing is
to be perfectly clear):

∀g g is a real number⇒ (g ≥ 0 or g < 0),

∀g real number g ≥ 0 or g < 0.
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Observe that changing the “name” of the quantified element does not change
the statement. For instance, the statement in the previous exercise is exactly
the same as this one:

∀t t ≥ 0 or t < 0.

Example 2.4. Another example that you should know from analysis, if f is a
function from R to R and a ∈ R, then

∀ε > 0 ∃η > 0 (such that) ∀x |x− a| < η ⇒ |f(a)− f(x)| < ε,

expresses that f is continuous at a. The “such that” that should be added in
English after a “there exists” to get a proper sentence, is sometimes ommitted
in mathematical statements.

Important: When there are several ∀ and ∃ following each other (in any
order), the convention is that each ∃ depends on all the previous data, including
all the previous ∀ and ∃. It is actually the standard convention in English. Let
us look at two examples:

1. Consider the sentence:

∀ foot ∃ a shoe that will fit the foot.

It is of course understood that the shoe depends on the foot. We make
the same interpretation in maths.

2. Going back to the example with the continuity: It says that if you take
any ε > 0 you can find η > 0 such that some property holds.

The η is allowed to depend on f , a and ε: if you take a different f , a or ε,
you will in general need to come up with a different η.

2.5 “Let X be such that. . . ”

A common way to state a question (in an exercise sheet or an exam) is to use
a sentence similar to:

Let X be such that –some property–. Prove –something about X–.

In mathematics, this formulation always means that X is completely ran-
dom and that the only thing you know about it is that it has the property
indicated. In particular, it is not an invitation for you to choose a specific
X.

Let us illustrate this with the following exercise:

Exercise 2.5. Let p be a integer such that p is prime and greater than 2. Show
that 2p is not prime.

Example of a correct answer / proof: 2p is not prime because it is divisible
by 1, 2 and p (which are all different).

Example of an incorrect answer / proof: We take p = 3. Then 2p = 6 and
we know that 6 is not prime (it is divisible by more than just 1 and 6).

The problem in the second “proof” is that you took a specific value for p,
while the question should have been proved for a general p.
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2.6 Proof by contradiction

This is a particular way to prove a statement. Let us call this statement S. In
a proof by contradiction of S, you first assume that S is false. Then, using this
extra information, you try to reach a statement that is false (the contradiction).
It means that S must be true.

What happened?

You want to show that the statement S is true. Since S is either true or
false, you have only 2 cases:

1. S is true: Nothing to do, it is what you want.

2. S is false: Now you look closely at what this would imply. So you use this
extra knowledge to try to deduce more things. If you manage to deduce
something that is false, it means that this case cannot occur (and sso that
S is true).

Example 2.6. One of the standard examples of a proof by contradiction is the
proof that there are infinitely many prime numbers:

We assume that there are only finitely many prime numbers (so: we are plac-
ing ourselves in the second case, our objective is then to find something false out
of it). Let p1, . . . , pn be the full list of all prime numbers. Then (p1p2 . . . pn) + 1
is not divisible by any of p1, . . . , pn, which is impossible because an integer should
be divisible by at least one prime number. This is a contradiction, proving that
there are infinitely many prime numbers. (I.e., we showed that the second case
is impossible since it leads to a contradiction.)

Why is it sometimes convenient to try to use a proof by contradiction?
Because we can then use one more hypothesis (namely, that S is false). It gives
us a little bit more material to work with.

One final remark: The fact that this particular type of proof has a name
should not suggest that there are only a few precise types of proofs that you
need to stick to. There are infinitely many possible ways to write proofs. But
this way is common enough that it was convenient to give it a name.


