ALGEBRAIC STRUCTURES (MST20010)

Problem sheet 9

1. (a) Recall that $(\mathbb{Z}, +)$ is cyclic if there is $a \in \mathbb{Z}$ such that $\mathbb{Z} = \langle a \rangle$, and that $\langle a \rangle$ is the set of everything you can obtain out of a and -a (recall that -a is the inverse of a in the group $(\mathbb{Z}, +)$) and using the group operation as many times as you want (with a and -a appearing as many times as you want and in any order). We clearly see that in this case

$$\langle a \rangle = \{ na \mid n \in \mathbb{Z} \} = a\mathbb{Z}.$$

In particular $\langle 1 \rangle = \mathbb{Z}$, so $(\mathbb{Z}, +)$ is cyclic.

Let a be a generator of $(\mathbb{Z}, +)$, i.e., $\langle a \rangle = \mathbb{Z}$, i.e., $a\mathbb{Z} = \mathbb{Z}$. If this holds, then $1 \in a\mathbb{Z}$, so a divides 1, so a = 1 or a = -1. We already saw that 1 is a generator of \mathbb{Z} , and clearly $(-1)\mathbb{Z} = \mathbb{Z}$, so -1 is also a generator of \mathbb{Z} .

- (b) Assume that $(\mathbb{R} \setminus \{0\}, \cdot)$ is cyclic. So $\mathbb{R} = \langle a \rangle$ for some a > 0 (the case a < 0 is very similar, just a bit longer to write). Since the operation is the product, we have $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. This set does not contain all the elements of \mathbb{R} . There are several ways to see this, I give two:
 - (1) If a > 1, then all the elements of $\langle a \rangle$ that are greater than 1 are $\{a, a^2, a^3, \ldots\}$ and $a < a^2 < a^3 \cdots$. Therefore the elements of the interval (1, a) are not in $\langle a \rangle$. Similarly, if a < 1, then the elements of $\langle a \rangle$ that are greater than 1 are $a^{-1}, (a^{-1})^2, \ldots$ with $a^{-1} < (a^{-1})^2 < \cdots$, so the elements of the interval $(1, a^{-1})$ are not in $\langle a \rangle$.
 - (2) The element $a^{1/2}$ is not in H: If it were in H we would have $a^{1/2} = a^n$ for some $n \in \mathbb{Z}$, Taking the logarithm, we get $(1/2) \ln(a) = n \ln(a)$ so 1/2 = n, impossible.
- (c) Every element of $\mathbb{Z}/n\mathbb{Z}$ is of the form k for some $k \in \{0, \dots, n-1\}$, so $k = 1+1+\dots+1$ (k times). It shows that $\mathbb{Z}/n\mathbb{Z} = \langle 1 \rangle$ (again: the operation is the sum).
- (d) (1) $(\mathbb{Z}/3\mathbb{Z}, +)$: We simply looks at the subgroup generated by all possible 3 elements.
 - $\langle 0 \rangle = \{0\}$, so 0 is not a generator.
 - $\langle 1 \rangle = \{1, 2, 0\} = \mathbb{Z}/3\mathbb{Z}$, so 1 is a generator.
 - $\langle 2 \rangle = \{2, 4 = 1, 0\}$, so 2 is a generator.
 - (2) $(\mathbb{Z}/6\mathbb{Z}, +)$: We simply looks at the subgroup generated by all possible 6 elements.
 - $\langle 0 \rangle = \{0\}$, so 0 is not a generator.
 - $\langle 1 \rangle = \{1, 2, 3, 4, 5, 6 = 0\} = \mathbb{Z}/6\mathbb{Z}$, so 1 is a generator.
 - $\langle 2 \rangle = \{2, 4, 0\}$, so 2 is not a generator.
 - $\langle 3 \rangle = \{3, 6 = 0\}$, so 3 is not a generator.
 - $\langle 4 \rangle = \{4, 8 = 2, 0\}$, so 4 is not a generator.
 - $\langle 5 \rangle = \{5, 10 = 4, 9 = 3, 8 = 2, 7 = 1, 6 = 0\}$, so 5 is a generator.
- 2. We apply the criterion seen in class:
 - (1) $C_G(a)$ is a subset of G by definition, and is non-empty since it contains e.
 - (2) We show that $C_G(a)$ is closed under products: Let $x, y \in C_G(a)$, i.e. xa = ax and

ya = ay. Then xya = xay = axy, so $xy \in C_G(a)$.

- (3) We show that $C_G(a)$ is closed under taking inverses: Let $x \in C_G(a)$, i.e. xa = ax. Then $a = x^{-1}ax$ and $ax^{-1} = x^{-1}a$, so $x^{-1} \in C_G(a)$.
- 3. Take for instance $\sigma = (1\ 3)$. Then $H\sigma = \{(1\ 3), (1\ 2)(1\ 3)\}$ and $\sigma H = \{(1\ 3), (1\ 3)(1\ 2)\}$. They are different since $(1\ 2)(1\ 3) \neq (1\ 3)(1\ 2)$.
- 4. Option 1: Directly from the definition of aH:

" \Rightarrow " We show $aH \subseteq H$ and $H \subseteq aH$ (so that they are equal):

Since $a \in H$ and H is a subgroup, we have $ax \in H$ for every $x \in H$, and thus $aH \subseteq H$.

Let $h \in H$. We want to show that h = ax for some $x \in H$. Solving for x we get $x = a^{-1}h$, and $x \in H$ since both a and h are in H.

"\(=\)" Assume aH=H. Since $e\in H$, we have $a=ae\in aH=H$, so $a\in H$.

Option 2: Using the equivalence relation \sim_H . Recall that bH is the equivalence class of b for this relation. Then

$$aH = H \Leftrightarrow aH = eH \Leftrightarrow [a] = [e] \Leftrightarrow a \sim_H e \Leftrightarrow e^{-1}a \in H \Leftrightarrow a \in H.$$

- 5. (a) Since $a \in H$ and H is a subgroup, we have $-a \in H$, and then all possible sums of a and -a are in H, so $a\mathbb{Z} \subseteq H$.
 - (b) We have r = n aq. We know that $n \in H$ and $-aq \in H$. Therefore $n + (-aq) = r \in H$.
 - (c) If $r \neq 0$, then r is a positive element of H that is smaller that a. It contradicts the choice of a. Therefore r = 0, so $n = aq \in a\mathbb{Z}$.
 - (d) The previous questions prove both $a\mathbb{Z} \subseteq H$ and $H \subseteq a\mathbb{Z}$.