Midterm exam - Solution

1. $f^{-1}(I)$ contains 0 so is non-empty. Let $x, y \in f^{-1}(I)$ and $r \in R$. Then $x+y \in f^{-1}(I)$ since $f(x+y)=f(x)+f(y) \in I$. Furthermore $r x \in f^{-1}(I)$ since $f(r x)=f(r) f(x) \in I$ and similarly $x r \in f^{-1}(I)$.
2. (a) Because R has no zero divisors.
(b) $R i_{0}^{2}$ is a left ideal, and is included in I. It is non-zero since $i_{0}^{2} \neq 0$. So $R i_{0}^{2}=I$.
(c) Since $i_{0} \in I=R i_{0}^{2}$, then $i_{0}=r i_{0}^{2}$ for some $r \in R$. Then $(1-$ $\left.r i_{0}\right) i_{0}=0$. Since R has no zero divisors and $i_{0} \neq 0$ we get $1-r i_{0}=$ 0 , so $r i_{0}=1$. But $r i_{0} \in I$, so $I_{0}=R$.
3. (a) " \Rightarrow " Let $m \in M \backslash\{0\}$. Then $\operatorname{Span}\{m\} \neq\{0\}$ and is a submodule of M. So $\operatorname{Span}\{m\}=M$ since M is simple.
" \Leftarrow " Let N be a submodule of M and assume that $N \neq\{0\}$. Take $m \in N \backslash\{0\}$. By hypothesis $\operatorname{Span}\{m\}=M$. But $\operatorname{Span}\{m\} \subseteq N$, so $N=M$.
(b) Assume we have an infinite strictly decreasing chain of submodules of M / N :

$$
P_{1} \supsetneqq P_{2} \supsetneqq P_{3} \supsetneqq \cdots
$$

To get a contradiction, we need to "bring" things back to M. One way to do this is to use the map $\pi: M \rightarrow M / N, \pi(m)=m+N$. We get a sequence of submodules of M :

$$
\pi^{-1}\left(P_{1}\right) \supseteq \pi^{-1}\left(P_{2}\right) \supseteq \pi^{-1}\left(P_{3}\right) \cdots
$$

Since π is surjective these inclusions are proper (for the first one: take $x+m \in P_{1} \backslash P_{2}$. Then $x \in \pi^{-1}\left(P_{1}\right)$ but $x \notin \pi^{-1}\left(P_{2}\right)$. This is impossible since M is Artinian

