RING THEORY

Problem sheet 10 - Solution

(1) ⇒ (2): (ba)² = baba = ba. Let Ra be a principal left ideal. we show that Ra = R(ba). Obviously R(ba) ⊆ Ra. Let now ra ∈ Ra. Then ra = ra(ba) ∈ R(ba).
(2) ⇒ (1): Let a ∈ R. Then Ra = Re for some e with e² = e. Then a = ye and

e = xa for some $y, x \in R$. Then axa = a (direct computation).

(2) \Rightarrow (3): Let *I* be a principal left ideal. Then I = Ra for some idenpotent *a*. Show then that R = Ra + R(1 - a), cf. exercise 3.8 from the course notes.

 $(3) \Rightarrow (2)$: Let Ra be a principal left ideal. Then $R = Ra \oplus J$ with J left ideal. Then use exercise 3.8 from the course notes.

- 2. (a) By the previous exercise, since every principal left ideal will be direct summand of R (because of the semisimplicity).
 - (b) Ra = Re for some idempotent e. But then $e \in J(R)$, so 1 e is invertible. Since e(1 - e) = 0 we get e = 0 and thus a = 0.
 - (c) Let R be semisimple. Then R is left artinian and therefore left noetherian. It is also von neumann regular by (a). Let R be left noetherian and von neumann regular. By the noetherianity,

every left ideal is finitely generated, so is a direct summand of R (see previous exercise sheet), so R is semisimple.

3. Since M is semisimple, there is an R-module N such that $M = N \oplus \ker f$. We want $g \in \operatorname{End}_R M$ such that fgf = f. Observe that if $x \in \ker f$, then any value for g(x) will do, since fgf(x) = f(g(0)) = 0 = f(x).

Consider now $x \in N$. To have fgf(x) = f(x), it would be nice to have $g = f^{-1}$ at least for these $x \in N$. So it would be nice to be able to invert f on N. So what cane we say about $f|_N$?

 $f|_N : N \to M$ is injective (since ker $f \cap N = \{0\}$). Therefore, if we consider $f|_N$ as a map from N to f(N) is is bijective, and thus as an inverse. This is what we want, except that we want a map defined on M, so we need to "extend" this inverse to M. Since M is semisimple, we can write $M = f(N) \oplus P$ for some submodule P, and we define

$$g: M = f(N) \oplus P \to M, \ g = \begin{cases} \text{the inverse of } f|_N & \text{on } f(N) \\ 0 & \text{on } P. \end{cases}$$

The map g is R-linear, so belongs to $\operatorname{End}_R M$, and, for $x \in N$ we have:

$$fgf(x) = f(g(f(x))) = f(x)$$

since g(f(x)) = x by definition of g.

- 4. (a) It is a 2-sided ideal because R/L is an R-module (we saw such a result in class). Obviously $\operatorname{Core}(L) \cdot R \subseteq \operatorname{Core}(L)$ since $\operatorname{Core}(L)$ is a 2-sided ideal (sum of 2-sided ideals). The other inclusion is trivial.
 - (b) $\operatorname{Ann}_R(R/L)$ is a 2-sided ideal contained in l, so $\operatorname{Ann}_R(R/L) \subseteq \operatorname{Core}(L)$ by definition of $\operatorname{Core}(L)$. For the other direction: we know that $\operatorname{Core}(L) \cdot R = \operatorname{Core}(L) \subseteq L$, from which follows that $\operatorname{Core}(L) \subseteq \operatorname{Ann}_R(R/L)$.
 - (c) R/L is a simple *R*-module because *L* is a maximal left ideal (seen in class several times). It is also a simple $R/\operatorname{Core}(L)$ -module and is a simple $R/\operatorname{Core}(L)$ -module using that $\operatorname{Core}(L) = \operatorname{Ann}_R(R/L)$.
 - (d) " \Leftarrow " Follows from the previous question since $R/\{0\} = R$. " \Rightarrow " Let M be a simple R-module such that $\operatorname{Ann}_R M = \{0\}^1$, i.e. $M \cong R/L$ for some maximal left ideal L of R. Then $\{0\} = \operatorname{Ann}_R(R/L) = \operatorname{Core}(L)$.

¹The property $\operatorname{Ann}_R M = \{0\}$ is called "*M* is faithful"