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Chapter 0

Notation: Permutations

This very short chapter is about a convenient notation that somehow man-
aged to escape being introduced in first year.

Definition 0.1. If X is a non-empty set, we denote by SX the set of all
bijections from X to X. A bijection from X to X is also called a permutation
of X.

We will be mostly interested in the set of all permutations of {1, . . . , n},
which we denote by Sn for short (instead of S{1,...,n}). So

Sn = {f : {1, . . . , n} → {1, . . . , n} : f bijective}.

Two observations:

� If α ∈ Sn, it is given by its values on the elements 1, . . . , n, for instance:

α(1) = a1, α(2) = a2, . . . , α(n) = an.

Since α is surjective, {a1, . . . , an} = {1, . . . , n}, and since α is injective,
we have ai 6= aj if i 6= j. So the sequence a1, . . . an is just the sequence
1, . . . , n written in a possibly different order.

� A convenient way to describe α is to write it in “array form”, i.e.,

α =

(
1 2 · · · n
a1 a2 · · · an

)
,

where we write the value ai = α(i) below the element i.

Example 0.2. Define a permutation α ∈ S4 by

α(1) = 2, α(2) = 3, α(3) = 1, α(4) = 4.
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6 CHAPTER 0. NOTATION: PERMUTATIONS

In “array form”, it is given by:

α =

(
1 2 3 4
2 3 1 4

)
.

If α, β ∈ Sn, the composition α◦β is also in Sn (it is also a bijection from
{1, . . . , n} to {1, . . . , n}). We will drop the composition sign and write it as
a product, so αβ for α ◦ β.

Question: How do we multiply (i.e., compose) permutations in Sn?

Answer: From right to left. Recall that the operation is the composition
of functions, and σ and τ in Sn are functions. Therefore στ = σ ◦ τ , and
(στ)(x) = σ ◦ τ(x) = σ(τ(x)) by definition of composition. So we first
compute τ(x), then feed the result into σ.

Example 0.3. Let β =

(
1 2 3 4
4 3 2 1

)
. We compute αβ:

αβ(1) = α(β(1)) = α(4) = 4, αβ(2) = α(β(2)) = α(3) = 1, and so on
(finish it yourself). The result is:

αβ =

(
1 2 3 4
2 3 1 4

)(
1 2 3 4
4 3 2 1

)
=

(
1 2 3 4
4 1 3 2

)
.

Observe that

βα =

(
1 2 3 4
4 3 2 1

)(
1 2 3 4
2 3 1 4

)
=

(
1 2 3 4
3 2 4 1

)
,

so that αβ 6= βα.
Do a handul of examples of such computations, to make sure that you

have no problem with this.

Finally, if α ∈ Sn, then α is bijective, so α has an inverse α−1, which is a
bijection from {1, . . . , n} to {1, . . . , n}, so α−1 ∈ Sn.

How do we determine α−1? Suppose for instance that α is given by

α =

(
1 2 · · · n
a1 a2 · · · an

)
.

Then α−1(a1) = 1, . . . , α−1(an) = n. In other words, we read the array from
the bottom to the top.

Example 0.4. Let

α =

(
1 2 3 4
2 3 1 4

)
.
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Then, reading the table from bottom to top:

α−1 =

(
1 2 3 4
3 1 2 4

)
.

We finish with a remark about three properties of the product (=compo-
sition of maps) in Sn:

1. It is associative: (αβ)γ = α(βγ) for all α, β, γ ∈ Sn.

It is actually always true in general for composition of functions. How
do you prove this? This equality claims that two functions are equal.
So you can check it by applying both of them to an element x, then
computing the results. You will get the same for both.

2. The identity map id : {1, . . . , n} → {1, . . . , n} is an element of Sn and
has the property that, for all α ∈ Sn,

α id = α and idα = α.

3. Every element of Sn has an inverse:

∀α ∈ Sn ∃α−1 ∈ Sn such that αα−1 = id and α−1α = id.

We will come back soon to these three properties.
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Chapter 1

Group Theory

Example 1.1. Consider the set of remainders upon division by 4 under the
(binary) operation “+ mod 4”, i.e., the set {0, 1, 2, 3} and the operation

{0, 1, 2, 3} × {0, 1, 2, 3} → {0, 1, 2, 3}, (a, b) 7→ (a+ b) mod 4.

For instance

(0, 1) 7→ 1 since 0 + 1 = 1 ≡ 1 (mod4)

(2, 2) 7→ 0 since 2 + 2 = 4 ≡ 0 (mod4)

(2, 3) 7→ 1 since 2 + 3 = 5 ≡ 1 (mod4)

(where ≡ means “is congruent to”). We can record the operation in a table,
called the Cayley table of this operation.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

where “+” means “+ mod 4”. We call 0 the identity element (of this opera-
tion), because adding 0 to any other element does not do anything.

This set with the operation + is denoted (Z4,+) (we say “Z mod 4” for
Z4).

Example 1.2. Consider the set of non-zero reminders upon division by 5,
under the (binary) operation · mod 5, i.e., {1, 2, 3, 4} with operation

{1, 2, 3, 4} × {1, 2, 3, 4} → {1, 2, 3, 4}, (a, b) 7→ (a · b) mod 5.

9
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For instance

(1, 1) 7→ 1 since 1 · 1 = 1 ≡ 1 (mod5)

(3, 3) 7→ 4 since 3 · 3 = 9 ≡ 4 (mod5)

(2, 4) 7→ 3 since 2 · 4 = 8 ≡ 3 (mod5)

The Cayley table of this operation is

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

The element 1 is the identity element (of this operation), since multiplying 1
with any other element does not do anything.

This set with the operation · is denoted (Z×5 , ·), where Z×5 := Z5 \ {0}.

In general. . .

Definition 1.3. A group is a non-empty set G equipped with a (binary)
operation (that we will usually denote as a product)

G×G→ G, (x, y) 7→ x · y

such that

1. x · (y · z) = (x · y) · z for all x, y, z ∈ G (we say that · is associative);

2. There exists and element e ∈ G (the identity element) such that

x · e = e · x = x

for all x ∈ G;

3. For each x ∈ G there exists y ∈ G (called the inverse of x) such that
x · y = e and y · x = e.

Remark 1.4. 1. We will use the notation (G, ·) when we want to specify
at once the set and the symbol that we use for the operation (it does
not need to be ·, it can be anything).

2. We write xy for x · y, and x−1 for the inverse of x.
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3. If the operation is denoted by · (as in the definition), we often denote
the identity by 1 instead of e.

If the operation is denoted by the symbol +, we will often denote the
identity element by 0 instead of e; in this case, we will also denote the
inverse of x by −x.

Example 1.5. 1. (Z4,+) is a group. The identity is the element 0.

In general (Zn,+) is a group (where n ∈ N), the group of integers
modulo n.

2. (Z×5 , ·) is a group, its identity element is 1. Observe that 5 is prime.

In general (Z×p , ·) is a group (more later) when p is prime.

3. In view of the properties listed at the end of Chapter 0, (Sn, ·) is a
group, with identity element the identity map id, and with operation
the composition of maps.

4. R× := R \ {0} under · (the usual product) is a group.

5. GLn(R), the set of n × n invertible matrices with real entries, with
operation matrix multiplication, is a group (called the general linear
group).

6. SLn(R), the set of n×n matrices with real entries and with determinant
1, with operation matrix operation, is a group (called the special linear
group).

7. In the two previous examples, GLn(R) and SLn(R), we can replace R
by Q, C, Zp (p prime). We will get groups in each case.

A particular example of group can have a operation that is not denoted
by · (we saw some examples of this). But in the general considerations about
groups we will always denote the operation by ·.

Definition 1.6. A group G with the property xy = yx for all x, y ∈ G is
called Abelian.

Example 1.7. (Zn,+) is Abelian, but GLn(R) is non-abelian.

Definition 1.8. The number of elements of a group is called its order. It is
an element of N ∪ {∞}. We write |G| to denote the order of G.

Proposition 1.9. Let G be a group. Then
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1. The identity element e is unique, i.e., if e′ is another identity element,
then e = e′.

2. If x ∈ G, then the inverse of x is unique, i.e., if y′ is another inverse
of x, then y′ = x−1.

Proof. 1. By hypothesis we have x ·e′ = e′ ·x = x for every x ∈ G. Taking
x = e we get e ·e′ = e. But by the definition of e we also have e ·e′ = e′.
So e = e′.

2. If y′ is an inverse of x, then xy′ = e. But we also have xx−1 = e.
So xy′ = xx−1. Multiplying both sides on the left by x−1, we get
x−1xy′ = x−1xx−1, so ey′ = ex−1 and y′ = x−1.

Definition 1.10. Let G be a group. The order of an element g ∈ G is the
smallest positive integer n such that gn = e. If no such n exists, we say that
g has infinite order. The order of g is denoted by |g|.

Note: If the operation on G is denoted by “+”, we will write ng = 0
instead of gn = e (because the identity is denoted by 0 in this case, and
gn = g · g · · · g is written g + g + · · ·+ g, which is more naturally denoted by
ng).

1.1 Disgression: Permutations

Proposition 1.11. The order of Sn is n! (see exercise sheet 1).

Definition 1.12. A permutation α ∈ Sn is called a cycle of length k if
there are elements a1, . . . , ak ∈ {1, . . . , n}, all different, such that

α(a1) = a2, α(a2) = a3, . . . , α(ak−1) = ak, α(ak) = a1,

and α(x) = x for all the other elements of {1, . . . , n} (α does not move the
other elements).

We write (a1 a2 · · · ak) to denote the cycle α.

Remark 1.13. 1. Observe that (a1 a2 · · · ak) = (ai ai+1 · · · ak a1 a2 · · · ai−1)
for every i in {1, . . . , k} (so we can start writing the cycle where we
want, as long as we “cycle”).

2. A cycle of length one: (a), is the identity map, because it sends a to a,
and it does not move the other elements.
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3. Cycles are permutations, so they can be multiplied together or with other
permutations (recall that the multiplication here is the composition of
functions).

Example 1.14. Suppose we have α =

(
1 2 3 4 5 6
2 1 4 6 5 3

)
. We look at what

successive applications of α do:

1

α
!!
2

α

`` 3

α
!!
4

α
!!
6

α

ff 5 αee

Using this, we can diretly check that

α = (1 2)(3 4 6)(5),

where the right hand side denotes the composition of the three cycles (just
compute it and write it in array form, and you will see that the result is α).

One final remark: As observed above, (5) is the identity map, so actually

α = (1 2)(3 4 6),

i.e., there is no need to keep the cycles of length 1 in the expression.

Example 1.15. Let

α =

(
1 2 3 4
2 3 1 4

)
, β =

(
1 2 3 4
4 3 2 1

)
.

Then, following the example above, we have

1

α
!!
2

α
!!
3

α

ff 4 αee and 1

β
!!
4

β

`` 2

β
!!
3

β

``

so that
α = (1 2 3)(4) = (1 2 3) and β = (1 4)(2 3).

We compute αβ as usual for the composition of maps:

αβ(1) = α(β(1)) = α(4) = 4,

αβ(2) = α(β(2)) = α(3) = 1,

and so on, and we obtain, in array form

αβ =

(
1 2 3 4
4 1 3 2

)
= (1 4 2)(3) = (1 4 2).
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Definition 1.16. Two cycles in Sn, (a1 a2 · · · ak) and (b1 b2 · · · b`), are
called disjoint if ai 6= bj for all i and j.

Example 1.17. The cycles (1 2 6) and (3 5) are disjoint, the cycles (1 3 5)
and (3 6) are not. Computing their products, we observe:

(1 2 6)(3 5) = (3 5)(1 2 6),

but

(1 3 5)(3 6) =

(
1 2 3 4 5 6
3 2 6 4 1 5

)
= (1 3 6 5) 6=

(3 6)(1 3 5) =

(
1 2 3 4 5 6
6 2 5 4 1 3

)
= (1 6 3 5).

Proposition 1.18. Let σ and γ be two disjoint cycles in Sn. Then σγ = γσ.

Proof. Let σ = (a1 a2 · · · ak) and γ = (b1 b2 · · · b`). We check that σγ = γσ
by checking that σγ(x) = γσ(x), i.e., we check that they always return
the same values, which mean that they are equal (they are functions). We
distinguish 3 cases:

(1) x = ai. Then σ(x) = ai+1 (with the convention that ai+1 = a1 is i = k)
and γ(x) = x (since x is not one of b1, . . . , b`). Then σγ(x) = ai+1 = γσ(x).

(2) x = bj. Similar.
(3) x 6∈ {a1, . . . , ak, b1, . . . , b`}. Also similar.

Theorem 1.19. Every permutation in Sn can be written as a cycle or as a
product of disjoint cycles.

Proof. Let α ∈ Sn. We follow the idea of Example 1.14. Pick a1 ∈ {1, . . . , n}
and consider the sequence α(a1), α

2(a1), α
3(a1), . . ..

We claim that we must have αk(a1) = a1 for some k: Since the values
of the αi(a1) are in {1, . . . , n} (which is finite), there must be repetitions:
there are i, k ∈ N such that αi(a1) = αi+k(a1). Applying the inverse of αi to
both sides, we get a1 = αk(a1). We take for k the smallest integer for which
a1 = αk(a1).

Therefore the first cycle that we obtain is (a1 a2 · · · ak−1), where ai =
αi−1(a1).

Pick now b ∈ {1, . . . , n} \ {a1, . . . , ak−1}. Similarly, we have α`(b) = b for
some ` (we take the smallest possible) and the second cycle that we obtain
is (b1 b2 · · · b`−1) where bi = αi−1(b1).

We claim that the cycles (a1 a2 · · · ak−1) and (b1 b2 · · · b`−1) are disjoint:
If not we have αi(a1) = αj(b1) for some i, j. For instance j < i (the other
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case is similar). Applying α−j to both sides, we get αi−j(a1) = b1, which is
impossible since b1 6∈ {a1, . . . , ak−1}.

We then continue this process until all elements of {1, . . . , n} are used,
and we get

α = (a1 a2 · · · ak−1)(b1 b2 · · · b`−1) · · · (c1 c2 · · · ct−1).

In the special case of permutations in the group Sn, how do we compute
the order of α, i.e., the smallest positive integer n such that αn = id? We
only state (and use):

Theorem 1.20. Let α ∈ Sn be written as a product of disjoint cycles. Then
|α| is the least common multiple of the lengths of the cycles.

(Recall that the least common multiple of some integers k1, . . . kt is the
smallest positive integer d such that ki divides d, for i = 1, . . . , t.)

Example 1.21. Given α =

(
1 2 3 4 5 6
2 1 5 4 6 3

)
, find |α|.

We have α = (1 2)(3 5 6), where (1 2) has length 2 and (3 5 6) has length
3. Therefore |α| = lcm(2, 3) = 6

Definition 1.22. A cycle of length 2 is called a transposition.

Note that a cycle of length 2 has order 2, so is its own invers: (a b)(a b) =
id.

Theorem 1.23. Every permutation in Sn (n > 1) can be written as a product
of transpositions.

Proof. We know that every permutation can be written as a product of (dis-
joint) cycles. Thus, it suffices to show that every cycle can be written as a
product of transpositions. Consider (a1 a2 · · · ak).

If k = 1, (a1) is the identity, and if we pick any x ∈ {1, . . . , n} \ {a1} we
have (a1) = (a1 x)(a1 x).

If k > 1, we have

(a1 a2 · · · ak) = (a1 ak)(a1 ak−1) · · · (a1 a2)

(to check it you can simply check that these two functions are equal: Apply
each of them to x and check that you get the same result on both sides,
considering the case x ∈ {a1, . . . , ak} and the case x 6∈ {a1, a2, . . . , ak}).

Example 1.24. Decompose (1 6 3 2)(4 5 7) as a product of transpositions:

(1 6 3 2)(4 5 7) = (1 2)(1 3)(1 6)(4 7)(4 5).
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Observe that the deomposition as product of transpositions is not unique.
For instance:

(1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2) (4 transpositions)

= (5 4)(5 3)(5 2)(5 1) (4 transpositions)

= (5 4)(5 2)(2 1)(2 5)(2 3)(1 3) (6 transpositions).

In general, we state (for now, the proof will be given later).

Theorem 1.25. If α = β1 · · · βr = γ1 · · · γs where the βi’s and the γi’s are
transpositions, then either r and s are both even or r and s are both odd.

Thus, we can make the following definition.

Definition 1.26. A permutation is called even if it can be written as a
product of an even number of transpositions. Otherwise it is called odd.

We denote by An the set of all even permutations of Sn.

Exercise 1.27. Prove that An is a group. It is called the alternating group
of degree n.

Theorem 1.28. For n > 1, |An| =
n!

2
.

Proof. The map α 7→ (1 2)α is a bijection from the set of odd permutations
to the set of even permutations (it is injective since (1 2)α = (1 2)β implies
α = β (multiply both sides on the left by (1 2) and use that (1 2)(1 2) = id);
it is surjective since β = (1 2)(1 2)β, using again that (1 2)(1 2) = id).

Therefore there are an equal number of even and odd permutations, and
since every permutation is either odd or ever, we must have |An| = |Sn|/2.

1.2 Cyclic groups

Definition 1.29. A group G is called cyclic is there is an element a ∈ G
such that

G = 〈a〉 def= {an : n ∈ Z} = {. . . , a−2, a−1, 1, a, a2, . . .}.

We say that a is a generator of G.
(We are assuming that the operation on G is ·; see next Remark.)

Remark 1.30. 1. If n < 0 we define

an = a−1 · · · a−1︸ ︷︷ ︸
|n| times

= (a−1)|n|.
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2. If the operation is denoted by + we would use the notation:

G = 〈a〉 def= {na : n ∈ Z} = {. . . ,−2a,−1a, 0, a, 2a, . . .}.

Here, if n < 0, then na = (−a) + · · ·+ (−a)︸ ︷︷ ︸
|n| times

.

Example 1.31. 1. We consider the group (Z,+).

Z = 〈1〉 = 〈−1〉.

2. We consider the group (Zn,+).

Zn = {0, 1, 2, . . . , n− 1} = 〈1〉.

Observe that Zn may have many generators. For instance (exercise,
check it):

Z8 = 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉.

Remark 1.32. Consider an element a ∈ G of finite order, say |a| = n. Then
an = e, and therefore (multiplying by a):

an+1 = a, an+2 = a2, . . .

a−1 = an−1, a−2 = an−2, . . .

so that
〈a〉 = {e, a, a2, . . . , an−1}.

The last line of this remark gives us the following result:

Proposition 1.33. Let a ∈ G be of finite order. Then |a| = |〈a〉|.
In particular, if G is cyclic and generated by a, then |G| is equal to the

order of a.

Theorem 1.34. Let G = 〈a〉 be a cyclic group of order n. Then

G = 〈ak〉 ⇔ gcd(k, n) = 1.

Proof. (⇐) Since gcd(k, n) = 1 there are u, v ∈ Z such that ku + nv = 1.
Then

a1 = aku+nv = akuanv = aku( an︸︷︷︸
=e

)v = aku ∈ 〈ak〉.

Thus a ∈ 〈ak〉, and so all powers of a are in 〈ak〉. This implies 〈a〉 ⊆ 〈ak〉.
The other inclusion is obvious, so G = 〈ak〉.
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(⇒) Assume that the conclusion does not hold, i.e., gcd(k, n) = d > 1.
Write k = rd and n = sd. Then

(ak)s = (ard)s = (ard)r = ( an︸︷︷︸
=e

)r = er = e.

So |ak| ≤ s < n. Thus, ak is not a generator of G (cf. Proposition 1.33), a
contradiction.

Corollary 1.35. An integer k is a generator of Zn if and only if gcd(k, n) =
1.

We actually saw a special case of this in Example 1.31.

1.3 Subgroups

Definition 1.36. Let G be a group. A subset H ⊆ G is a subgroup of G if
it is a group under the operation of G.

We write H ≤ G to indicate that H is a subgroup of G.

Lemma 1.37. If G is a group and H is a subgroup of G, then H has an
identity element eH (because H is a group). We have eH = e.

Proof. Since eH is the identity of H, we have eHeH = eH . Multiplying both
sides by the inverse of the element eH of G, we get e−1H eHeH = e−1H eH , so
eH = e.

Theorem 1.38 (Subgroup Test). Let G be a group and let H ⊆ G be a
non-empty subset. Then H is a subgroup of G if and only if the following
two conditions hold

1. If x, y ∈ H, then xy ∈ H (we say that H is closed under the operation).

2. If x ∈ H, then x−1 ∈ H (inverses exist in H).

Proof. (⇒) If H is a subgroup, then H is closed under the operation, because
in a group, the result of a product of two elements is again in the group. Also,
every element x ∈ H has an inverse y in H. We just need to check that this
element y is equal to the inverse x−1 of x in G:

We have xy = eH = e (using Lemma 1.37). Multiplying both sides on
the left by x−1 we get x−1xy = x−1e, so y = x−1.

(⇐) Suppose H ⊆ G is a non-empty subset satisfying conditions 1 and
2. Since 1 is true, · is a binary operation on H. Also, the associtivity follows
from that of G. H has inverses by 2. Finally, we check that e belongs to H:
Let x ∈ H. By 2, we have x−1 ∈ H, and by 1: x−1x = e ∈ H.
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Example 1.39. Let G be a group and let a ∈ G. Then 〈a〉 = {an : n ∈ Z}
is a subgroup of G.

Check: It is of course non-empty. Let ai, aj ∈ 〈a〉. Then aiaj = ai+j ∈
〈a〉. Also, (ai)−1 = a−i ∈ 〈a〉.

Example 1.40. Recall that an is written na when G is additive (i.e., when
we use the symbol + for the operation on G).
〈2〉 = {0, 2, 4, 6, 8} is a cyclic subgroup of (Z10,+).

Exercise 1.41. Let σ = (1 2) and ρ = (1 2 3) in S3. It is easy to check that
S3 = {id, ρ, ρ2, σ, σρ, σρ2} (for instance: check that they are all different, and
we know that S3 has 6 elements). The following are subgroups of S3:

{id, ρ, ρ2}, {id, σ}, {id, σρ}, {id, σρ2}.

In fact these are all the proper subgroups of S3 (proper means different from
the whole group).

Example 1.42. Let G = R× under ·. Consider the set

K = {x ∈ G : x ≥ 1}.

If K a subgroup of G?

No, condition 2 does not hold: 2 ∈ K but 2−1 =
1

2
6∈ K.

Suppose we have

H = {x ∈ G : x = 1 or x is irrational}.

Is H a subgroup of G?
Again no: Condition 1 does not hold. Consider

√
2 ∈ H. Then

√
2
√

2 =
2 6∈ H.

Exercise 1.43 (Finite subgroup test). Let H be a finite non-empty subset
of a group G. Then H ≤ G if and only if xy ∈ H for every x, y ∈ H.

In other words, the condition that H is closed under the operation implies
that if x ∈ H, then x−1 ∈ H. To prove this, consider the set of all powers of
x, and use that since H is finite there must be repetitions.

Another important example:

Definition 1.44. The center Z(G) of a group G is the set of elements in G
that commute with all the elements of G, i.e.,

Z(G) := {a ∈ G : ax = xa ∀x ∈ G}.

Proposition 1.45. Let G be a group. Then Z(G) ≤ G.

Proof. Exercise.
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1.4 Cosets

Definition 1.46. Let G be a group and let H ≤ G. For any a ∈ G, the set

aH := {ah : h ∈ H}

is called the left coset of H in G containing a. Also

Ha := {ha : h ∈ H}

is called the right coset of H in G containing a. The element a is called a
representative of the coset aH (or Ha).

We use the notation |aH| to denote the number of elements of the set
aH.

Example 1.47. Let G = S3 and consider the subgroup H = {id, ρσ} of G,
where ρ = (1 2 3) and σ = (1 2). Then

� idH = H;

� σH = {σid, σρσ} = {σ, ρ2} (direct computation) = ρ2H;

� ρσH = {ρσ, id} = H (check it);

� σρH = {σρ, ρ} = ρH (check it).

Observe that there are only 3 distinct cosets of H, namely H, σH, ρH, and
|G|
|H|

=
6

2
= 3.

Example 1.48. Let G = Z9 (with operation +) and consider the subgroup
H = 〈3〉 = {0, 3, 6} of G.

As the operation if +, we write a+H instead of aH. Then

� 0 +H = {0, 3, 6} = 3 +H = 6 +H = H;

� 1 +H = {1, 4, 7} = 4 +H = 7 +H;

� 2 +H = {2, 5, 8} = 5 +H = 8 +H.

Observe that there are only 3 distinct cosets, and
|G|
|H|

=
9

3
= 3.

We now look at some properties of cosets.

Lemma 1.49. Let H ≤ G and a, b ∈ G. Then
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1. a ∈ aH;

2. aH = H ⇔ a ∈ H;

3. aH = bH or aH ∩ bH = ∅ (identical or disjoint);

4. aH = bH ⇔ a−1b ∈ H;

5. |aH| = |H|;

6. aH = Ha⇔ H = aHa−1;

7. aH is a subgroup of G if and only if a ∈ H (in which case aH = H).

Proof. 1. a = a · e ∈ aH.

2. (⇒) If aH = H, then a = a · e ∈ aH = H.

(⇐) If a ∈ H, then aH ⊆ H as H a subgroup. Also, h = a (a−1h)︸ ︷︷ ︸
∈H

∈

aH. So H ⊆ aH. Thus aH = H.

3. Suppose aH ∩ bH 6= ∅. Let x ∈ aH ∩ bH. Then there exist h1, h2 ∈ H
such that x = ah1 = bh2. Thus a = xh−11 = bh2h

−1
1 and

aH = b(h2h
−1
1 H︸ ︷︷ ︸

=H by 2

) = bH.

4. Note that aH = bH ⇔ H = a−1bH (check it!) ⇔ a−1b ∈ H by 2.

5. Consider the function f : H → aH, f(h) = ah. We claim that f is
bijective (and the result will follow).

Injective: Suppose f(h1) = f(h2), i.e., ah1 = ah2. multiplying both
sides on the left by a−1 gives h1 = h2.

Surjective: By definition of aH.

6. Note that aH = Ha⇔ (aH)a−1 = (Ha)a−1 ⇔ aHa−1 = H.

7. (⇒) If aH ≤ G, then e ∈ aH. Thus aH ∩ eH 6= ∅ and by 3 we get
aH = eH = H, thus by 2, a ∈ H.

(⇒) If a ∈ H, then by 2, aH = H is a subgroup of G.

We can now prove
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Theorem 1.50 (Lagrange’s Theorem). If G is a finite group and H is a
subgroup of G, then |H| divides |G|. Moreover

|G|
|H|

= the number of distinct (left) cosets of H in G.

Proof. Let a1H, a2H, . . . , arH denote the distinct left cosets of H in G (there
are finitely many since G is finite). Then for each a ∈ G, we have aH = aiH
for some i. Therefore a ∈ aH = aiH. Thus every element of G belongs to
one of the aiH:

G = a1H ∪ a2H ∪ · · · ∪ arH.

By 3 of Lemma 1.49, this union is disjoint, thus

|G| = |a1H|+ |a2H|+ · · ·+ |arH|.

Since |aiH| = |H| by Lemma 1.49 (statement 5), we have |G| = r|H| where
r is the number of distinct left cosets of H in G.

Observe that the same result can obtained (in the same way) for right
cosets. It only requires checking the statement corresponding to Lemma 1.49
for right cosets of H.

Definition 1.51. We define [G : H] :=
|G|
|H|

to be the index of H in G. It

is equal to the number of distinct left cosets of H in G (or the number of
distinct right cosets of H in G).

The converse of Lagrange’s Theorem is false: If G is a group of order n
and k divides n, then G may not have a subgroup of order k.

Corollary 1.52. Let G be a finite group and let a ∈ G. Then |a| divides
|G|. In particular a|G| = e.

Proof. By Proposition 1.33, the order of a is equal to the order of 〈a〉, which
is a subgroup of G (Example 1.39). The result follows by Lagrange’s theorem.

We record some applications of Lagrange’s Theorem to number theory.

Lemma 1.53. Let p be a prime number. Then (Z×p , ·) is a group.

Proof. We need to check that the product of 2 elements of Z×p is still in Z×p ,
i.e., if x, y ∈ {1, . . . , p − 1}, then xy 6= 0 in Zp, i.e., xy is not divisible by p.
This is because p is prime.
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The product modulo p is associative (it comes from the product in Z).

The element 1 is clearly an identity for the operation ·. We now show
that for all x ∈ Z×p there exists y ∈ Z×p such that

xy ≡ 1 (mod p). (1.1)

This means showing that there is a solution y mod p to equation (1.1). Recall
(from MATH10040): In general ay ≡ b (mod n) has a solution if and only if
d = gcd(a, n) divides b and there are d distinct solutions.

Here: a = x, b = 1, n = p (note that x 6≡ 0 (mod p)), so d = gcd(x, p) =
1. Thus (1.1) has exactly one solution y modulo p. In fact y 6≡ 0 (mod p)
since if y ≡ 0 (mod p) then xy ≡ 0 (mod p), a contradiction (since xy ≡
1 (mod p)).

Exercise 1.54 (Fermat’s Little Theorem). Let p be a prime abd let a ∈ Z
with gcd(a, p) = 1. Then ap−1 ≡ 1(modp).

Hint: Use Lemma 1.53 and Corollary 1.52.

We mentioned earlier that the converse of Lagrange’s Theorem is false,
i.e. that if k divides |G|, then G may not have a subgroup of order n. Here
is an example.

Proposition 1.55. The group A4 has order 12 but has no subgroup of order
6.

Proof. We assume that it does have a subgroup of order 6 and reach a con-
tradiction.

In problem 6, Exercise sheet 2, you listed all 12 elements of A4. Check
that A4 has exactly 8 elements of order 3 (i.e. such that α 6= id, α2 6= id but
α3 = id). Suppose that H is a subgroup of A4 of order 6. Let α be any of
the 8 elements of order 3 of A4. As

[A4 : H] =
12

6
= 2, (1.2)

we have two distinct left cosets of H in A4.

We consider the three cosets H,αH,α2H (note: since α3 = 1, α3H = H).
By (1.2), at most two of these three cosets are distinct. Therefore, two of
the cosets are equal, which leads in all cases to αH = H (check it), so that
α ∈ H. Thus H contains all eight elements of order 3, a contradiction.
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1.5 Normal subgroups and Quotient groups

If G is a group and H ≤ G, we introduced, for any a ∈ G, the left coset and
right coset:

aH := {ah : h ∈ H}, and Ha := {ha : h ∈ H}.

Can these two sets be equal?

Example 1.56. 1. Let G = S3 and H = {id, (1 3)}. Let a = (1 2) ∈ S3.
Then (do the computations):

(1 2)H = {(1 2), (1 3 2)}, H(1 2) = {(1 2), (1 2 3)}.

Thus (1 2)H 6= H(1 2).

2. Let G = S3 and H = {id, (1 2 3), (1 3 2)}. Let a = (1 2) ∈ S3. Then

(1 2)H = {(1 2), (2 3), (1 3)} = H(1 2).

Thus (1 2)H = H(1 2). Acutally, for every a ∈ S3, aH = Ha (check
this if you find the time).

We want to study when aH = Ha for every a ∈ G

Definition 1.57. A subgroup H of a group G is called normal if aH = Ha
for every a ∈ G. We denote this by H EG.

Example 1.58. H = {id, (1 2 3), (1 3 2)}E S3.

Theorem 1.59 (Normality test). A subgroup H of G is normal if and only
if xHx−1 ⊆ H for all x ∈ G.

Note:
xHx−1 := {xhx−1 : h ∈ H}.

Proof. (⇒) If H E G then for any x ∈ G and h ∈ H, there exists h′ ∈ H
such that xh = h′x (be careful, xH = Hx does not imply xh = hx). Thus
xhx−1 = h′ and so xHx−1 ⊆ H.

(⇐) If xHx−1 ⊆ H for all x ∈ G, then letting x = a yields aHa−1 ⊆ H,
which is equivalent to (check it) aH ⊆ Ha.

Letting x = a−1 yields a−1H(a−1)−1 ⊆ H, i.e., a−1Ha ⊆ H, which is
equivalent to (check it) Ha ⊆ aH.

Thus aH = Ha and so H EG.
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Note: To prove that a set H is a normal subgroup, we must prove that
it is a subgroup and that it is normal.

Example 1.60. Every subgroup H of an Abelian group G is normal. Why?
Since ab = ba for all a, b ∈ G, we have ah = ha for a ∈ G and h ∈ H and
thus aH = Ha.

Example 1.61. SLn(R) E GLn(R). Why?
We use the criterion above: Let A ∈ GLn(R) and B ∈ SLn(R). We want

to show that ABA−1 ∈ SLn(R), i.e., det(ABA−1) = 1.
But det(ABA−1) = det(A) det(B)︸ ︷︷ ︸

=1

det(A)−1 = 1.

Exercise 1.62. 1. Prove that Z(G) EG.

2. Consider the subgroup K = {id, (1 2 3), (1 3 2)} of A4. Prove that K
is not normal in A4.

Are there other situations in which H EG? Yes!

Exercise 1.63. Prove that if H is a subgroup of G with index [G : H] = 2,
then H EG.

Hint: By Langrange’s Theorem, there are two left cosets of H: H and aH,
and two right cosets of H: H and Hb. Show that aH = Hb (Lemma1.49,
statement 3 give G\H = aH, and the same result holds for right cosets) and
that Hb = Ha.

Warning: [G : H] = 2 implies H E G, but H E G does not imply [G :
H] = 2.

Exercise 1.64. Let G = S3. Find a non-trivial (i.e. not {id} and not G)
normal subgroup of S3.

1.6 Quotient Groups

Let G be a group and let H be a subgroup of G.
Idea: We want to discuss a general structure whose elements will be the

left cosets of H (where H is a subgroup).

Definition 1.65. We define

G/H := {aH : a ∈ G},

and call it G mod H, the set of distinct left cosets of H in G.
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Example 1.66. Let G = S3 and H = {id, ρσ}, where ρ = (1 2 3) and
σ = (1 2). Here

G/H = {H, σH, σρH}.

Theorem 1.67 (Hölder, 1889). Let H be a normal subgroup of G. Then
G/H, equipped with the operation

(aH)(bH) := (ab)H

is a group.

Before the proof, let us look again at the previous example.

Example 1.68.

(σH)(σρH)
def
= (σσρ)H = σ2ρH = ρH (since σ2 = id) = σρH (check it).

Proof. The operation is

G/H ×G/H → G/H, (aH, bH) 7→ (ab)H.

We check the definition of group.
Associative: Let xH, yH, zH ∈ G/H. Then

xH(yH · zH) = xH · (yz)H

= x(yz)H

= (xy)zH since the operation on G is associative

= (xy)H · zH
= (xH · yH)zH.

Identity: We show that eH = H is the identity element. For all xH ∈
G/H:

xH ·H = xHeH = (xe)H = xH, and

H · xH = eH · xH = (ex)H = xH.

Thus, H is the identity in G/H.
Inverses: Check that the inverse of xH is x−1H, i.e., that (xH)(x−1H) =

H and (x−1H)(xH) = H:

(xH)(x−1H) = (xx−1)H = eH = H.

The other one is similar (do it).
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Are we done? No! (We have not even used that H is a normal subgroup
yet). We need to check that the operation if well-defined. What is this?

The underlying problem is that we can have aH = bH with a 6= b (cf.
Lemma 1.49). So we could have aH = a′H and bH = b′H with a 6= a′

and b 6= b′. But since aH = a′H and bH = b′H we must have (aH)(bH) =
(a′H)(b′H), i.e., abH = a′b′H. In other words: We must check that the result
does not depend on the particular way that we use to write the cosets (as
aH or a′H, or as bH or b′H):

Since aH = a′H we have a′ ∈ a′H = aH, so a′ = ah1 for some h1 ∈ H.
Similarly b′ = bh2 for some h2 ∈ H. Thus

a′b′H = ah1bh2H

= ah1bH (since h2H = H)

= ah1Hb (since bH = Hb)

= aHb (since h1H = H)

= abH (since bH = Hb).

Example 1.69. Consider G = (Z,+) and H = 4Z = {. . . ,−8,−4, 0, 4, 8, . . .}.
Note that H E G (since G is Abelian, and thus every subgroup is normal).
We construct G/H = Z/4Z.

The elements of Z/4Z are the left cosets of H, so are of the form a+H
for a ∈ Z (recall that the operation is the sum, hence a+H instead of aH).
So

G/H = Z/4Z = {a+ 4Z : a ∈ Z}
= {0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}

Why is it so, why are there no other (distinct) cosets?
If a ∈ Z then by the division algorithm, we have a = 4t + r where 0 ≤

r < 4. Thus:

a+ 4Z = 4t+ r + 4Z = r + 4t+ 4Z
= r + 4Z

using that 4t+ 4Z = 4Z since 4t ∈ 4Z (cf. Lemma 1.49). The result follows
since r = 0, 1, 2 or 3.

1.7 Homomorphisms and Isomorphisms

Definition 1.70. Let G,H be groups. A (group) homomorphism Φ : G→ H
is a map satisfying

Φ(ab) = Φ(a) · Φ(b) for all a, b ∈ G. (1.3)
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Remark 1.71. 1. Observe that the map Φ : G → H given by Φ(g) = eH
(the identity of the group H) for every g ∈ G, is always a homomor-
phism (the trivial homomorphism).

We check it: Φ(ab) = eH = eH · eH = Φ(a) · Φ(b).

2. It is important to keep track of the operation in G and H: The left hand
side of (1.3) uses the operation of G, and the right hand side uses the
operation of H, e.g,

(G,+) and (H, ·) gives Φ(a+ b) = Φ(a) · Φ(b)

(G, ·) and (H,+) gives Φ(a · b) = Φ(a) + Φ(b)

(G,+) and (H,+) gives Φ(a+ b) = Φ(a) + Φ(b)

Example 1.72. 1. Consider Φ : Z→ Zn, Φ(m) = m mod n. Then

Φ(a+ b) = (a+ b) mod n = (a mod n) + (b mod n) = Φ(a) + Φ(b),

so Φ is a homomorphism.

2. exp : (R,+)→ (R×, ·), exp(x) = ex. Then

exp(x+ y) = ex+y = exey = exp(x) exp(y),

so exp is a homomorphism.

3. Φ : GLn(R)→ (R×, ·), Φ(A) = detA. We have

Φ(AB) = det(AB) = det(A) · det(B) = Φ(A) · Φ(B),

so Φ is a homomorphism.

4. Φ : (R,+)→ (R,+), Φ(x) = x2. We have

Φ(x+ y) = (x+ y)2 = x2 + 2xy + y2,

Φ(x) + Φ(y) = x2 + y2.

They are not equal for every x, y ∈ R, so Φ is not a homomorphism.

Lemma 1.73. Let Φ : G → H be a group homomorphism. Then for all
x, y ∈ G we have

1. Φ(xy−1) = Φ(x)Φ(y)−1.

2. Φ(eG) = eH .
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3. Φ(y−1) = Φ(y)−1.

Proof. 1. Φ(xy−1)Φ(y) = Φ(xy−1y) = Φ(x). Multiplying both sides on
the right by Φ(y)−1 we get Φ(xy−1)Φ(y)Φ(y)−1 = Φ(x)Φ(y)−1, so
Φ(xy−1) = Φ(x)Φ(y)−1.

2. Take x = y in 1 to get Φ(eG) = Φ(x)Φ(x)−1 = eH .

3. Take x = eG in 1 to get Φ(y−1) = Φ(eG · y−1) = Φ(eG)Φ(y−1) =
eHΦ(y)−1 = Φ(y)−1.

Definition 1.74. Let Φ : G→ H be a group homomorphism. We define

Ker Φ := {g ∈ G : Φ(g) = eH},

the kernel of Φ, and

Im Φ := {h ∈ H : h = Φ(g) for some g ∈ G}
= {Φ(g) : g ∈ G},

the image of Φ.

Remark 1.75. 1. As sets, Ker Φ ⊆ G and Im Φ ⊆ H.

2. Φ is surjective ⇔ Im Φ = H.

3. A general picture:

Ker Φ

G
Φ

H

Im Φ

eH

Proposition 1.76. Let Φ : G→ H be a group homomorphism. Then

1. Ker Φ EG;

2. Im Φ ≤ H.
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Proof. 1. We first check that Ker Φ ≤ G, using the subgroup test.

Since Φ(eG) = eH we have eG ∈ Ker Φ, which is then non-empty. Let
g1, g2 ∈ Ker Φ. Then Φ(g1g2) = Φ(g1)Φ(g2) = eHeH = eH , so g1g2 ∈
Ker Φ. Furthermore, Φ(g−11 ) = Φ(g1)

−1 = e−1H = eH , so g−11 ∈ Ker Φ.
So Ker Φ ≤ G.

We use the normality test: Let x ∈ G and g ∈ Ker Φ. We want to show
that xgx−1 ∈ Ker Φ. We compute Φ(xgx−1) = Φ(x)Φ(g)Φ(x−1) =
Φ(x)eHΦ(x)−1 = Φ(x)Φ(x)−1 = eH . So x(Ker Φ)x−1 ⊆ Ker Φ for every
x ∈ G, thus Ker Φ EG.

2. We use the subgroup test. Im Φ is non-empty since G is non-empty.
Let Φ(g1),Φ(g2) ∈ Im Φ. Then Φ(g1)Φ(g2) = Φ(g1g2) ∈ Im Φ, and
Φ(g1)

−1 = Φ(g−11 ) ∈ Im Φ.

Exercise 1.77. Check the following.

1. Consider Φ : (Z,+)→ (Zn,+), Φ(m) = m mod n. Then

Ker Φ = 〈n〉 = {k · n : k ∈ Z}.

Im Φ = Zn (Φ is surjective).

2. exp : (R,+)→ (R×, ·), exp(x) = ex. Then

Ker exp = {0}, and

Im exp = R>0 (the positive real numbers).

3. Φ : GLn(R)→ (R×, ·), Φ(A) = detA. Then

Ker Φ = SLn(R), and Im Φ = R×.

4. On exercise set 3, problem 5:

ε : Sn → ({−1, 1}, ·)

given by

ε(σ) =

{
1 if σ is even

−1 if σ is odd.

We have

Ker ε = An and Im ε = {−1, 1}.
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Definition 1.78. A bijective group homomorphism is called an isomorphism.
Also, two groups G and H are isomorphic if there exists an isomorphism
Φ : G→ H. In this case we write G ∼= H.

Remark 1.79. 1. Intuitively, two groups are isomorphic if they are the
“same” group. The only difference is that the elements may have dif-
ferent names and the symbol used for the operation may be a different
one. The map Φ gives a correspondence between the elements of G and
the elements of H (since it is bijective), and if we use this correspon-
dence to “change” the names of elements of G into elements of H, the
homomorphism property tells us that the operation behaves in the same
way.

2. (Exercise; see Problem Sheets) If Φ : G → H is an isomorphism, then
so is Φ−1 : H → G.

Example 1.80. 1. Let G be the group:

G = {
(

1 n
0 1

)
: n ∈ Z}

with operation · (check this; hint: The shortest way is to show that it
is a subgroup of GL2(R)).

We claim that Z ∼= G. Why?

Let Φ : (Z,+) → G, Φ(n) =

(
1 n
0 1

)
. We show that Φ is an isomor-

phism.

(1) Φ is clearly bijective.

(2) Φ is a homomorphism:

Φ(m+ n) =

(
1 m+ n
0 1

)
=

(
1 m
0 1

)(
1 n
0 1

)
= Φ(m)Φ(n).

2. Let G = (Q,+) and H = (Q×, ·). We claim that there is not isomor-
phism between G and H.

We use contradition: Suppose Φ : Q → Q× is an isomorphism. Con-
sider −1 ∈ Q×. Since Φ is surjective there is a ∈ Q such that Φ(a) =
−1. But then

−1 = Φ(a) = Φ(
a

2
+
a

2
) = Φ(

a

2
)Φ(

a

2
) = [Φ(

a

2
)]2,

a contradiction since no rational number squared is equal to −1.
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Proposition 1.81. A group homomorphism Φ : G → H is injective if and
only if Ker Φ = {eG}.

Proof. (⇒) Since Φ(eG) = eH we have eG ∈ Ker Φ. Let x ∈ Ker Φ, i.e.,
Φ(x) = eH = Φ(eG). Since Φ is injective we deduce x = eG.

(⇐) Let a, b ∈ G be such that Φ(a) = Φ(b). Then Φ(a)Φ(b)−1 = eH , so
Φ(ab−1) = eH , i.e. ab−1 ∈ Ker Φ = {eG}. Therefore ab−1 = eG and thus
a = b.

Corollary 1.82. A group homomorphism Φ : G → H is an isomorphism if
and only if Ker Φ = {eG} and Im Φ = H.

Given a group homomorphism Φ : G → H, we have seen the normal
subgroup Ker Φ of G and the subgroup Im Φ of H. The next result shows
that there is a link between these.

Theorem 1.83 (First Isomorphism Theorem). Let Φ : G → H be a group
homomorphism. Then the map

Ψ : G/Ker Φ→ Im Φ, Ψ(x ·Ker Φ) := Φ(x)

is an isomorphism of groups.

Proof. Let N = Ker Φ. We first check that Ψ is well-defined: Suppose xN =
yN . We want to show that Ψ(xN) = Ψ(yN). i.e., Φ(x) = Φ(y). Since
xN = yN there is n ∈ N such that x = yn. Therefore Φ(x) = Φ(yn) =
Φ(y)Φ(n) = Φ(y)eH = Φ(y).

We check that Ψ is a homomorphism: Let xN, yN ∈ G/N . Then

Ψ(xN · yN) = Ψ(xyN) (by definition of the product in G/N)

= Φ(xy) (by definition of Ψ)

= Φ(x)Φ(y)

= Ψ(xN)Ψ(yN).

We check that Ψ is injective. Suppose Ψ(xN) = Ψ(yN), i.e., Φ(x) = Φ(y).
Then eH = Φ(x)−1Φ(y) = Φ(x−1y). So x−1y = z for some z ∈ N . It follows
that y = xz and thus yN = xN .

We check that Φ is surjcetive: Let h ∈ Im Φ, i.e., h = Φ(g) for some
g ∈ G. Then by definition Φ(g) = Ψ(gN).

Example 1.84. Consider Φ : (Z,+) → (Zn,+), Φ(m) = m mod n. We
have seen

1. Φ is a homomorphism;
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2. Ker Φ = 〈n〉 = {kn : k ∈ Z} = nZ;

3. Φ is surjective: Im Φ = Zn.

By the first isomorphism theorem, we have

Z/Ker Φ ∼= Im Φ = Zn,

so Z/〈n〉 ∼= Zn (i.e., Z/nZ ∼= Zn).
We already saw this! Take n = 4. Then

Z/〈4〉 = Z/4Z = {0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}
∼= {0, 1, 2, 3} = Z4.

Exercise 1.85. Prove that GLn(R)/ SLn(R) ∼= R×.

Answer1.Solution:Weusethefirstisomorphismtheorem.Forthis
weneedtofindahomomorphismΦ:GLn(R)→R×suchthatkerΦ=
SLn(R)andImΦ=R×.
LetΦ:GLn(R)→R×,Φ(A)=detA.WesawthatΦisahomo-
morphism,KerΦ=SLn(R)andΦissurjective.Therefore(bythefirst
isomorphismtheorem)

GLn(R)/KerΦ∼=ImΦ,i.e.,

GLn(R)/SLn(R)∼=R×.
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Chapter 2

Ring Theory

Idea: We have seen the notion of group, where we had only one opera-
tion. Now we will add more structure to a group in order to understand:
polynomial rings, ideals, quotient rings.

Definition 2.1. A ring is a non-empty set R equipped with two binary op-
erations + (addition) and · (multiplication) satisfying

1. R with + is an Abelian group (its identity is denoted 0 and the inverse
for + of an element x is denoted −x).

2. · is associative, i.e., a · (b · c) = (a · b) · c for all a, b, c ∈ R.

3.
a · (b+ c) = a · b+ a · c, and

(b+ c) · a = b · a+ c · a,

for all a, b, c ∈ R.

Example 2.2. The following are rings:

� Z, R, Q, C, with their usual sum and product;

� Zn with sum and multiplication modulo n;

� Mn(R), the set of all n × n matrices, with matrix addition and multi-
plication.

Note: The ring depends on how one defines + and ·.

Example 2.3. Define “addition” on Z by a⊕ b := a + b− 1 and “multipli-
cation” on Z by a� b := a+ b− ab.

Check that Z with ⊕ and � is a ring.

35
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Exercise 2.4. 1. Prove that for a ∈ R (a ring), the equation a + x = 0
has a unique solution.

We write −a for this unique solution. Thus b− a means b+ (−a).

2. Let S be the set of odd integers (with usual sum and product of integers).
Show that S is not a ring.

Definition 2.5. 1. A ring with identity (or “unity”) is a ring R that
contains an element denoted 1 such that a · 1 = a = 1 · a for all a ∈ R.
Such a ring is also called a unitary ring.

2. A commutative ring is a ring R such that a · b = b · a for all a, b ∈ R.

Example 2.6. 1. Z, Q, R, C are all commutative rings with identity (1
in all cases).

2. Let R>0 be the set of all positive real numbers. Define “addition” by
a⊕ b = ab and “multiplication” by a� b = alog b.

Check that this yields a commutative ring with identity.

Definition 2.7. An integral domain is a commutative ring R with identity
such that if a, b ∈ R and ab = 0 then a = 0 or b = 0.

Example 2.8. Z, Q, R, C are all integral domains.
Z6 is not an integral domain (here 2 · 3 = 6 = 0 (mod6), but 2 6= 0 (mod

6) and 3 6= 0 (mod6).

Exercise 2.9. Show that Zn is an integral domain if and only if n is prime.

Definition 2.10. A field is a commutative ring R with identity such that for
each a ∈ R \ {0}, there is x ∈ R such that ax = 1. This element x is called
the (multiplicative) inverse of a and is denoted by a−1.

Example 2.11. 1. If R is a field, then R is an integral domain. Check
it.

2. Q, R, Zp for p prime, C are all fields.

Z is not a field.

Theorem 2.12. 1. Every field F is an integral domain.

2. If R is an integral domain and if a ∈ R\{0}, then ab = ac in R implies
b = c.

3. Every finite integral domain is a field.
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Proof. 1. As F is a field, it is a commutative ring with identity. Suppose
ab = 0 If a = 0 we are done. If a 6= 0, then a is a unit and so
a−1(ab) = a−10, i.e., (a−1a)b = 0, so b = 0.

2. If ab = ac then ab− ac = 0, so a(b− c) = 0. As a 6= 0, then b− c = 0,
i.e., b = c.

3. Recall the Pigeonhole principle: If n objects are put into n boxes in
such a way that no box receives more than one object, then each box
receives exactly one object.

Reformulated: If S is a finite set (with n elements) and f : S → S is
an injective map, then f is surjective.

Let R be a finite integral domain. To show that R is a field, we have to
show that if a ∈ R \{0}, then a has an inverse, i.e., there is an element
x ∈ R such that ax = 1.

Consider the map f : R → R, f(x) = ax. By the previous item, f
is injective. By the observation, f is thus surjective. In particular
1 ∈ Im f , i.e., there is x ∈ R such that f(x) = 1, i.e., ax = 1.

Definition/Proposition 2.13 (Product of rings). Let R and S be rings.
Then the set

R× S := {(r, s) : r ∈ R, s ∈ S}

with operations defined “coordinate by coordinate”, i.e.,

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2),

(r1, s1) · (r2, s2) = (r1 · r2, s1 · s2),

is also a ring.
Its identity element if 0R×S = (0R, 0S).

The same statement is also true for a product of more than just 2 rings, or
even an infinite number of rings, with addition and multiplication are defined
coordinate by coordinate.

Definition 2.14. If a subset S of a ring R is itself a ring under + and ·
(from R), then S is a subring of R.

Example 2.15. 1. Z is a subring of Q and of C, Q is a subring of C.

2. Z[i] := {a+ bi : a, b ∈ Z} is a subring of C (check this).
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3. J := {0, 2} is a subring of Z4, K := {0, 3, 6, 9} is a subring of Z12.

Also, J × K is a subring of Z4 × Z12 (recall that the operations are
defined coordinate by coordinate for a product of rings).

4. {1,−1, i,−i} is not a subring of C (why?).

Definition 2.16. If a subset S of a field R is itself a field and contains 1R,
then S is called a subfield of R.

Example 2.17. 1. Q is a subfield of R.

2. Let d ∈ Z be such that d is not a square. Then

Q(
√
d) := {a+ b

√
d : a, b ∈ Q}

is a subfield of C.

3. Let {Ei}i∈I be a family of subfields of a field K. Then
⋂
i∈I Ei is a

subfield of K (check this).

Exercise 2.18 (Subring Test). Let S be a non-empty subset of a ring R such
that

1. a− b ∈ S, ∀a, b ∈ S;

2. ab ∈ S, ∀a, b ∈ S.

Prove that S is a subring of R.

Definition 2.19. An element a in a ring R with identity is called a unit (or
invertible) if there exists u ∈ R such that au = 1 = ua. The element u is the
multiplicative inverse of a and is denoted a−1.

Note the following:

1. The multiplicative inverse of a, when it exists, is unique (check it).
Hence the terminology the multiplicative inverse.

2. The set of units in R forms a group under multiplication and is denoted
by R× (which is not necessarilly R \ {0}, be careful. . . ).

3. Every non-zero element in a field F is a unit (by definition of field),
i.e., F× = F \ {0}.

Example 2.20. � Zp is a field when p is prime.

� Z3[i] := {a+ bi : a, b ∈ Z3} is a field.

Note that Z3 = {0, 1, 2}, so that Z3[i] has 9 elements.
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2.1 Homomorphisms, Isomorphisms

Definition 2.21. Let R and S be rings. A function f : R → S is a ring
homomorphism if, for all a, b ∈ R:

1. f(a+ b) = f(a) + f(b);

2. f(ab) = f(a)f(b).

Example 2.22. Consider f : R → M2(R), f(r) =

(
0 0
−r r

)
. Then f is a

ring homomorphism. Check:

1. f(r + s) =

(
0 0

−(r + s) r + s

)
=

(
0 0
−r r

)
+

(
0 0
−s s

)
= f(r) + f(s);

2. f(rs) =

(
0 0
−rs rs

)
=

(
0 0
−r r

)(
0 0
−s s

)
= f(r)f(s).

Example 2.23. Consider f : Z → Z, f(x) = −x. Is f a ring homomor-
phism?

Check: f(−1)f(−1) = 1 · 1 = 1, but f(−1 · −1) = f(1) = −1. So no, f
is not a ring homomorphism.

Definition 2.24. Let R and S be rings. A function f : R → S is a ring
isomorphism if f is a bijective ring homomorphism.

If such an f exists, we say that R is isomorphic to S and write R ∼= S.

Exactly as in the case of groups, if f : R→ S is a ring isomorphism, then
so is f−1 : S → R.

Example 2.25. 1. Let Z[
√

2] := {a+b
√

2 : a, b ∈ Z} and H := {
(
a 2b
b a

)
:

a, b ∈ Z}. Then Z[
√

2] ∼= H as rings.

Check that f(a+ b
√

2) =

(
a 2b
b a

)
is an isomorphism of rings.

2. Consider f : R→M2(R), f(r) =

(
0 0
−r r

)
. Is f an isomorphism?

Injective? Yes.

Surjective? No: There is no r ∈ R such that f(r) = I2 =

(
1 0
0 1

)
.

Exercise 2.26. Let f : R→ S be a ring homomorphism. Prove that
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1. f(0R) = 0S. Hint: Consider f(0R + 0R).

2. f(−a) = −f(a) for all a ∈ R. Hint: Recall that to check that y = −x
it suffices to check that x+ y = 0.

3. f(a− b) = f(b)− f(b) for all a, b ∈ R.

If R is a ring with identity 1R and f is surjcetive, prove that

4. S has an identity 1S and f(1R) = 1S.

5. If u is a unit in R, then f(u) is a unit in S and f(u)−1 = f(u−1.

Akin to group theory, we now define.

Definition 2.27. If f : R→ S is a ring homomorphism, then

Im f := {s ∈ S : s = f(r) for some r ∈ R}
= {f(r) : r ∈ R}.

the image of f , and

Ker f := {r ∈ R : f(r) = 0S}

is the kernel of f .

Note that if f is surjective, then Im f = S.

Proposition 2.28. If f : R → R is a ring homomorphism, then Im f is a
subring of S.

Proof. Since R is non-empty, Im f is non-empty. We use the subring test:
If f(a), f(b) ∈ Im f , then f(a)f(b) = f(ab) ∈ Im f and f(a) − f(b) =

f(a− b) ∈ Im f .

Exercise 2.29. Prove that Ker f is a subring of R.

2.2 Ideals and Quotient Rings

Definition 2.30. A subring I of a ring R is an ideal if for every r ∈ R and
a ∈ I, then ra ∈ I and ar ∈ I.

Note: If R is commutative, we just need to check say ra ∈ I.

Example 2.31. 1. For any ring R, {0} and R are ideals of R (“trivial
ideals”).
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2. Let R[X] be the ring of polynomials in X with coefficients in R (more
later about it):

f ∈ R[X]⇒ f(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0.

Consider S = {f(x) : f ∈ R[X], a0 = 0}. Check that S is an ideal of
R[X].

3. If A,B are ideals of a ring R, then the sum of A and B:

A+B := {a+ b : a ∈ A, b ∈ B}

is an ideal of R (check it).

4. The set J = {
(

0 0
0 r

)
: r ∈ R} is not an ideal of M2(R). Why not?

(
0 1
1 0

)
∈M2(R),

(
0 0
0 1

)
∈ J, but

(
0 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
6∈ J.

5. Check that the subring

S := {a+ bi : a, b ∈ Z, b is even}

of Z[i] is not an ideal of Z[i].

Theorem 2.32 (Ideal Test). A non-empty subset I of a ring R is an ideal
if and only the following two conditions are satisfied

1. if a, b ∈ I then a− b ∈ I;

2. if r ∈ R and a ∈ I, then ra ∈ I and ar ∈ I.

Proof. (⇒) By definition of an ideal.
(⇐) In view of the second conditions, we only need to check that I is a

subring of R. For this, the only property that remains to be checked is that
if a, b ∈ I, then ab ∈ I. But it is a special case of the second condition.

Corollary 2.33. Let R be a commutative ring, c ∈ R and

I := {rc : r ∈ R}.

Then I is an ideal of R.
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Proof. We use the ideal test. If r1, r2 ∈ R and r1c, r2c ∈ I, then r1c− r2c =
(r1 − r2)c ∈ R and r(r1c) = (rr1)c ∈ I (since r1 − r2 and rr1 are in R). As
R is commutative, (r1c)r = (r1r)c ∈ I.

Remark 2.34. 1. The ideal I := {rc : r ∈ R} is called the (principal)
ideal generated by c and is denoted by 〈c〉.

2. In Z, the ideal 〈c〉 is the set of all multiples of c.

3. In any commutative ring R with identity, 〈1〉 = R, as r = r · 1 ∈ 〈1〉
for every r ∈ R.

4. Not every ideal in a ring R is principal (= generated by one element).
For instance

J := {f(X) : f(X) ∈ Z[X], 3|a0}

is an ideal of Z[X] but is not principal (check this).

Exercise 2.35 (Important, see Exercise Sets). 1. If I is an ideal of R
and I contains a unit, then I = R

2. Let R be a with identity, and let I be an ideal of R. Then

I = R⇔ 1 ∈ I.

Proposition 2.36. Let f : R→ S be a ring homomorphism. Then Ker f is
an ideal of R.

Proof. We use the ideal test. Suppose that a, b ∈ Ker f , i.e., f(a) = 0S and
f(b) = 0S. Then f(a− b) = f(a)− f(b) = 0S − 0S = 0S, so a− b ∈ Ker f .

Now, we must show that ra ∈ Ker f for any r ∈ R and a ∈ Ker f . Well,
f(ra) = f(r)f(a) = f(r) · 0S = 0S, so ra ∈ Ker f . Similarly ar ∈ Ker f .

Exercise 2.37. Let f : R→ S be a ring homomorphism. Prove that ker f =
{0R} if and only if f is injective.

Definition 2.38. Let R be a ring and I ⊆ R an ideal. The quotient ring
R/I is defined as follows:

1. R/I := {a+I : a ∈ R} the set of left cosets of I in R. It is the quotient
Abelian group of the group (R,+) by the normal subgroup I (under +).
In particular, addition in R/I is defined by

(a+ I) + (b+ I) = (a+ b) + I).
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2. Multiplication is defined by

(a+ I) · (b+ I) := (ab) + I.

We check that this multiplication is well-defined.
Suppose a + I = a′ + I and b + I = b′ + I, so a = a′ + x and b = b′ + y

with x, y ∈ I. Then

ab+ I = (a′ + x)(b′ + y) + I

= a′b′ + a′y︸︷︷︸
∈I

+ xb′︸︷︷︸
∈I

+ xy︸︷︷︸
∈I

+I

(so a′y + ab′ + xy ∈ I)

= a′b′ + I

Example 2.39.

Z/4Z = {0 + 〈4〉, 1 + 〈4〉, 2 + 〈4〉, 3 + 〈4〉}.

Addition: 2 + 〈4〉+ 3 + 〈4〉 = 5 + 〈4〉 = 1 + 〈4〉.
Multiplication: (2 + 〈4〉)(3 + 〈4〉) = 6 + 〈4〉 = 2 + 〈4〉.

Remark 2.40. 1. If R is commutative, so is R/I. Why?

(a+ I)(b+ I) = ab+ I = ba+ I = (b+ I)(a+ I).

2. If R has an identity 1R, then R/I has an identity, namely 1R+I (check
this).

Theorem 2.41 (First Isomorphism Theorem for Rings). Let f : R → S be
a ring homomorphism. Then the map

φ : R/Ker f → Im f, φ(r + Ker f) := f(r)

is an isomorphism of rings.

Proof. We have seen in the section on groups that φ is an isomorphism of
abelian groups from the group (R/Ker f,+) to the group (Im f,+). So we
only have to check the multiplicative property of ring homomorphism:

φ((a+ Ker f)(b+ Ker f)) = φ(ab+ Ker f)

= f(ab)

= f(a)f(b)

= φ(a+ ker f) · φ(b+ Ker f).
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Example 2.42. Let S = {
(
a b
0 c

)
: a, b, c ∈ R} and I = {

(
0 b
0 0

)
: b ∈ R}.

Then S is a ring (with the usual sum and product of matrices), and I is an
ideal of S (check this).

Prove that S/I ∼= R× R.

Answer2.Definef:S→R×Rbyf((ab
0c

))=(a,c).Checkthat

fisasurjectiveringhomomorphismwithKerf=I.Applythefirst
isomorphismtheorem.

Definition 2.43. An ideal P in a commutative ring R with identity is called
prime if P 6= R and bc ∈ P implies b ∈ P or c ∈ P (for all b, c ∈ R).

This terminology comes from the following (which is one of the main
examples):

Exercise 2.44. In Z, the ideal 〈n〉 is prime if and only if n is prime.

Definition 2.45. An ideal M in a ring R is called maximal if M 6= R and,
whenever J is an ideal such that M ⊆ J ⊆ R, then M = J or J = R.

(I.e., the only ideal strictly larger than M is R, i.e., there is no proper
ideal strictly larger than M .)

Exercise 2.46. 1. Show that if p is prime, then 〈p〉 is maximal in Z.

Hint: Show that if J is an ideal such that 〈p〉 $ J , then 1 ∈ J (use
that p is prime and Bezout’s identity. Deduce that J = R. Conclude.

2. Show that 〈2〉 and 〈3〉 are maximal ideals in Z36.

Theorem 2.47. Let R be a commutative ring with identity and let P be an
ideal of R. Then

R/P is an integral domain⇔ P is a prime ideal.

The key to this proof is the observation (cf. Lemma 1.49 2)

r + P = 0(= 0 + P ) in R/P ⇔ r ∈ P.

Proof. (⇒) Let a, b ∈ R be such that ab ∈ P . Then (a+P )(b+P ) = ab+P =
0 + P = 0R/P . Since R/P is an integral domain, we get a + P = 0 + P or
b+ P = 0 + P , i.e., a ∈ P or b ∈ P .

(⇐) Note that R/P is a commutative ring with identity. Suppose that
(a+P )(b+P ) = 0 +P , i.e., ab+P = 0 +P . Then ab ∈ P . Since P is prime,
a ∈ P or b ∈ P , and thus a+ P = 0 + P or b+ P = 0 + P .
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Theorem 2.48. Let R be a commutative ring with identity, and let M be an
ideal of R. Then

R/M is a field⇔M is a maximal ideal.

Proof. (⇒) We show that if B is an ideal of R such that M $ B ⊆ R, then
B = R.

As observed above in Exercise 2.35, it suffices to show that 1 ∈ B. Let
b ∈ B \M . Therefore b + M 6= 0 + M = 0R/M . Since R/M is a field, there
is a ∈ R such that (b + M)(a + M) = 1 + M , i.e., ba + M = 1 + M , i.e.,
1 = ba + m for some m ∈ M . But ba ∈ B (since b ∈ B and B is an ideal)
and m ∈M ⊆ B. Therefore 1 ∈ B.

(⇐) It suffices to show that if b + M ∈ R/M is different from 0R/M =
0 +M , then b+M has an inverse. Observe first that b+M 6= 0 +M means
that b 6∈M . Consider the set

B := {m+ br : m ∈M, r ∈ R}.

This is an ideal (check it), and it propertly contains M (since it contains b).
Since M is maximal, we must have B = R. Thus 1 ∈ B, say 1 = m′ + bc
with m′ ∈M , c ∈ R. Then

1 +M = bc+m′ +M = bc+M = (b+M) · (c+M).

Remark 2.49. 1. Since a field is always an integral domain, it follows
that every maximal ideal is a prime ideal.

2. But not every prime ideal is maximal. For instance:

Consider Z[X] the ring of polynomials with one indeterminate and co-
efficients in Z. The ideal 〈X〉 is a prime ideal in Z[X]. Why?

Define Φ : Z[X]→ Z, Φ(anX
n+ · · ·+a1X+a0) = a0. Then Φ is a ring

hommomorphism, is surjective, and Ker Φ = 〈X〉 (check this). Thus,
by the first isomorphism theorem

Z[X]/〈X〉 ∼= Z,

and so is Z[X]/〈X〉 is an integral domain, since Z is one. Therefore,
by theorem 2.47, 〈X〉 is a prime ideal.

However, Z[X]/〈X〉 ∼= Z, so is not a field. which means that 〈X〉 is
not a maximal ideal. We can also be more explicit, you can check that

〈X〉 $ 〈X, 2〉 $ Z[X],

where 〈X, 2〉 := {r1X + r22 : r1, r1 ∈ Z[X]} is an ideal in Z[X].
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Chapter 3

Polynomial Rings

Question: Let R be a ring. How can we think of the expression

a0 + a1X + · · ·+ anX
n,

where n ≥ 0, ai ∈ R? What is X?
Idea: The expression makes sense if the ai’s and X are elements of a

larger ring.

Theorem 3.1. If R is a ring, there exists a ring P containing an element
X not in R such that

1. R is a subring of P ;

2. Xa = aX for every a ∈ R;

3. every element of P is of the form

a0 + a1X + · · ·+ anX
n,

for some n ≥ 0 and a0, . . . , an ∈ R;

4. if n ≤ m and a0 + a1X + · · · + anX
n = b0 + b1X + · · · + bmX

m, then
ai = bi for i ≤ n and bi = 0R for i > n;

5. a0 + a1X + · · ·+ anX
n = 0 if and only if ai = 0R for evrey i.

This ring P is denoted by R[X].

Proof. Idea of the proof: We represent polynomials by the tuples of their
coefficients:

5+6X−2X3 becomes (5, 6, 0,−2) or, more precisely (5, 6, 0,−2, 0, 0, . . .).
−3 + 5X −X2 becomes (−3, 5,−1, 0, 0, . . .).

47
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In general a polynomial a0 + a1X + · · · + anX
n is represented by the

infinite tuple
(a0, a1, . . . , an, 0, 0, . . .),

such that each ai ∈ R, and only finitely many of the coefficients of the tuple
are non-zero. The ring P is then:

{(a0, a2, a3, . . .)|ai ∈ R, for i ≥ 0, only finitely many ai’s are non-zero}.

And we define addition and multiplication to reflect what we want: That
they correspond to our “intuitive” knowledge of polynomials. We then need
to check that the properties of ring hold (they do, it is just long and not very
interesting to check).

The element X is represented by the tuple (0, 1, 0, 0, . . .).

This formal construction of R[X] is just there to justify once and for all
that there is indeed a ring R[X]. We will mostly ignore it and will manipulate
polynomials as usual.

We also record the following, whose formal proof would depend (we skip
it) on the above construction of R[X].

Proposition 3.2. 1. If R is commutative, then R[X] is commutative.

2. If R has an identity 1R, then R[X] has an identity 1R[X] = 1R.

Definition 3.3. Let f(X) = anX
n + an−1X

n−1 + · · · + a1X + a0 ∈ R[X],
with an 6= 0. Then

1. an is called the leading coefficient of f(X), and

2. n is called the degree of f(X) (it is the largest exponent of X that
appears with a non-zero coefficient). We write deg f(X) = n.

Observe that deg f(X) = 0 ⇔ f(X) = a0 for a ∈ R \ {0R}. So the
polynomials of degree 0 are the constant non-zero polynomials.

The degree of the polynomial 0R is not defined.

Theorem 3.4. If R is an integral domain and f(X), g(X) are non-zero
polynomials in R[X], then

deg f(X)g(X) = deg f(X) + deg g(X).

Proof. Suppose f(X) = a0 + · · · + anX
n and g(X) = b0 + · · · + bmX

m with
an 6= 0R and bm 6= 0R. Thus deg f(X) = n and deg g(X) = m. Then

f(X)g(X) = a0b0 + (a0b1 + a1b0)X + · · ·+ anbmX
n+m.

Since R is an integral domain, we have anbm 6= 0. Thus f(X)g(X) is non-zero
and its degree is n+m = deg f(X) + deg g(X).
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Corollary 3.5. If R is an integral domain, then so is R[X].

Proof. As R is a commutative ring with 1, so is R[X]. By the (proof of the)
previous theorem, the product of nonzero polynomials inR[X] is nonzero.

Note: For any ring R (not necessarilly an integral domain) we have

deg f(X)g(X) ≤ deg f(X) + deg g(X).

Example 3.6. We work in Z6[X], with f(X) = 2X4 (deg f = 4), and
g(X) = 1 + 3X2 (deg g = 2). Then

f(X)g(X) = (2X4)(1 + 3X2) = 2X4 + 6X6 = 2X4,

so deg f(X)g(X) = 4 < deg f + deg g = 6.

3.1 The Division Algorithm

You have seen the (Euclidean) division algorithm in Z:
For any integers a and b with b > 0, there exist unique integers q and r

such that
a = bq + r, with 0 ≤ r < b.

q is the quotient and r the remainder in the division of a by b.
We would like to have something similar in the ring F [X], where F is a

field.

Theorem 3.7. Let F be a field and let f(X), g(X) ∈ F [X] with g(X) 6= 0F .
Then there exist unique polynomials q(X) and r(X) such that

f(X) = g(X)q(X) + r(X),

and either r(X) = 0F or deg r(X) < deg g(X).

Proof. We first prove the existence of q(X) and r(X), and consider two cases.
Case 1: If f(X) = 0F or if deg f(X) < deg g(X). We take q(X) = 0 and

r(X) = f(X). Then f(X) = g(X) · 0F + f(X).
Case 2: If f(X) 6= 0F and deg g(X) ≤ deg f(X). We proceed by induction

on deg f(X). If deg f(X) = 0, then deg g(X) = 0, hence f(X) = a and
g(X) = b, for some a, b ∈ F \ {0}. Since F is a field, b has an inverse, and
we can take q(X) = b−1a and r(X) = 0.

Assume that the result is true for deg f(X) < n (i.e., for all polynomials
f(X) of degree less than n). We want to show that it is true if deg f(X) = n.
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Write f(X) =
∑n

i=0 aiX
i with an 6= 0. Then g(X) must be of the form

g(X) =
∑m

j=0 bjX
j with bm 6= 0 and m ≤ n.

Since F is a field and bm 6= 0, bm is a unit. Multiply g(X) by anb
−1
m Xn−m

to get

anb
−1
m Xn−mg(X) = anb

−1
m Xn−m(bmX

m + · · ·+ b0)

= anX
n + anb

−1
m bm−1X

n−1 + · · ·+ anb
−1
m b0X

n−m.

As deg f(X) = n and deg anb
−1
M Xn−mg(X) = n, and since these two polyno-

mials have the same leading coefficient, we have

deg(f(X)− anb−1m Xn−mg(X)︸ ︷︷ ︸
(?)

) < n.

We can apply the induction hypothesis to (?) and g(X). Thus, there exist
q1(X) and r(X) such that

f(X)− anb−1m Xn−mg(X) = g(X)q1(X) + r(X),

with r(X) = 0F or deg r(X) < deg g(X). Thus

f(X) = q(X)(anb
−1
m Xn−m + q1(X)︸ ︷︷ ︸

(??)

) + r(X),

with r(X) = 0 or deg r(X) < deg g(X). Take q(X) = (??) and we are done.

Uniqueness of q(X) and r(X): Exercise. You have to show that if f(X) =
g(X)t(X)+s(X) with either s(X) = 0 or deg s(X) < deg g(X), then s(X) =
r(X) and t(X) = q(X).

Remark 3.8. Theorem 3.7 does not necessarilly hold if we work in R[X]
with R ring. For instance, in Z[X] with f(X) = 1 and g(X) = 2. Assume
there are q(X), r(X) in Z[X] with

1 = 2q(X) + r(X)

with r(X) = 0 or deg r(X) < deg 2. Since deg 2 = 0, we must have r(X) = 0.
So 1 = 2q(X), which is not possible with q(X) ∈ Z[X].

Example 3.9. Given f(X) = 3X4 +X3 + 2X2 + 1 and g(X) = X2 + 4X+ 2
in Z5[X], find q(X), r(X) ∈ Z5[X] such that f(X) = g(X)q(X) + r(X) with
r(X) = 0 or deg r(X) < deg g(X).



3.2. DIVISIBILITY IN F [X] 51

We simply write down the usual division, following the same algorithm:

3X2 +4X
X2 + 4X + 2 | 3X4 +X3 +2X2 +1

3X4 +2X3 +X2

4X3 +X2 +1
4X3 +X2 3X

2X +1

So:

3X4 +X3 + 2X2 + 1 = (X2 + 4X + 2)(3X2 + 4X︸ ︷︷ ︸
q(X)

) + 2X + 1︸ ︷︷ ︸
r(X)

.

Now: What happens if r(X) = 0 in the Division Algorithm?

3.2 Divisibility in F [X ]

Definition 3.10. Let F be a field and f(X), g(X) ∈ F [X] with g(X) non-
zero. We say that g(X) divides f(X) (or that g(X) is a factor of f(X), or
that f(X) is a multiple of g(X)) and write g(X)|f(X) if f(X) = g(X) ·h(X)
for some h(X) ∈ F [X].

Example 3.11. 1. X + 1|X2 − 2X − 3 in Q[X] since X2 − 2X − 3 =
(X + 1)(X − 3).

2. Also, 6(X + 1)|X2 − 2X − 3 in Q[X] since X2 − 2X − 3 = 6(X +

1)[
1

6
(X − 3)].

Remark 3.12. 1. If g(X)|f(X) then cg(X)|f(X) for each c ∈ F \ {0}.

2. Suppose f(X) 6= 0. Then every divisor of f(X) has degree at most
deg f(X).

Why? Suppose g(X)|f(X) and so f(X) = g(X)h(X). Thus, deg f(X) =
deg g(X) + deg h(X), which gives 0 ≤ deg g(X) ≤ deg f(X).

Definition 3.13. A polynomial in F [X] is monic if its leading coefficient is
1.

Example 3.14. X2 − 2X − 3 is monic in Q[X] while
1

2
X + 2 is not monic

in Q[X].
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Definition 3.15. Let F be a field and f(X), g(X) ∈ F [X] not both zero. The
greatest common divisor (gcd) of f(X) and g(X) is the monic polynomial
d(X) of highest degree that divides both f(X) and g(X).

Question: Why do we say “the” gcd?

Theorem 3.16. Let F be a field and f(X), g(X) ∈ F [X] not both zero.
Then there is a unique gcd d(X) of f(X) and g(X). Furthermore, there
exists u(X), v(X) ∈ F [X] such that

d(X) = f(X)u(X) + g(X)v(X).

Proof. Consider the set

S := {f(X)u(X) + g(X)v(X) : u(X), v(X) ∈ F [X]}.

(Observe that S is an ideal in the ring F [X].)
Let T (X) be a monix polynomial of smallest degree in S. So T (X) =

f(X)u(X) + g(X)v(X) for some u(X), v(X) ∈ F [X].
Claim: T (X) = gcd(f(X), g(X)).
We first show that T (X)|f(X): By the Division Algorithm, there exist

q(X) and r(X) in F [X] such that f(X) = T (X)q(X) + r(X), with r(X) = 0
or deg r(X) < deg T (X). So

r(X) = f(X)− T (X)q(X)

= f(X)− [f(X)u(X) + g(X)v(X)]q(X)

= f(X)[1− u(X)q(X)] + g(X)[−q(X)v(X)].

Thus, r(X) ∈ S. So we cannot have deg r(X) < deg T (X) (by choice of
T (X)), which means that we must hav er(X) = 0. So f(X) = T (X)q(X).
Similarly, T (X)|g(X).

We now show that if c(X) is another common divisor of f(X) and g(X),
then deg c(X) ≤ deg T (X).

We have f(X) = c(X)w(X) and g(X) = c(X)s(X), so

T (X) = f(X)u(X) + g(X)v(X)

= c(X)w(X)u(X) + c(X)s(X)v(X)

= c(X)[w(X)u(X) + s(X)v(X)].

Thus, c(X)|T (X) and deg c(X) ≤ deg T (X).
We now prove the uniqueness.
Suppose d(X) is another gcd of f(X) and g(X). By the above obser-

vation we have that d(X) divides T (X) and T (X) divides d(X). Therefore
deg T (X) = deg d(X) and T (X) = cd(X) for some c ∈ F \ {0}.

But both T (X) are c(X) are monic, so c = 1 and T (X) = d(X).
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Observe that we proved a little bit more than the definition of gcd, and
that we obtained

Exercise 3.17. d(X) is the gcd of f(X) and g(X) if and only if

1. d(X) divides f(X) and g(X), and

2. every divisor of both f(X) and g(X) divides d(X).

Definition 3.18. Two polynomials f(X) and g(X) in F [X] are relatively
prime if gcd(f(X), g(X)) = 1.

Note that by the previous theorem, if f(X) and g(X) are relatively prime,
then there exist u(X), v(X) ∈ F [X] such that

f(X)u(X) + g(X)v(X) = 1.

Question: Given two polynomials f1 and f2, how do we find their gcd?
Answer: Use the division algorithm algorithm until we get a zero remain-

der: Say for instance that deg f1 ≥ deg f2.

� Divide f1 by f2, you get a remainder f3.

� Divide f2 by f3, you get a remainder f4.

� Keep doing this, dividing fi by fi+1, obtaining a remainder fi+2.

� Let d(X) be the last non-zero remainder.

If necessary: Multiply d(X) by a non-zero constant to get a monic polynomial
which is the gcd.

Example 3.19. Find the gcd of f(X) = 3X4 + X3 + 2X2 + 1 and g(X) =
X2 + 4X + 2 in Z5[X].

We have seen

3X4 +X3 + 2X2 + 1 = (X2 + 4X + 2)(3X2 + 4X︸ ︷︷ ︸
q(X)

) + 2X + 1︸ ︷︷ ︸
r(X)

.

We now divide X2 + 4X + 2 by 2X + 1:

3X +3
2X + 1 | X2 +4X +2

X2 +3X
X +2
X +3

4
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So X2 + 4X + 2 = (2X + 1)(3X + 3) + 4. We now divide 3X + 4 by 4:

3X +4
4 | 2X +1

2X
1
1
0

So 2X + 1 = 4(3X + 4) + 0.
The last non-zero remainder is 4. We make it monic: 4(4) = 1, so

gcd(3X4 +X3 + 2X2 + 1, X2 + 4X + 2) = 1,

f(X) and g(X) are relatively prime.

Remark 3.20. If f(X) = cnX
n+· · ·+c0 with cn 6= 0F , what is gcd(f(X), 0F )?

Since u(X).0F = 0F , we have u(X)|0F for every u(X) ∈ F [X]. Thus,
u(X) is a common divisor of f(X) and 0F if and only if u(X)|f(X). Taking
u(X) = f(X) we have a common divisor of maximal degree. Making it
monic, we get gcd(f(X), 0F ) = c−1n f(X).

3.3 Irreducibles

Note: In Z the units are 1 and −1. We have a different situation in a
polynomial ring.

Theorem 3.21. Let R be an integral domain. Then f(X) is a unit in R[X]
if and only if f is a constant polynomial that is a unit in R.

Proof. (⇒) By hypothesis f(X)g(X) = 1R for some g(X) ∈ R[X]. Thus
deg f(X)+deg g(X) = deg 1R = 0. This implies that deg f(X) = deg g(X) =
0 and so f(X) = a and g(X) = b for some a, b ∈ R \ {0}. As f(X)g(X) = 1
we get that f(X) is a unit in R.

(⇐) If f(X) = b, b a unit in R. Take g(X) = b−1. Then f(X)g(X) = 1
proving that f(X) is a unit in R[X].

Example 3.22. Be careful if R is not an integral domain:
In Z4, 2X + 1 is a unit, as

(2X + 1)(2X + 1) = 4X2 + 4X + 1 = 1,

but 2X + 1 is not a constant polynomial.
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Corollary 3.23. Let F be a field. Then f(X) is a unit in F [X] if and only
if f(X) is a non-zero constant polynomial.

Definition 3.24. An element a in a commutative ring R with identity is an
associate of an element b ∈ R if a = bu for some unit u ∈ R.

Remark 3.25. 1. If a is an associate of b, then b is an associate of a (as
a = bu implies b = au−1 and u−1 is a unit).

2. In Z, the only associates of a are a and −a.

3. By the previous Corollary, f(X) is an associate of g(X) in F [X] if and
only if f(X) = cg(X) for some c ∈ F \ {0}.

We are interested in developping a notion similar to prime numbers, but
in F [X]. Recall:

In Z, p is prime if p 6= ±1 (p is not a unit) and the only divisors of p are
±1 (units) and ±p (associates of p).

Definition 3.26. Let F be a field. A non-constant polynomial p(X) ∈ F [X]
is irreducible if its only divisors are its associates and the non-zero constant
polynomials (units). (In other words: If p(X) = r(X)s(X) then one of r(X)
and s(X) is a unit.)

A non-constant polynomial that is not irreducible is called reducible.

Example 3.27. 1. X − 1 is irreducible in Q[X].

2. X2 − 3 is irreducible in Q[X] (why? We will come back to this).

3. X2 + 1 is reducible in Z5[X], as X2 + 1 = (X + 2)(X + 3).

Theorem 3.28. Let F be a field and let f(X) ∈ F [X] \ {0}. Then f(X) is
reducible in F [X] if and only if f(X) can be written as the product of two
polynomials in F [X] of (strictly) lower degree.

Proof. (⇒) There exist g(X) ∈ F [X] that is not an associate of f(X) or a
non-zero constant such that f(X) = g(X)h(X) for some h(X) ∈ F [X].

If either deg h(X) = deg f(X) or deg g(X) = deg f(X), then deg g(X) =
0 or deg h(X) = 0. So either g(X) = c for some c ∈ F (contradiction), or
h(X) = b for some b ∈ F . This gives that f(X) = g(X)b, so g(X) is an
associate of f(X), contradiction.

Therefore deg g(X), deg h(X) < deg f(X).
(⇐) Suppose f(X) = g(X)h(X) where deg g(X), deg h(X) < deg f(X).

Then g(X)|f(X) and g(X) is not an associate of f(X) (associates have the
same degree), and g(X) is not a unit (if g(X) is a unit, then deg g(X) = 0,
so deg h(X) = deg f(X), contradiction). Thus f is reducible.
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3.4 Roots and Reducibility

Question: How can we determine if a given polynomial is irreducible in a
polynomial ring F [X]? (We often say “over F”.)

Definition 3.29. Let R be a commutative ring and f(X) ∈ R[X]. An ele-
ment a of R is a root of f(X) is f(a) = 0R.

Example 3.30. � f(X) = X2−X ∈ Z2[X] has roots 0 and 1, as f(0) =
02 − 0 = 0 and f(1) = 12 − 1 = 0.

� X4 + 2X2 + 1 has no root in Q since it is equal to (x2 + 1)2, which only
takes positive values.

Theorem 3.31 (Remainder Theorem). Let F be a field, f(X) ∈ F [X] and
a ∈ F . Then f(a) is the remainder in the division of f(X) by X − a.

Proof. By the Division Algorithm, f(X) = (X − a)q(X) + r(X), where
deg r(X) < deg(X − a) = 1 or r(X) = 0. Thus, deg r(X) = 0 or r(X) = 0.
In either case, r(X) = c for some c ∈ F . Hence f(X) = (X − a)q(X) + c, so
f(a) = (a− a)q(a) + c = c.

Theorem 3.32 (Factor Theorem). Let F be a field, f(X) ∈ F [X] and a ∈ F .
Then a is a root of f(X) if and only if X − a is a factor of f(X) in F [X].

Proof. X − a is a factor of f(X) if and only if the remainder in the division
of f(X) by X − a is 0, if and only if f(a) = 0 (by the previous Theorem), if
and only if a is a root of f(X).

Example 3.33. X4 +X2 + 1 ∈ Z3[X] has 1 as a root: 14 + 12 + 1 = 3 = 0.
Thus, X − 1(= X + 2) is a factor of X4 +X2 + 1 in Z3[X].

Corollary 3.34. Let F be a field and f(X) a non-zero polynomial of degree
n in F [X]. Then f(X) has at most n roots in F .

Proof. Suppose by contradiction that f(X) has k roots a1, . . . , ak with k > n.
Therefore f(X) = (X − a1)f1(X), and a2, . . . , ak are roots of f1(X). Then
f1(X) = (X − a2)f2(X), a3, . . . , ak are roots of f2(X). Observe that f(X) =
(X − a1)(X − a2)f2(X). And so on (induction, really).

We obtain: f(X) = (X − a1) · · · (X − ak)fk(X) Therefore deg f(X) ≥
k > n, contradiction.

This result is not necessarilly true is F is not a field. Think about Z6[X].

Corollary 3.35. Let F be a field and f(X) ∈ F [X] with deg f(X) ≥ 2. If
f(X) is irreducible in F [X] then f(X) has no roots in F .
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Remark 3.36. 1. The converse is false in general if deg f(X) > 3. Con-
sider for instance X4 + 2X2 + 1 = (X2 + 1)2 ∈ Q[X]. It is reducible
but has no roots in Q.

2. If deg f(X) = 2 or 3, then the converse is true.

Exercise 3.37. Prove that p(X) is irreducible is equivalent to:
If p(X) = r(X)s(X) then r(X) or s(X) is a nonzero constant polynomial.

Corollary 3.38. Let F be a field and let f(X) ∈ F [X] be a polynomial of
degree 2 or 3. Then f(X) is irreducible in F [X] if and only if f(X) has no
roots in F .

Proof. (⇒) See previous Corollary.
(⇐) We first observe that no polynomial of degee 1 is a factor of f(X).

Why Not? If f(X) = (cX + d)g(X) (with c ∈ F \ {0}), then f(−c−1d) = 0,
impossible.

Thus, if f(X) = r(X)s(X), then deg r(X), deg s(X) 6= 1, and so

2 or 3 = deg f(X) = deg r(X)︸ ︷︷ ︸
6=1

+ deg s(X)︸ ︷︷ ︸
6=1

.

Therefore, either deg r(X) = 0 or deg s(X) = 0, i.e., r(X) or s(X) is a
nonzero constant. So f(X) is irreducible by the previous exercise.

Example 3.39. 1. X2+1 is irreducible in Z3, as 02+1 = 1 6= 0, 12+1 =
2 6= 0, 22 + 1 = 2 6= 0.

2. X2 + 1 is reducible in Z5 as 22 + 1 = 5 = 0, thus 2 is a root.

Observe that for f(X) ∈ Zp[X], p prime (so that Zp is a field), and
deg f(X) = 2 or 3, we can check irreducibility of f(X) by checking that
f(X) 6= 0 for X = 0, 1, . . . , p− 1.

3.5 Irreducibility in Q
Idea: Consider f(X) ∈ Q[X]. How can we determine if f(X) is irreducible
in Q[X]? Factoring in Q[X] can be reduced to factoring in Z[X].

Remark 3.40. 1. If f(X) ∈ Q[X], there there exists c ∈ Z \ {0} such
that cf(X) ∈ Z[X].

2. f(X) and cf(X) have the same roots, and (clearly) f(X) is reducible
in Q[X] if and only if cf(X) is reducible in Q[X]. Thus, we consider
polynomials with integer coefficients.
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Recall that a is a root of f(X) if and only if X − a is a factor of f(X).
So, to find linear factors, we search for roots. How can we find roots?

Theorem 3.41 (Rational Root Test). Let f(X) = anX
n+an−1X

n−1 + · · ·+
a1X + a0 ∈ Z[X]. If r 6= 0 and the rational number

r

s
, gcd(r, s) = 1 is a root

of f(X), then r|a0 and s|an.

Proof. As
r

s
is a root of f(X), we have

an
rn

sn
+ an−1

rn−1

sn−1
+ · · ·+ a1

r

s
+ a0 = 0.

Multiply both sides by sn and rearrange to get

a0s
n = −(anr

n + an−1sr
n−1 + · · ·+ a1s

n−1r

= −r(anrn−1 + an−1sr
n−2 + · · ·+ a1s

n−1).

So, r|a0sn. As gcd(r, s) = 1, then gcd(r, sn) = 1 and thus r|a0. A similar
argument implies that s|an.

Example 3.42. f(X) = 2X4 − 5X3 + 3X2 + 4X − 6 ∈ Q[X]. The possible
roots in Q are given by

r = ±1,±2,±3,±6 and s = ±1,±2.

We check
r

s
= ±1,±2,±3,±6,±1

2
,±3

2
to see which are roots, and get that

the roots are −1,
3

2
.

So f(X) = (X + 1)(2X − 3)q(X), where q(X) has degree 2. We find
q(X) = X2 − 2X + 2, which is then irreducible in Q[X] (we can also check
with the quadratic formula to make sure that the roots of q(X) are not in Q).

Let us insist on the following:

a is a root of f(X)⇔ X − a is a factor of f(X).

So:

f(X) has no roots in F ⇔ f(X) has no linear factors with coefficients in F .

But this does not necessarily imply that f(X) is irreducible in F [X] (it is
only the case when deg f = 2 or 3).



3.5. IRREDUCIBILITY IN Q 59

Example 3.43. f(X) = X4 + X3 + X + 2 ∈ Z3[X] has no roots in Z3 but
f(X) = (X2 + 1)(X2 +X + 2) ∈ Z3[X].

Definition 3.44. The content of a non-zero polynomial f(X) = anX
n +

· · ·+ a0 ∈ Z[X] is gcd(an, an−1, . . . , a0). A primitive polynomial in Z[X] is a
polynomial with content 1.

Theorem 3.45 (Gauss’ Lemma). The product of two primitive polynomials
is primitive.

Proof. Let f(X), g(X) be primitive. Suppose f(X)g(X) is not primitive,
and let p be a prime divisor of the content of f(X)g(X). Let f̄(X), ḡ(X)
and f(X)g(X) be the polynomials obtained from f, g and fg by reducing
the coefficients modulo p.

Then f̄ , ḡ ∈ Zp[X] and f̄(X)ḡ(X) = f(X)g(X) = 0 in Zp[X] (check
this). As Zp[X] is an integral domain, f̄(X) = 0 or ḡ(X) = 0. Thus, either p
divides every coefficient of f(X) or p divides every coefficient of g(X). Then
either f or g is not primitive, contradiction.

Theorem 3.46 (Reducibility over Q ⇔ Reducibility over Z). Let f(X) ∈
Z[X]. If f(X) is reducible in Q[X] then f(X) is reducible in Z[X].

Proof. Suppose f(X) = g(X)h(X) where g(X), h(X) ∈ Q[X]. We can as-
sume that f(X) is primitive (dividing f by its content if necessary). Let a be
the least common multiple of the denominators of the coefficients of g(X),
and b be the least common multiple of the denominators of the coefficients
of h(X). Then

abf(X) = ag(X) · bh(X),

where ag(X), bh(X) ∈ Z[X]. Let c1 be the content of ag(X) and c2 be the
content of bh(X). Then ag(X) = c1g1(X) and bh(X) = c2h1(X), where both
g1 and h1 are primitive. Thus

abf(X) = c1c2g1(X)h1(X).

Since f is primitive, the content of abf(X) is ab. By Gauss’ Lemma, g1h1 is
primitive and so the content of c1c2g1(X)h1(X) is c1c2. Thus ab = c1c2 and
f(X) = g1(X)h1(X) where g1(X), h1(X) ∈ Z[X].

We look now at more general results on irreducibility.

Theorem 3.47 (Eisenstein’s Criterion). Let f(X) = anX
n + an−1X

n−1 +
· · · + a1X + a0 be a non-constant polynomial in Z[X]. If there is a prime p
such that



60 CHAPTER 3. POLYNOMIAL RINGS

� p|ai for i = 0, 1, . . . , n− 1;

� p 6 | an;

� p2 6 | a0,

then f(X) is irreducible in Q[X].

Proof. We procede by contradiction. Suppose that f(X) is reducible in Q[X].
Then by the previous theorem, f(X) is reducible in Z[X], say

f(X) = (b0 + b1X + · · ·+ brX
r)(c0 + c1X + · · ·+ csX

s),

where bi, cj ∈ Z, r ≥ 1, s ≥ 1. Note that a0 = b0c0.
As p|a0, then p|b0 or p|c0. Without loss of generality we assume that p|b0.

Since p2 6 | a0, we have p 6 | c0 (otherwise p|c0, so p2|a0, contradiction). We
also have an = brcs. Thus p 6 | br (since otherwise p|an, contradiction). There
may exist another i such that p 6 | bi. Let bk be the first of the bi’s such that
p 6 | bk.

Then 0 < k ≤ r < n and p|bi for i < k, and p 6 | bk. Since

ak = b0ck + b1ck−1 + · · ·+ bk−1c1 + bkc0,

we have
bkc0 = ak − b0ck − b1ck−1 − · · · − bk−1c1.

As p|ak and p|bi for i < k, then p divides the right hand side. Thus, p|bkc0
and so p|bk or p|c0, a contradiction in either case. Thus f(X) is irreducible
in Q[X].

Example 3.48. 1. f(X) = 3X5 + 15X4−20X2 + 10X+ 20 is irreducible
in Q[X]:

By Eisenstein’s criterion with p = 5: 5 6 | 3, 25 6 | 20, but 5|15, 20, 10, 20.

2. Is f(X) = 21X3 − 3X2 + 2X + 9 irreducible in Q[X]?

Use Eisenstein? p = 3 does not work (p 6 | 2) and no other prime seems
to work.

Now what?

Notation: f(X) means reduce the coefficients of f(X) modulo p.

Theorem 3.49 (Mod p Test). Let f(X) = akX
k + · · · + a1X + a0 ∈ Z[X]

and let p be a prime such that p 6 | ak. If f(X) is irreducible in Zp[X], then
f(X) is irreducible in Q[X].
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Proof. We use contradiction. Suppose f is reducible in Q[X]. By Theo-
rem 3.46, f(X) = g(X)h(X) with g(X), h(X) non-constant polynomials in
Z[X]. Since p 6 | ak, p does not divide the leading coefficients of g(X) and
h(X). Thus, deg g(X) = deg g(X) and deg h(X) = deg h(X). So neither
g(X) not h(X) are constant polynomials in Zp[X].

Check that f(X) = g(X)h(X) in Z[X] implies f(X) = g(X)h(X) in
Zp[X].

Thus, f(X) is reducible in Zp[X], a contradiction.

Example 3.50. Is f(X) = 21X3 − 3X2 + 2X + 9 irreducible in Q[X]?
Take p = 2. Then f(X) = X3 +X2 + 1 in Z2[X]. Is f(X) irreducible in

Z2[X]? As deg f(X) = 3, we need only check roots in Z2.
As f̄(0) = 1 and f̄(1) = 1, f(X) is irreducible in Z2[X]. By the “Mod p

test”, f is irreducible in Q[X].

Remark 3.51. 1. Given f(X) ∈ Z[X], if f(X) is reducible in Zp[X],
then we have nothing (try another p).

2. What if deg f(X) > 3? How do we show that f(X) is irreducible in
Zp[X]?

Example 3.52. Is f(X) = X5 + 4X4 + 2X3 + 3X2 −X + 5 irreducible in
Q[X]?

Take p = 3. Then f(X) = X5 + X4 + 2X3 + 2X + 2 in Z3[X]. If f(X)
irreducible in Z3[X]?

We check for roots in Z3: f̄(0) = 2, f̄(1) = 2, f̄(2) = 1. There are no
roots, i.e., no linear factors. So if f(X) is reducible, it must be a product of
two monic irreducible polynomials of degrees 2 and 3 in Z3[X].

We list all the monic irreducible polynomials of degree 2 in Z3[X] (check
this):

X2 + 1, X2 +X + 2, X2 + 2X + 2

Then we check that each one is not a factor of f(X) (how? Use the division
algorithm and check that the remainder is not 0).

Hence, f(X) is irreducible in Z3[X]. By the “Mod 3 Test”, f(X) is
irreducible in Q[X].

Idea: We can now connect irreducible polynomials to ideals.

Definition 3.53. A principal ideal domain (PID) is an integral domain R
in which every ideal is principal (i.e., is generated by one element, cf. Re-
mark 2.34).
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Example 3.54. 1. Z is a PID. Quick proof (check the details): Let I be
an ideal of Z and let a be the smallest positive elements of I. Recall
that 〈a〉 = {na : n ∈ Z}. Clearly 〈a〉 ⊆ I. To show that every element
of I is in 〈a〉, take an element t ∈ I and consider the division of t by
a, t = aq + r. Show that r ∈ I and that it follows that we must have
r = 0.

2. Let F be a field. Prove that F [X] is a PID.

Hint: Let I be an ideal of F [X]. If I = F [X], then I = 〈1〉, so we
assume that I 6= F [X]. Let f(X) be a non-constant monic polyno-
mial of minimal degree in I. Show that I = 〈f(X)〉 (use the Division
Algorithm, and the same strategy as in the case of Z above).

Observe that if c ∈ F \ {0}, then

〈f(X)〉 = 〈cf(X)〉,

in particular, we can always take f(X) monic (multiply it by the inverse
of its leading coefficient to make it monic).

Theorem 3.55. Let F be a field and let p(X) ∈ F [X]. Then 〈p(X)〉 is a
maximal ideal in F [X] if and only if p(X) is irreducible in F [X].

Proof. (⇒) Note that p(X) 6= 0 and p(X) is not a unit in F [X] (since
〈0〉 = {0} in the first case, and 〈p(X)〉 = F [X] in the second case, which are
not maximal ideals in F [X]).

If p(X) = g(X)h(X), then

〈p(X)〉 ⊆ 〈g(X)〉 ⊆ F [X].

Thus (since 〈p(X)〉 is a maximal ideal), 〈p(X)〉 = 〈g(X)〉 or 〈g(X)〉 = F [X].
In the first case, we have deg p(X) = deg g(X) (why?). In the second case, it
follows that deg g(X) = 0 (why?) and so deg h(X) = deg p(X). Thus, p(X)
cannot be written as a product of two polynomials in F [X] of lower degree,
i.e., p(X) is irreducible in F [X].

(⇐) Let I be an ideal of F [X] such that

〈p(X)〉 ⊆ I ⊆ F [X].

As F [X] is a PID (see exercise above), I = 〈g(X)〉 for some g(X) ∈ F [X].
So p(X) ∈ 〈g(X)〉 and thus p(X) = g(X)h(X) for some h(X) ∈ F [X]. As
p(X) is irreducible, either g(X) or h(X) is a constant polynomial. In the
first case, we have I = F [X]. In the second case, we have 〈p(X)〉 = 〈g(X)〉.
Thus 〈p(X)〉 is maximal.
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Corollary 3.56. If p(X) is irreducible in F [X], then F [X]/〈p(X)〉 is a field.
Moreover, it contains a subfield F ? that is isomorphic to F .

Proof. By the previous Theorem, 〈p(X)〉 is maximal. Thus, by Theorem 2.48,
F [X]/〈p(X)〉 is a field. Consider

F ? := {a+ 〈p(X)〉 : a ∈ F}.

Check that F ? is a subring of F [X]/〈p(X)〉 that is a field (hint: the inverse
of a+ 〈p(X)〉 is a−1 + 〈p(X)〉 for a+ 〈p(X)〉 6= 0).

Claim: F and F ? are isomorphic.
Why? Define Φ : F → F ? by Φ(a) = a+ 〈p(X)〉. We have

Φ(a+ b) = a+ b+ 〈p(X)〉
= (a+ 〈p(X)〉) + (b+ 〈p(X)〉)
= Φ(a) + Φ(b).

Similarly (do it!) Φ(a · b) = Φ(a) · Φ(b). thus, Φ is a homomorphism. It is
surjective by definition, so we only have to show that it is injective. Suppose
Φ(a) = Φ(b), i.e., a + 〈p(X)〉 = b + 〈p(X)〉, so a − b ∈ 〈p(X)〉. Therefore
p(X)|a − b. As deg p(X) ≥ 1 and a − b ∈ F , we must have a − b = 0, so
a = b.

Remark 3.57. 1. We can now construct finite fields:

Let p be a prime number, and let f(X) be irreducible in Zp[X], deg f(x) =
n.

Then Zp[X]/〈f(X)〉 is a field with pn elements.

We know that it is a field since 〈f(X)〉 is a maximal ideal in F [X].
But why does it have pn elements?

Zp[X]/〈f(X)〉 = {g(X) + 〈f(X)〉 : g(X) ∈ Zp[X]}.
By the Division Algorithm, g(X) = f(X)q(X) + r(X), where r(X) = 0
or 0 < deg r(X) < deg f(X) = n. And

g(X)− r(X) = f(X)q(X) ∈ 〈f(X)〉.

Thus
g(X) + 〈f(X)〉 = r(X) + 〈f(X)〉,

and

Zp[X]/〈f(X)〉 = {r(X) + 〈f(X)〉 : r(X) ∈ F [X], deg r(X) < n}
= {an−1Xn−1 + · · ·+ a1X + a0 + 〈f(X)〉 : ai ∈ Zp}.
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There are p choices for each of the ai, so altogether pn elements. Pro-
vided that they are all different, which we now check:

Assume that (a0, . . . , an−1) 6= (b0, . . . , bn−1), i.e., the polynomials a(X) :=
a0 + a1X + · · ·+ an−1X

n−1 and b(X) := b0 + b1X + · · ·+ bn−1X
n−1 are

different in Zp[X]. We show that a(X)+〈f(X)〉 6= b(X)+〈f(X)〉: If we
had equality, then a(X)− b(X) ∈ 〈p(X)〉, so p(X) divides a(X)− b(X)
which has degree less than n. This is only possible if a(X)− b(X) = 0,
i.e., a(X) = b(X), a contradiction.

2. By the previous result, we have

F ∼= F ? ⊆ F [X]/〈p(X)〉.

So we may view F has a subfield of F [X]/〈p(x)〉. We say that F [X]/〈p(X)〉
and an “extension field” of F .



Chapter 4

Field Theory (a brief
glimpse. . . )

Overview: We saw a glimpse of “field extensions”, namely

K := F [X]/〈p(X)〉, p(X) irreducible in F[X]

F

(where the field that is “up” is larger than the field “below”)
Can we get a general picture?
Recall the definition:

Definition 4.1. If F and K are fields and F is a subring of K that contains
1K, we say that K is an extension field of F (or a field extension of F , or
that F is a subfield of K).

Remark 4.2. (Very important) In this case, K is a vector space over F :
We have addition of elements of K and multiplication by elements of F .
The properties of vector space are satisfied because K is a ring.

Definition 4.3. Let K be an extension field of F . We denote by [K : F ] the
number of elements of any basis of K over F (the dimension of K over F ),
and call it the degree of K over F .

Proposition 4.4. Let K be a field and let Li, i ∈ I, be subfields of K. Then⋂
i∈I Li is a subfield of K.

Proof. We first show that L :=
⋂
i∈I Li is a subring of K by using the subring

test (Exercise 2.18): Let a, b ∈ L. Then a, b ∈ Li for every i, and since Li

65
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is a subfield, we get a − b, a · b ∈ Li. Thus a − b, a · b ∈ L. Clearly L is
commutative, since K is.

To check that L is a subfield, we now have to check that if a ∈ L \ {0},
then a has an inverse in L. Since K is a field, a has an inverse a−1 in K.
Since a ∈ Li for every i, a has an inverse in Li, and this inverse must be
equal to a−1 (do it). So a−1 ∈ Li for every i, which gives a−1 ∈ L.

Corollary 4.5. Let K be a field and let S be a subset of K. Then there is a
smallest subfield L of K containing S (in the sense that if N is a subfield of
K containing S, then L ⊆ N).

Proof. By Proposition 4.4, any intersection of subfields of K is a subfield
of K. Take for L the intersection of all subfields of K containing S. It is
necessarilly the smallest subfield of K containing S.

Definition 4.6. Let K be an extension field of F and u ∈ K. Then F (u)
(“F adjoin u”) is the smallest subfield of K containing F and u and is called
a simple extension of F .

We can give an explicit description of F (u):

Proposition 4.7. With notation as in the previous definition,

F (u) =

{
f(u)

g(u)
: f(X), g(X) ∈ F [X], g(u) 6= 0

}
.

Proof. We check both inclusions.
(⊇) Let f(X) = a0 + · · ·+ anX

n ∈ F [X]. Since F (u) is a field containing
F and u, we have aiu

i ∈ F [u] for every i. Therefore f(u) ∈ F (u). Similarly
g(u) ∈ F (u) and since g(u) 6= 0 and F (u) is a field, g(u)−1 ∈ F (u). Thus
f(u)

g(u)
∈ F (u).

(⊆) Let

N :=

{
f(u)

g(u)
: f(X), g(X) ∈ F [X], g(u) 6= 0

}
.

It is easy to check that N is a subfield of K that contains F and u. Therefore,
by definition of F (u), we have F (u) ⊆ N .

In picture: K

F (u)

F

Example: C

Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}

Q
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Observe that the description of Q(
√

2) is simpler than what is given in
Proposition 4.7. We will come back to this.

Definition 4.8. Let K be an extension field of F and let u ∈ K. We say
that u is algebraic over F if u is the root of a polynomial in F [X]. If u is
not algebraic over F , we say that u is transcendental over F .

Example 4.9. 1.
√

2 is algebraic over Q, as it is a root of X2−2 ∈ Q[X].

2.
√
−3 +

√
2 is algebraic over Q.

Why? Let α =
√
−3 +

√
2. Then α2 = −3 + 2

√
−6 + 2. So α2 + 1 =

2
√
−6 and taking squares we get α4+2α2+1 = 4(−6), so α4+2α2+25 =

0. So, α is a root of X4 + 2X2 + 25.

3. π is transcendental over Q (Lindemann, 1882).

e is transcendental over Q (Hermite, 1873).

Theorem 4.10. Let K be an extension of F and let u ∈ K be algebraic over
F . There there exists a unique monic irreducible polynomial mu/F (X) ∈
F [X] that has u as a root.

This polynomial is called the minimal polynomial of u over F , and satisfies

〈mu/F 〉 = {f(X) ∈ F [X] : f(u) = 0}.

Proof. Since u is algebraic over F , the set

I := {f(X) ∈ F [X] : f(u) = 0}

is a non-zero ideal of F [X]. As seen in Example 3.54, I = 〈p(X)〉 with
p(X) polynomial of minimal degree in I, and we can choose p(X) monic. So
mu/F (X) := p(X) is a monic polynomial of minimal degree that has u as
root and it satisfies the final statement.

We check thatmu/F (X) is irreducible: Supppose thatmu/X(X) = f(X)g(X)
with f(X) and g(X) of degree less than mu/F (X). Since mu/F (u) = 0, we
get f(u) = 0 or g(u) = 0, impossible since they both have degree less than
mu/F (X).

We check that mu/F (X) is unique: Let t(X) be another monic irre-
ducible polynomial such that t(u) = 0. By definition of mu/F (X) we have
degmu/F (X) ≤ deg t(X). We divide t(X) bymu/F (X): t(X) = mu/F (X)q(X)+
r(X) with r(X) = 0 or deg r(X) < degmu/F (X). Replacing X by u we get
r(u) = 0, which means that we must have r(X) = 0 (otherwise we would get
a monic polynomial with u as root, of degree less than mu/X). So mu/F (X)
divides t(X), and since t(X) is irreducible, q(X) is a constant. Since they
are both monic, we must have q(X) = 1, so t(X) = mu/F (X).
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Example 4.11. The minimal polynomial of α :=
√
−3 +

√
2 over Q is

f(X) := X4 + 2X2 + 25.
Why? We already checked that α is a root of f(X). We check that f(X)

is irreducible in Q[X]. We use the mod 3 test (p = 3). Then f(X) =
X4 +2X2 +1 has no roots in Z3, so f(X) has no linear factors. We check all
the monic quadratic irreducible polynomials in Z3[X] (how many are there?
See exercise set 5) using the Division Algorithm, and we see that none of
them divides f(X). So by the Mod 4 Test, f(X) is irreducible in Q[X].

Final question: What is the connection between F (u), u algebraic, the
minimal polynomial mu/F (X) of u over F , and F [X]/〈mu/F (u)〉?

Theorem 4.12. Let K be an extension field of F and let u ∈ K. The
following are equivalent.

1. u is algebraic over F ;

2. F [X]/〈mu/F (X)〉 ∼= F [u] := {f(u) : f(X) ∈ F [X]};

3. F (u) = F [u];

4. [F (u) : F ] is finite.

In this case, and if degmu/F (X) = n, then {1F , u, u2, . . . , un−1} is a basis of
F (u) over F . In particular [F (u) : F ] = degmu/F and

F (u) = {a0 + a1u+ · · ·+ an−1u
n−1 : ai ∈ F}.

Proof. (1)⇒(2): Consider the map

λ : F [X]→ F [u], λ(f(X)) = f(u)

(the evaluation at u). A direct computation shows that (f(X) + g(X))(u) =
f(u)+g(u) and (f(X)g(X))(u) = f(u)g(u), i.e., λ(f(X)+g(X)) = λ(f(X))+
λ(g(X)) and λ(f(X)g(X)) = λ(f(X))λ(g(X)), so that λ is a ring homomor-
phism.

The map λ is clearly surjective, so by the first isomorphism theorem, we
have

F [X]/Kerλ ∼= F [u],

and the result follows since by Theorem 4.10

Kerλ = {f ∈ F [X] : f(u) = 0} = 〈mu/F (X)〉.

(2)⇒(3): Clearly, F [u] ⊆ F (u), and we know that F (u) is the smallest
subfield of K containing F and u. But F [X]/〈mu/F (X)〉 is a field since



69

mu/F (X) is irreducible. So F [u] is also a field. Since it contains F and u, it
cannot be smaller than F (u), so we have F [u] = F (u).

(3)⇒(4): It suffices to show that [F [u] : F ] is finite, i.e., that dimF F [u]
is finite. By definition

F [u] = {f(u) : f ∈ F [X]}
= SpanF{1, u, u2, . . .},

and, writing mu/F (X) = a0 + a1X + · · ·+ an−1X
n−1 +Xn, we have

a0 + a1u+ · · ·+ an−1u
n−1 + un = 0.

Therefore:

un ∈ SpanF{1, u, . . . , un−1},
un+1 ∈ SpanF{1, u, . . . , un−1, un} = SpanF{1, u, . . . , un−1},
· · ·
ui ∈ SpanF{1, u, . . . , un−1} ∀i ∈ N.

and we obtain

F [u] = SpanF{1, u, u2, . . .} = SpanF{1, u, . . . , un−1}.

(4)⇒(1): Consider the elements 1, u, u2, u3, . . . in F (u). Since [F (u) :
F ] = dimF F (u) is finite, they cannot be linearly independent, so there are
m ∈ N and a0, . . . , am ∈ F such that

a0 + a1u+ · · ·+ amu
m = 0,

so u is algebraic over F .

Suppose now that one (=all) of the above conditions hold, with n =
degmu/F (X). As seen in the proof of (3)⇒(4), {1, u, . . . , un−1} generates
F [u]:

F [u] = {g(u) : g(X) ∈ F [X], deg g(X) < degmu/F (X)}
= {a0 + a1u+ · · ·+ an−1u

n−1 : ai ∈ F}.

We check that {1, u, . . . , un−1} is linearly independent over F : Assume
that b0 + b1u + · · · + bn−1u

n−1 = 0 for some b0, . . . , bn−1 ∈ F not all 0, and
let g(X) = b0 + b1X + · · · + bn−1X

n−1. Then g(u) = 0 but deg g(X) <
degmu/F (X), impossible.
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Example 4.13.

Q(
√

2) = Q[
√

2] = {a+ b
√

2 : a, b ∈ Q}
∼= Q[X]/〈X2 − 2〉.

Note that X2 − 2 is irreducible in Q (for instance by Eisenstein with p = 2,
or using that it has degree 2 and no root in Q).
{1,
√

2} is a basis over Q of the field Q(
√

2), which is the smallest subfield
of C (or R) containing both Q and

√
2.

[Q(
√

2) : Q] = 2.
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