Midterm exam

- Put your student number on top of each sheet.
- Start your paper by writing the following statement: The following is my own work, and I have not received any help during this exam.
- This midterm is graded out of 120, but grades are capped at 100.
- 1. (25%) Let $f : R \to S$ be a morphism of rings. Let I be a 2-sided ideal of S. Show that $f^{-1}(I)$ is a 2-sided ideal of R. Recall that $f^{-1}(I) = \{x \in R \mid f(x) \in I\}.$
- 2. Let R be a ring without zero divisors. Suppose that R has a minimal non-zero left ideal I (we may have I = R).
 - (a) (5%) Show that, for every $x \in R$, if $x \neq 0$ then $x^2 \neq 0$.
 - (b) (20%) Let $i_0 \in I \setminus \{0\}$. Show that $Ri_0^2 = I$. (Where $Ri_0^2 = \{ri_0^2 \mid r \in R\}$.)
 - (c) (20%) Show that I = R. Hint: i_0 belongs to I.
- 3. Let R be a ring and let M be an R-module.
 - (a) (25%) Show that M is simple if and only if $M \neq \{0\}$ and M is generated by any non-zero element of M.
 - (b) (25%) Let N be a submodule of M. Show that if M is Artinian then M/N is Artinian.
 Recall that Artinian means satisfying the descending chain condition on submodules.