Problem sheet 10 - Solution

1. $(1) \Rightarrow(2):(b a)^{2}=b a b a=b a$. Let $R a$ be a principal left ideal. we show that $R a=$ $R(b a)$. Obviously $R(b a) \subseteq R a$. Let now $r a \in R a$. Then $r a=r a(b a) \in R(b a)$.
$(2) \Rightarrow(1):$ Let $a \in R$. Then $R a=R e$ for some e with $e^{2}=e$. Then $a=y e$ and $e=x a$ for some $y, x \in R$. Then $a x a=a$ (direct computation).
$(2) \Rightarrow(3)$: Let I be a principal left ideal. Then $I=R a$ for some idenpotent a. Show then that $R=R a+R(1-a)$, cf. exercise 3.8 from the course notes.
$(3) \Rightarrow(2)$: Let $R a$ be a principal left ideal. Then $R=R a \oplus J$ with J left ideal. Then use exercise 3.8 from the course notes.
2. (a) By the previous exercise, since every principal left ideal will be direct summand of R (because of the semisimplicity).
(b) $R a=R e$ for some idempotent e. But then $e \in J(R)$, so $1-e$ is invertible. Since $e(1-e)=0$ we get $e=0$ and thus $a=0$.
(c) Let R be semisimple. Then R is left artinian and therefore left noetherian. It is also von neumann regular by (a).
Let R be left noetherian and von neumann regular. By the noetherianity, every left ideal is finitely generated, so is a direct summand of R (see previous exercise sheet), so R is semisimple.
3. Since M is semisimple, there is an R-module N such that $M=N \oplus \operatorname{ker} f$. We want $g \in \operatorname{End}_{R} M$ such that $f g f=f$. Observe that if $x \in \operatorname{ker} f$, then any value for $g(x)$ will do, since $f g f(x)=f(g(0))=0=f(x)$.
Consider now $x \in N$. To have $f g f(x)=f(x)$, it would be nice to have $g=f^{-1}$ at least for these $x \in N$. So it would be nice to be able to invert f on N. So what cane we say about $\left.f\right|_{N}$?
$\left.f\right|_{N}: N \rightarrow M$ is injective (since ker $f \cap N=\{0\}$). Therefore, if we consider $\left.f\right|_{N}$ as a map from N to $f(N)$ is is bijective, and thus as an inverse. This is what we want, except that we want a map defined on M, so we need to "extend" this inverse to M. Since M is semisimple, we can write $M=f(N) \oplus P$ for some submodule P, and we define

$$
g: M=f(N) \oplus P \rightarrow M, g= \begin{cases}\text { the inverse of }\left.f\right|_{N} & \text { on } f(N) \\ 0 & \text { on } P .\end{cases}
$$

The map g is R-linear, so belongs to $\operatorname{End}_{R} M$, and, for $x \in N$ we have:

$$
f g f(x)=f(g(f(x)))=f(x)
$$

since $g(f(x))=x$ by definition of g.
4. (a) It is a 2 -sided ideal because R / L is an R-module (we saw such a result in class). Obviously Core $(L) \cdot R \subseteq \operatorname{Core}(L)$ since Core (L) is a 2 -sided ideal (sum of 2 -sided ideals). The other inclusion is trivial.
(b) $\operatorname{Ann}_{R}(R / L)$ is a 2-sided ideal contained in l, so $\operatorname{Ann}_{R}(R / L) \subseteq \operatorname{Core}(L)$ by definition of $\operatorname{Core}(L)$. For the other direction: we know that $\operatorname{Core}(L) \cdot R=$ Core $(L) \subseteq L$, from which follows that Core $(L) \subseteq \operatorname{Ann}_{R}(R / L)$.
(c) R / L is a simple R-module because L is a maximal left ideal (seen in class several times). It is also a simple $R / \operatorname{Core}(L)$-module and is a simple $R / \operatorname{Core}(L)$ module using that $\operatorname{Core}(L)=\operatorname{Ann}_{R}(R / L)$.
(d) " \Leftarrow " Follows from the previous question since $R /\{0\}=R$.
" \Rightarrow " Let M be a simple R-module such that $\operatorname{Ann}_{R} M=\{0\}^{1}$, i.e. $M \cong R / L$ for some maximal left ideal L of R. Then $\{0\}=\operatorname{Ann}_{R}(R / L)=\operatorname{Core}(L)$.

[^0]
[^0]: ${ }^{1}$ The property $\operatorname{Ann}_{R} M=\{0\}$ is called " M is faithful"

