Algebraic Structures (MST20010)

Problem sheet 11

- 1. Let G be a finite group with |G| = p with p prime. List all the subgroups of G.
- 2. Let A_n be the set of all even permutations of S_n . Show that A_n is a subgroup of S_n (we consider that the identity is an even permutation).
- 3. Let H and K be subgroups of a group G, such that gcd(|H|, |K|) = 1. Show that $H \cap K = \{e\}$. Hint: If $x \in H \cap K$, what can you say about the order of x?
- 4. Let $K = \{ id, (1 \ 2 \ 3), (1 \ 3 \ 2) \} \subseteq S_3.$
 - (a) Show that K is a subgroup of S_3 . Can you say without computation if K is cyclic?
 - (b) How many different left cosets of K are there in S_3 ? For each of them, give a full list of its elements
 - (c) Give a subgroup of S_3 that has exactly 3 different left cosets.
- 5. We consider the two groups $(\mathbb{R}, +)$ and $(\mathbb{R}^{>0}, \cdot)$ where $\mathbb{R}^{>0} = \{x \in \mathbb{R} \mid x > 0\}$ and $+, \cdot$ are the usual operations of sum and product. (You do not have to check that they are groups.)

Show that the map $\exp : \mathbb{R} \to \mathbb{R}^{>0}$, $\exp(x) = e^x$ (the usual exponential function) is an isomorphism.

It is very convenient to consider a weakening of the definition of isomorphism, where you drop the "bijective" condition:

Let (G, \cdot) and (H, *) be two groups. A map $f : G \to H$ is called a morphism (of groups) if $f(a \cdot b) = f(a) * f(b)$ for every $a, b \in G$. So an isomorphism is a bijective morphism.

- 6. (a) Show that $f(e_G) = e_H$ and, for every $a \in G$, $f(a^{-1}) = f(a)^{-1}$.
 - (b) Show that the set called ker f (the kernel of f), defined by

$$\ker f = \{x \in G \mid f(x) = e_H\}$$

is a subgroup of G.