
Graphs and Networks (MATH20150)

Problem sheet 3

1. It is a bit too tricky to type in detail. The way to do it is to use the
Havel-Hakimi algorithm (from the part of the notes entitled “Graphic
sequences, adjacency matrix”. There are 4 examples in the course
notes.

It works by repeatedly computing the sequence d′ out of d. Since the
length of the sequence and the numbers in it both decrease, it stops at
some point, and it stops either with a sequence with only zeroes (comes
from a graph), or a sequence with some negative numbers (does not
come from a graph). This is step 1.

Then to construct the corresponding graph, we follow the proof of “d′

graphic ⇒ d graphic”, so we go “backwards” in the procedure that we
used to show that the sequence is graphic. This is step 2.

The only points to pay attention to are, in step 1: That after each com-
putation of d′ it is necessary to put the sequence back into increasing
order (it is one of the hypotheses of the theorem). In step 2: After each
application of “d′ graphic ⇒ d graphic”, we need to change the order
of the vertices to get the degree sequence to correspond to the d′ from
the previous step. See the examples in the course notes.

In this exercise, both sequences are graphic.

2. “⇒” Let C = u1u2 . . . un be a cycle containing e. We can start number-
ing the vertices of the cycle such that the first edge is e, i.e. e = u1u2

(it simplifies the notation). We show that G \ {e} is connected: Let
a, b be vertices in G \ {e}. Since G is connected there is a walk from a
to b. If this walk does not contain e, it is still a walk in G \ {e}. If it
does contain e it is of the form

av1 . . . vku1u2w1 . . . wℓb.

If we replace e = u1u2 by the “other side of the cycle” we obtain a
walk:

av1 . . . vku1unun−1 . . . u3u2w1 . . . wℓb,

from a to b that does not use e. So a is connected to b in G \ {e}.
“⇐” Write e = uv. Since e is not a bridge, G \ {e} is connected so
there is a path

uu1 . . . ukv
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from u to v in G \ {e}. Therefore vuu1 . . . ukv is a cycle in G.

3. Write W1 = a1a2 . . . ak+1 and W2 = b1b2 . . . bk+1 where the ai and bj are
vertices of G.

We assume that W1 and W2 have no vertex in common. Since G is
connected there is a path P in G from the first vertex in W1 to the first
vertex in W2. This path cannot always be in W1, otherwise we would
have a vertex in both W1 and W2. Similarly this path cannot be always
in W2.

Let ar be the last vertex in P that is in W1 and bs the first vertex in
P , that is after ar and in W2.

a1 a2 ar ak+1

b1 b2 bs bk+1

W1

W2

The length of the path in W1 from a1 to ar is r and from ar to ak+1 is
k − r (make a picture with k = 4 and r = 1). One of them is at least
k/2. We assume it is the path from a1 to ar (the other case is similar).

Also, the the length of the path in W2 from b1 to bs is s and from bs to
bk+1 is k− s. Again one of them is of length at least k/2, let us assume
it is the path from b1 to bs (again, the other case will be similar).

We now build a new path in G as follows: We follow W1 from a1 to
ar (this part of the path has length r ≥ k/2), then P from ar to bs
(observe that by choice of as and bs there are no elements of W1 or W2

in this partion of P ; this part of the path has length at least one since
ar ̸= bs)) and finally we follow W2 from bs to b1 (this part of the path
has length r ≥ k/2). This new path has therefore length greater than
k/2 + k/2 = k, which is a contradiction.

4. No solution, just base your drawings on Euler’s description of Eulerian
graphs.
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