
Algebraic Structures (MST20010)

Problem sheet 3

1. (a) There are at least 3 ways to proceed (they are actually more or
less the same):
(i) We can multiply both sides by a−2 (for instance on the left):

a−2a2 = a−2e, a−2+2 = a−2, a0 = a−2, e = a−2.

(ii) Multiply twice by a−1 (for instance on the left):

a−1a2 = a−1e, a = a−1,

and then
a−1a = a−1a−1, e = a−2.

(iii) Take the inverse of both sides:

(a2)−1 = e−1, a−2 = e.

(b) The proof is similar. The easiest to write are probably to multiply
both sides by a−k or to take the inverse of both sides.

(c) The order of a is the smallest integer k such that ak = e. But
at = e exactly when (a−1)t = e (since (a−1)t = a−t) by (b). So the
smallest integer k such that ak = e is exactly the smallest integer
k such that (a−1)k = e, i.e., the order of a is the same as the order
of a−1.

2. (a) ({−1, 1}, ·):
(1) Is the product of two elements of {−1, 1} again an element of
{−1, 1}?. Clearly yes.
(G1): Is the product associative? Since it is the usual product,
yes (we know it is associative).
(G2): Is there an identity element, i.e., an element e such that
e · a = a and a · e = a for every a ∈ {−1, 1}? Yes, take e = 1.
(G3): For every a ∈ {−1, 1} is there b ∈ {−1, 1} such that a·b = 1
(since e = 1) and b · a = 1? Yes, if a = 1 take b = 1 and if a = −1
take b = −1.

So ({−1, 1}, ·) is a group.
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(b) (N ∪ {0},+):
(1) The sum of two elements of N ∪ {0} is again in N ∪ {0}.
(G1): The sum is associative (it is the usual sum).
(G2): The identity element if 0.
(G3): This is where it does not work: Not every element has an
inverse. The inverse of a would be an element b in N ∪ {0} with
the property that a + b = 0. But 1 does not have an inverse in
N ∪ {0}: If we want 1 + b = 0 we must take b = −1, which is not
in N ∪ {0}.
So (N ∪ {0},+) is not a group.

3. There are 6 elements in S3, so we just have to find the 6 different ways
to list the numbers 1,2,3 (to put on the second row of the permutation).

4. (a)

αβ =

(
1 2 3 4
4 1 3 2

)
, βα =

(
1 2 3 4
3 2 4 1

)
.

(b) k = 3.

(c) Since α3 = Id, we have α2α = α3 = Id and αα2 = α3 = Id.
Therefore (by definition of the inverse) α2 = α−1.

(d) β−1 =

(
1 2 3 4
4 3 2 1

)
(we saw how to do this in class).

5. (a) We know that S2 has 2! = 2 elements. They can we written in

the form

(
1 2
a b

)
with a, b ∈ {1, 2}, so they are

(
1 2
1 2

)
= Id and(

1 2
2 1

)
. So if we want to check σγ = γσ for all σ, γ ∈ S2 we only

have 4 possibilities to check: 2 choices for σ, 2 choices for γ. If
σ = Id or γ = Id we have σγ = γσ (since Id ◦f = f ◦ Id = f
not matter what f ∈ Sn is. You can do the computation if you

prefer). The only remaining case is σ = γ =

(
1 2
2 1

)
, and then

σγ =

(
1 2
1 2

)
while γσ =

(
1 2
1 2

)
.

(b) It suffices to find two elements α and β in Sn such that αβ ̸= βα.
There are many possibilities (but it needs to use that n ≥ 3 since
we know that the product of elements of S2 is commutative). The
approach here is to try a few at random (you know that one choice
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of α, β will work, since the exercise asked you to do this). For
instance:

α =

(
1 2 3 4 · · · n
2 3 1 4 · · · n

)
(α(n) = n for n ≥ 4) and

β =

(
1 2 3 4 · · · n
1 3 2 4 · · · n

)
(β(n) = n for n ≥ 4). Computing their products we get

αβ =

(
1 2 3 4 · · · n
2 1 3 4 · · · n

)
(with αβ(n) = n for n ≥ 4) and

βα =

(
1 2 3 4 · · · n
3 2 1 4 · · · n

)
. (with βα(n) = n for n ≥ 4) and We see that αβ ̸= αβ.

3


