

Graph Theory
MATH20150

Contents

1 Basic notions	5
2 Graphic sequences, adjacency matrix	15
3 Eulerian graphs	23
4 Trees	27
5 Hamiltonian graphs	35
6 Graph isomorphisms	43
7 Bipartite graphs	45
8 Planar graphs	49
9 Networks	55
10 Some applications of the Ford-Fulkerson result	67
11 Matrices and graphs (some random results)	71
12 Tropical arithmetic and shortest paths	77

Chapter 1

Basic notions

Definition 1.1. A graph $G = (V, E)$ is an ordered pair of finite sets, where

- V is non-empty;
- E is a set of finite subsets of V , each of which contains 2 elements. E may be empty.

Definition 1.2. An element of V is called a vertex.

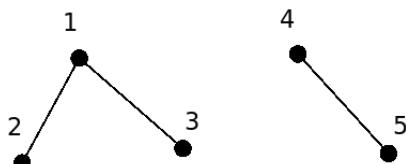
An element $\{p, q\}$ of E is called an edge, and we say that it joins the vertices p and q .

From the definition, an edge cannot join a vertex to itself (because it would then be of the form $\{p, p\} = \{p\}$ which is a set with only one element).

Remark 1.3. What we call a graph is sometimes called a simple graph in texts (so: check the terminology when you look at a book).

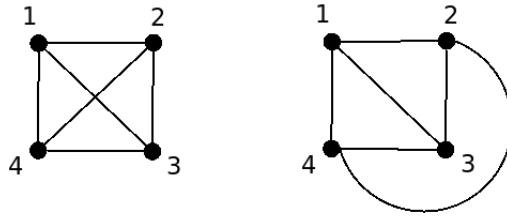
A graph can always be represented as a picture: Represent each vertex in V by a point, and draw a line between any two vertices joined by an edge (the lines may intersect).

Example 1.4. 1. $G = (V, E)$ with $V = \{1, 2, 3, 4, 5\}$, $E = \{\{1, 2\}, \{1, 3\}, \{4, 5\}\}$.



2. $G = (\{a\}, \emptyset)$.

3.



These two pictures represent the same graph:

$$G = (\{1, 2, 3, 4\}, \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}).$$

The fact that the edges $\{1, 3\}$ and $\{2, 4\}$ intersect in the first picture has no meaning. It is not always possible to avoid such intersections, see the section on planar graphs.

Notation 1.5. We will usually simply denote the edge $\{p, q\}$ by pq .

The following types of edges are excluded by definition:

1. A self-loop: An edge from a vertex to itself.

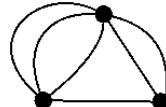
2. Parallel edges:

(Since E is a set, the edge $\{u, v\}$ is an element of E , and elements of a set are not repeated.)

Definition 1.6. A multigraph is a graph in which the existence of several edges joining 2 vertices (parallel edges) is permitted.

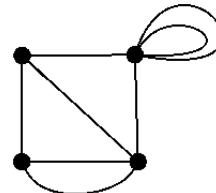
(In this case we need to replace E by something allowing repetition, for instance E could be a tuple that contain subsets of V of 2 elements.)

Example 1.7.



Definition 1.8. A pseudograph is a multigraph in which self-loops are permitted (as well as parallel self-loops).

Example 1.9.



Vy

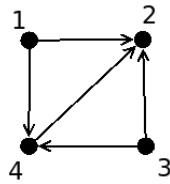
It is also sometimes useful to give a direction to the edges:

Definition 1.10. A directed graph (or digraph) is an ordered pair of finite sets (V, E) where

- V is non-empty;
- E is a set of ordered pairs of distinct elements of V (called arcs).

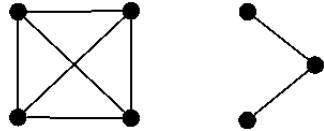
Example 1.11.

$$(\{1, 2, 3, 4\}, \{(1, 4), (1, 2), (3, 2), (3, 4), (4, 2)\})$$



Definition 1.12. Let $G = (V, E)$ be a graph with $V = \{v_1, \dots, v_n\}$ and $E = \{e_1, \dots, e_m\}$. The order of G is equal to $|V| = n$ (i.e., is the number of vertices) and the size of G is $|E| = m$ (i.e., the number of edges).

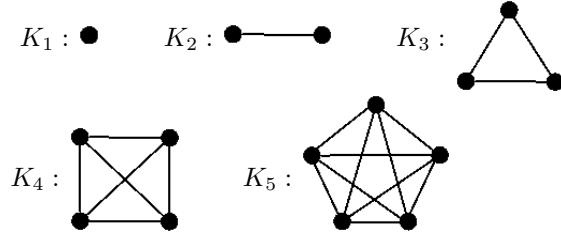
Example 1.13. The graph



has order 7 and size 8.

Definition 1.14. The complete graph of order n , denoted K_n , is the graph with n vertices such that every pair of distinct vertices is joined by an edge.

Example 1.15.



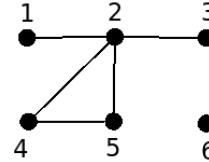
Proposition 1.16. The size of K_n is $\frac{n(n-1)}{2}$.

Proof. An edge in K_n is given by any 2 different vertices. The number of ways of picking 2 different vertices among n is $\binom{n}{2} = \frac{n(n-1)}{2}$. \square

Definition 1.17. 1. If p, q are two vertices of a graph and $e = \{p, q\}$ is an edge of the graph, we say that p is adjacent to q (and of course q is adjacent to p), and that e is incident with p and with q .

2. If v is a vertex of a graph G , the degree of v , denoted $d(v)$, is the number of edges incident with v .

Example 1.18. The graph



has $d(1) = 1$, $d(2) = 4$, $d(3) = 1$, $d(4) = 2$, $d(5) = 2$, $d(6) = 0$.

Proposition 1.19. If G is a graph of order n and v is a vertex of G , then $0 \leq d(v) \leq n - 1$.

Proof. Obvious. □

Definition 1.20. Let G be a graph of order n and let d_1, \dots, d_n be the degrees of the vertices of G , in non-decreasing order ($d_1 \leq d_2 \leq \dots \leq d_n$). The sequence d_1, \dots, d_n is called the degree sequence of G .

Proposition 1.21 (Degree sum formula, a.k.a. the handshaking lemma). Let d_1, \dots, d_n be the degree sequence of a graph $G = (V, E)$ of order n . Then

$$\sum_{i=1}^n d_i = 2|E|.$$

Proof. If rs is an edge in G , it contributes 1 to $d(r)$ and 1 to $d(s)$. Thus each edge contributes 2 to the sum $\sum_{i=1}^n d_i$, so $\sum_{i=1}^n d_i = 2|E|$. □

Corollary 1.22. In any graph, the number of vertices of odd degree is even.

Proof. Let v_1, \dots, v_k be the vertices of odd degree and u_1, \dots, u_ℓ be the vertices of even degree. Then

$$d(v_1) + \dots + d(v_k) + \underbrace{d(u_1) + \dots + d(u_\ell)}_{\text{even}} = \underbrace{2|E|}_{\text{even}}.$$

Therefore $d(v_1) + \dots + d(v_k)$ is even. Since it is a sum of odd numbers, we must have that k is even. □

Example 1.23. There is no graph with degree sequence 1, 1, 1, 2, 4, 5, 6, 7, 7, 7.

Corollary 1.24. If G is a graph of order $n > 1$ then G has at least two vertices of the same degree.

Proof. Suppose not. Then the degree sequence of G is such that

$$0 \leq d_1 < d_2 < \dots < d_n \leq n - 1.$$

The only possibility is $d_1 = 0$, $d_2 = 1, \dots, d_n = n - 1$. Since $d_1 = 0$ there is a vertex adjacent to no other vertex. Since $d_n = n - 1$, there is a vertex adjacent to every other vertex. Contradiction. □

Definition 1.25. Let $G = (V, E)$ be a graph.

1. A graph $G' = (V', E')$ is called a subgraph of G if $V' \subseteq V$ and $E' \subseteq E$. We write $G' \subseteq G$.
2. If G' is a subgraph of G , we denote by $G \setminus G'$ (G without G') the graph obtained from G by removing all the vertices from G' and all the edges adjacent to at least one vertex of G' .

Definition 1.26. Let G be a graph. A walk in G is an alternating sequence of vertices and edges in G :

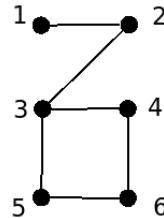
$$W = v_0, e_1, v_1, e_2, \dots, v_{\ell-1}, e_\ell, v_\ell$$

where e_i is the edge $v_{i-1}v_i$ for $i = 1, \dots, \ell$.

The length of the walk W is ℓ , the number of edges in W . We write for short $W = v_0v_1 \dots v_\ell$ (since there is only one edge between v_{i-1} and v_i).

A closed walk is a walk with $v_0 = v_\ell$.

Example 1.27.

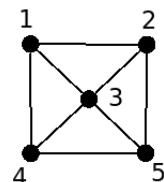


1 2 3 4 3 5 6 is a walk in G .

Definition 1.28. 1. A trail is a walk in which no edge is repeated (but a vertex could be repeated).

2. A path is a walk with no repeated vertices. A path is always a trail since to repeat an edge you must repeat at least one vertex.
3. A circuit is a trail $v_0v_1 \dots v_\ell$ where $v_0 = v_\ell$ (and $\ell \geq 3$ because it is a trail).
4. A cycle is a walk $v_0v_1 \dots v_\ell$ with $\ell \geq 3$, $v_0 = v_\ell$ and $v_0, \dots, v_{\ell-1}$ are all different (so that no edge and no vertex is repeated; a cycle is a path that is also a circuit).

Example 1.29. In the graph



1 2 3 4 5 3 1 is a circuit, but 1 2 1 is not a circuit;

1 2 5 4 1 and 1 2 3 1 are cycles, but 1 2 3 4 5 3 1 is not a cycle.

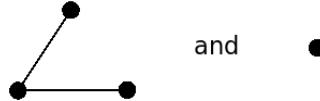
Proposition 1.30. *If K is a circuit, then K contains a cycle.*

Proof. Let L be a subgraph of K that is a circuit with the smallest possible number of edges (it could be K itself): $L = v_0v_1 \dots v_nv_0$. We show that v_0, \dots, v_ℓ are all different (i.e., the L is a cycle): If it were not the case, say $v_r = v_s$ for some $0 \leq r < s \leq n$ then $v_rv_{r+1} \dots v_s$ would be a circuit in K with less edges than L , contradiction. \square

Definition 1.31. *Let x and y be vertices in a graph G , with $x \neq y$. We say that x and y are connected if and only if there exists a path (equivalently, a walk, cf. Proposition 1.33) in G of the form $xv_1 \dots v_n y$ (connecting x and y).*

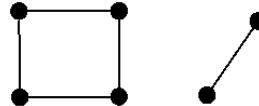
A graph G is called connected if every pair of vertices x, y in G with $x \neq y$ is connected, or if G has only one vertex.

Example 1.32.



are connected graphs.

The graph



is not connected.

Proposition 1.33. *Let x, y be distinct vertices in a graph G . If there exists a walk in G from x to y , then there exists a path in G from x to y .*

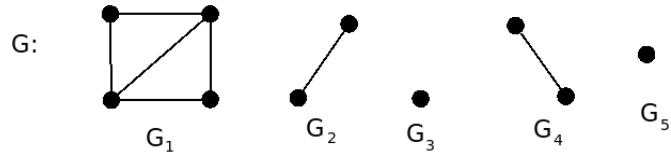
Proof. Take W a walk from x to y of minimal length (i.e., with minimal number of edges): $W = (x = v_0)v_1v_2 \dots v_n(y = v_{n+1})$.

We check that W is a path: If not then we have $v_r = v_s$ for some $0 \leq r < s \leq n+1$. If we remove the section $v_sv_{s+1} \dots v_{r-1}$ from W we get $v_0 \dots v_{s-1}(v_r = v_s)v_{r+1} \dots v_{n+1}$, which is also a walk from x to y , but is shorter than W , a contradiction. \square

Proposition 1.34. *Let $G = (V, E)$ be a graph. There exist $k \in \mathbb{N}$ and subgraphs G_1, \dots, G_k of G such that*

1. *G is the union of G_1, \dots, G_k , i.e., if $G_i = (V_i, E_i)$ then $V = V_1 \cup \dots \cup V_k$ and $E = E_1 \cup \dots \cup E_k$.*
2. *Each G_i is connected.*
3. *For every $i \neq j$, G_i and G_j have no vertex in common.*

Example 1.35.



Proof. By induction on n , the order of G :

- $n = 1$. Then G has only one vertex and is thus connected.
- If $n > 1$ (we assume that the result has been checked for graphs of order $< n$).

Let v be a vertex of G and let

$$V_1 = \{x \mid x \text{ vertex of } G, x \text{ connected to } v\} \cup \{v\},$$

$$E_1 = \text{the set of all edges } xy \text{ of } G \text{ with } x, y \in V_1.$$

Let $G_1 = (V_1, E_1)$. G_1 is a graph and is connected: If $x, y \in V_1$, then there are paths from x to y (and thus at least a walk from x to y).

If $G_1 = G$ the proof is finished

If $G_1 \neq G$, let G' be the graph obtained from G by removing every edge and every vertex from G_1 (i.e. $G' = G \setminus G_1$ in the terminology of definition 1.38).

Then $G = G_1 \cup G'$, G_1 and G' have no common vertex, and G' has order less than n . By induction we have $G' = G_2 \cup \dots \cup G_n$ where the G_i are connected and have no vertices in common. Therefore $G = G_1 \cup G_2 \cup \dots \cup G_n$ where the G_i are connected and have no vertices in common.

□

The graph G_i in the proof is a maximal connected subgraph of G , i.e., a connected subgraph that is not contained in a larger connected subgraph.

Definition 1.36. A maximal connected subgraph of G is called a component of G .

So each graph is the disjoint union of its components (see the previous example).

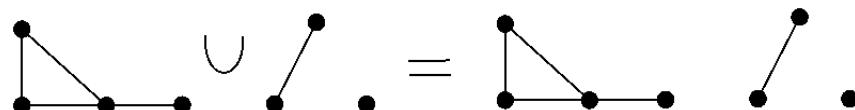
Definition 1.37. We denote by $\omega(G)$ the number of components of G .

Definition 1.38. Some operations with graphs:

1. The union: If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ then

$$G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2).$$

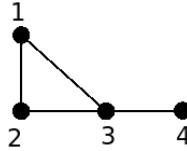
For instance:



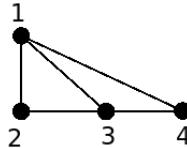
Adding edges: If E_2 is a set of new edges in G_1 , we define

$$G_1 \cup E_2 = (V_1, E_1 \cup E_2).$$

For instance, if G_1 is



and $E_2 = \{14\}$, then $G \cup E_2$ is

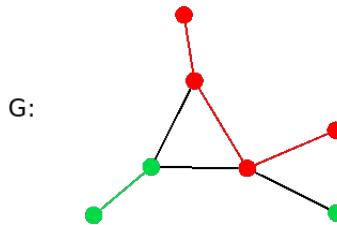


2. The difference: Let $H = (V_H, E_H)$ be a subgraph of G . Then

$$G \setminus H = (V', E'), \text{ where}$$

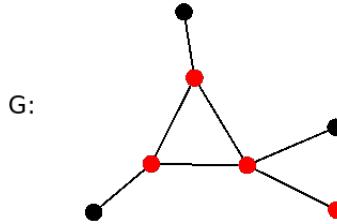
$V' = V \setminus V_H$ and $E' = E$ from which we remove all the edges that have at least one end in V_H .

For instance, if H is the red subgraph, then $G \setminus H$ is the green subgraph:

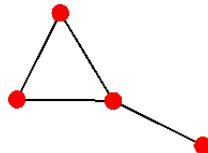


3. Induced subgraph (restriction): Let $G = (V, E)$, and let $V' \subseteq V$ be a subset of vertices of G . Then $G[V'] = (V', E')$ where E' is the set of all edges of E that have both ends in V' .

For instance, if V' is the red set of vertices:

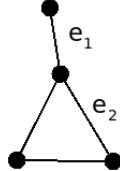


then $G[V']$ is



4. *Removing edges:* Let $G = (V, E)$ and let E' be a subset of E . Then $G \setminus E' = (V, E \setminus E')$.

For instance, if G is

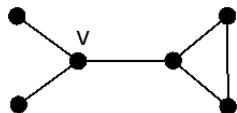


then $G \setminus \{e_1, e_2\}$ is

Definition 1.39. Let $G = (V, E)$ be a graph.

1. A vertex $v \in V$ is called a *cut-vertex* if $\omega(G \setminus \{v\}) > \omega(G)$.

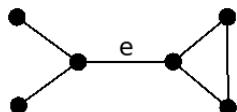
For instance, if G is



then $\omega(G) = 1$, but $\omega(G \setminus \{v\}) = 3$:

2. An edge $e \in E$ is called a *bridge* (also *cut-edge*) if $\omega(G \setminus \{e\}) > \omega(G)$.

For instance, if G is



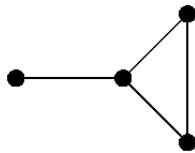
then $\omega(G) = 1$, but $\omega(G \setminus \{e\}) = 2$:

Chapter 2

Graphic sequences, adjacency matrix

Definition 2.1. A sequence of integers (d_1, \dots, d_n) is called graphic if it is the degree sequence of a graph.

Example 2.2. 1. $(1, 2, 2, 3)$ is graphic:



2. $(1, 1, 1, 2, 2, 3, 4, 5)$ is not graphic (there would be an odd number of vertices of odd degree, see corollary 1.22).
3. $(2, 3, 3, 4, 5, 6, 7)$ is not graphic (the graph would have 7 vertices and one of them would have degree 7, which is impossible).

Problem: Given a sequence (d_1, \dots, d_n) of elements of \mathbb{N} , determine whether or not it is graphic. Clearly, if we have $d_i \geq n$ for some i , then the sequence is not graphic (having a vertex with degree equal at least to the number of vertices would require self-loops or parallel edges). The other case is answered by this result:

Theorem 2.3 (Havel (1955)- Hakimi (1962)). Let $d = (d_1, \dots, d_n)$ be a sequence of elements of $\mathbb{N} \cup \{0\}$ such that $d_1 \leq d_2 \leq \dots \leq d_n < n$. Construct

$$d' = \left(\underbrace{d_1, d_2, \dots, d_{n-d_n}}_{\substack{n-d_n-1 \text{ elements} \\ \text{can be empty} \\ (\text{if } d_n = n-1)}}, \underbrace{d_{n-d_n}-1, \dots, d_{n-1}-1}_{d_n \text{ elements}} \right)$$

Then d is graphic if and only if d' is graphic (after being re-ordered to be in non-decreasing order, if necessary).

Example 2.4. 1.

$$(0, 1, 1, 1, 2) \xrightarrow{\text{apply Thm. 2.3}} (0, 1, 0, 0) \xrightarrow{\text{make it non-decreasing}} (0, 0, 0, 1)$$

$$\xrightarrow{\text{apply Thm. 2.3}} (0, 0, -1) \text{ not graphic}$$

2.

$$(1, 1, 2, 2, 2, 4) \xrightarrow{\text{apply Thm. 2.3}} (1, 0, 1, 1, 1) \xrightarrow{\text{make it non-decreasing}} (0, 1, 1, 1, 1)$$

$$\xrightarrow{\text{apply Thm. 2.3}} (0, 1, 1, 0) \xrightarrow{\text{make it non-decreasing}} (0, 0, 1, 1) \rightarrow (0, 0, 0) \text{ graphic:}$$

Remark 2.5. The sequence $(0, 0, \dots, 0)$ is always graphic:

(a graph with no edges).

Consequently: Applying the transformation from theorem 2.3. we can always reduce to either

- A sequence of zeros (which is graphic, so the starting sequence is graphic)

or

- A sequence containing negative numbers (which is not graphic, so the starting sequence is not graphic).

Proof. (of theorem 2.3)

- We first show that d' graphic implies d graphic:

By hypothesis d' is the degree sequence of some graph $G' = (V', E')$, and

$$d' = (d_1, d_2, \dots, d_{n-d_n} - 1, \dots, d_{n-1} - 1).$$

If we denote the coefficients of d' above by d'_1, \dots, d'_{n-1} , we have $d'_i = d(v_i)$ where $V' = \{v_1, \dots, v_{n-1}\}$.

To get $G = (V, E)$ out of G' we add one vertex: $V = V' \cup \{v_n\}$ and we add edges from v_n to $v_{n-d_n}, \dots, v_{n-1}$:

$$E = E' \cup \{v_n v_{n-d_n}, \dots, v_n v_{n-1}\}.$$

Then the degree sequence of G is d .

- We now show that d graphic implies d' graphic:

We write

$$d = (d_1, \dots, d_{n-d_n}, \dots, d_{n-1}, d_n),$$

where $d_i = d(v_i)$ and $V = \{v_1, \dots, v_n\}$. We consider two cases

Case 1: If v_n is adjacent to $v_{n-d_n}, \dots, v_{n-1}$. Then we remove v_n and all the edges $v_n v_{n-d_n}, \dots, v_n v_{n-1}$. The resulting graph has degree sequence d' .

Case 2: If v_n is not adjacent to all of $v_{n-d_n}, \dots, v_{n-1}$.

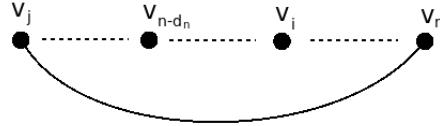
Consider the following Fact

Fact: We can modify the edges in the graph G to obtain a graph with the same degree sequence d , but where the amount of neighbours of v_n among $v_{n-d_n}, \dots, v_{n-1}$ is increased by 1

Applying this Fact several times, we will be back to case 1, from which we can conclude. So we only have to justify why this fact is true:

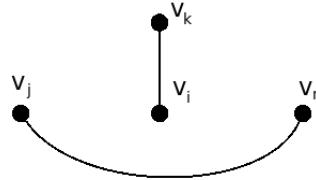
Let $i \in \{n - d_n, \dots, n - 1\}$ be the least integer such that v_n is not a neighbour of v_i .

Since $d(v_n) = d_n$, v_n is adjacent to some v_j with $j < n - d_n$:

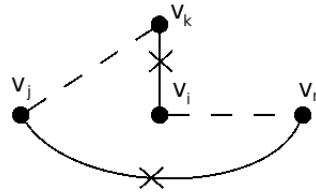


If $d(v_j) = d(v_i)$, we simply relabel the vertices and swap v_i and v_j (the degree sequence is unchanged).

If $d(v_j) < d(v_i)$: There is a vertex v_k adjacent to v_i but not to v_j (and $v_k \neq v_n$ because v_n is adjacent to v_j):



In this case we remove the edges $v_j v_n$ and $v_i v_k$, then add the edges $v_j v_k$ and $v_i v_n$:



Doing this preserves the degree of all vertices, so the degree sequence is unchanged, but now v_n has one more neighbour in $v_{n-d_n}, \dots, v_{n-1}$ (namely v_i). \square

The proof of theorem 2.3 is an algorithm. We saw in the previous remark that if a sequence is graphic, repeated applications of theorem 2.3 will give the sequence $(0, \dots, 0)$, corresponding to the graph

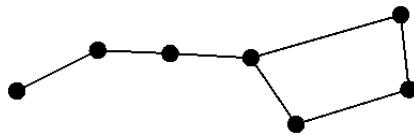
Using the part “ d' graphic $\Rightarrow d$ graphic” of the proof of theorem 2.3 (the easy part), and starting from the graph

we can construct a graph with degree sequence d .

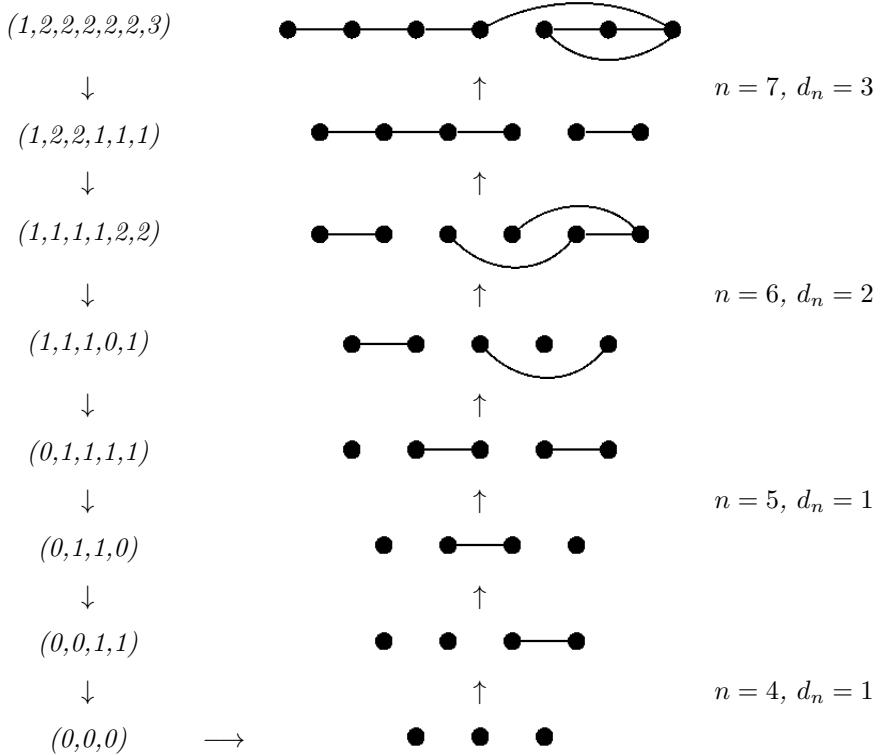
Example 2.6. 1.



2. *Ursa major*:



Its degree sequence is $(1, 2, 2, 2, 2, 2, 3)$. We know it is graphic, but we still apply the above algorithm:



The result we obtained here does not look like Ursa Major. Conclusion:
There can be different graphs with the same degree sequence.

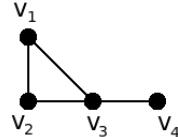
Definition 2.7. Let $G = (V, E)$ be any graph (graph, multigraph, pseudograph, directed graph). Consider any labelling $V = \{v_1, \dots, v_n\}$ of the vertices of G . The adjacency matrix of G (with respect to this labelling) is

$$A = (a_{ij})_{i,j=1,\dots,n},$$

where

$a_{ij} =$ the number of edges in G starting at v_i and ending at v_j .

Example 2.8. 1.



$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

2.



$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

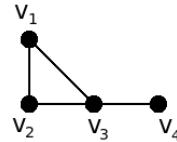
Some properties of A (depending on the type of graph):

- “normal” graph: $a_{ij} \in \{0, 1\}$.
- no self-loops: $a_{ii} = 0$.
- undirected: $a_{ij} = a_{ji}$, i.e., $A = A^t$.

Proposition 2.9. Let $A^k = \underbrace{A \cdot A \cdots \cdot A}_{k \text{ times}} = (a_{ij}^{(k)})_{i,j=1,\dots,n}$. Then

$a_{ij}^{(k)}$ = the number of walks of length k from v_i to v_j .

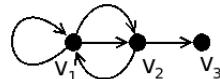
Example 2.10. 1.



$$A^2 = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 3 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}.$$

There are 2 walks of length 2 from v_1 to v_1 , and one walk of length 2 from v_2 to v_3 .

2.



$$A^2 = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

There are 3 walks of length 2 from v_1 to v_1 , there are 2 walks of length 2 from v_1 to v_3 .

Proof. (of theorem 2.9) By induction on k .

- $k = 1$. It is clear by definition of A :

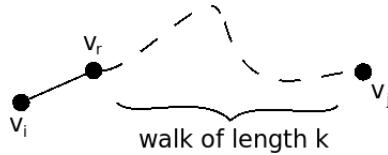
$$\begin{aligned} a_{ij}^{(1)} = a_{ij} &= \text{the number of edges from } v_i \text{ to } v_j \\ &= \text{the number of walks of length 1 from } v_i \text{ to } v_j \end{aligned}$$

- We assume that the statement is true for k and prove it for $k + 1$. We have $A^{k+1} = A \cdot A^k$, so

$$a_{ij}^{(k+1)} = \sum_{r=1}^n a_{ir}^{(1)} a_{rj}^{(k)}.$$

Every walk of length $k + 1$ from v_i to v_j is of the form:

- an edge from v_i to some v_r , followed by
- a walk of length k from v_r to v_j .



The number $a_{ir}^{(1)} a_{rj}^{(k)}$ is the number of walks of length $k + 1$ from v_i to v_j that have $v_i v_r$ as first step (indeed: $a_{ir}^{(1)}$ is the number of different edges from v_i to v_r , and $a_{rj}^{(k)}$ is the number of different walks of length k from v_r to v_j).

Therefore $\sum_{r=1}^n a_{ir}^{(1)} a_{rj}^{(k)}$ is the number of all possible walks of length $k + 1$ from v_i to v_j .

□

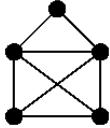
Chapter 3

Eulerian graphs

Definition 3.1. Let G be a connected multigraph.

1. A walk in G is called an Euler trail if it traverses every edge of G exactly once.
2. An Euler circuit in G is a closed Euler trail (i.e., an Euler trail with the same first and last vertex).
3. G is Eulerian if it admits an Euler circuit.

Example 3.2.



Has an Euler trail (exercise). It has even more than just one.

Theorem 3.3 (Euler 1736). A connected multigraph is Eulerian if and only if every vertex has even degree.

Proof. Let G be the graph.

“ \Rightarrow ” We assume that G is Eulerian. Let C be an Euler circuit in G . In traversing C , every time we “enter” a vertex by an edge, we “leave” it by another edge, so this contributes 2 to the degree of the vertex (it is also true for the first and last edges: they contribute 2 to the degree of the starting vertex)

Since all the edges are in C and G is connected, every vertex appears in C , and every edge. So each vertex has even degree.

“ \Leftarrow ” We assume that every vertex has even degree. Let $W = v_0 e_0 v_1 \dots e_{k-1} v_k$ be a longest walk in G with no repeated edge (but vertices can be repeated). We will show that W is an Euler circuit. We first consider v_k more closely:

1. Every edge adjacent to v_k appears in W : Because otherwise we could use an edge $v_k v_{k+1}$ not in W to a walk longer than W , a contradiction.
2. $v_k = v_0$ (so W is a closed walk):

$$v_0 \underbrace{e_0 v_1 e_1 v_2 \dots v_{k-1} e_{k-1}}_{\text{we look at this part of } W} v_k$$

Since every edge adjacent to v_k appears in W exactly once, to determine $d(v_k)$ it suffices to count the edges adjacent to v_k as they appear along W .

- For each $i \in \{1, \dots, k-1\}$ such that $v_i = v_k$ (the “inner” vertices of W equal to v_k), the number $d(v_k)$ increases by 2 (one for the “arriving” vertex, one for the “leaving” vertex).
- The final part of W : e_{k-1} increases $d(v_k)$ by one.

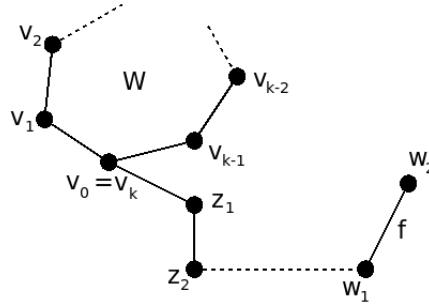
This will give an odd number (which is impossible by assumption), unless v_0e_0 contributes to $v(v_k)$, i.e., $v_0 = v_k$.

Suppose now that W is not an Euler circuit. Then:

Fact: G has an edge e outside of W but incident with some vertex v_i of W (so $e = uv_i$).

Proof of the fact: Since W is not an Euler circuit, there is an edge $f = w_1w_2$ in G that is not in W . Since G is connected, there is a path C from v_k to w_1 :

$$C = v_k f_1 z_1 f_2 z_2 \dots z_\ell f_{\ell+1} w_1.$$



By the observation above we know that f_1 is in W . We take for e the first edge in C that is not in W , if it exists. If it does not exist we take $e = f$. End of the proof of the fact.

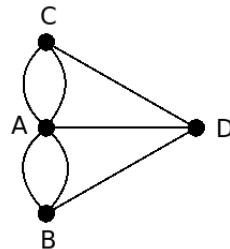
Then the walk

$$uev_i e_i \dots e_{k-1} v_k e_0 v_1 \dots e_{i-1} v_i$$

has no repeated edges and is longer than W , a contradiction. \square

Answer to the Königsberg bridge problem:

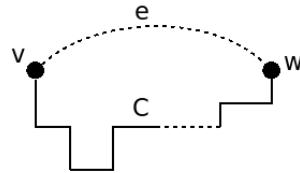
The problem is represented by the graph



with $d(A) = 5$, $d(B) = 3$, $d(C) = 3$, $d(D) = 3$, so there is no Euler circuit.

Corollary 3.4. *A connected multigraph G has an Euler trail that is not an Euler circuit if and only if it has exactly two vertices of odd degree.*

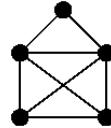
Proof. “ \Rightarrow ” Let C be an Euler trail in G , starting at v and ending at w . We add a new edge e joining v and w , and let $G' = G \cup \{e\}$.



We then have an Euler circuit in G' and, by theorem 3.3, all vertices in G' have even degree. Therefore all vertices in G have even degree, except v and w , which have odd degree.

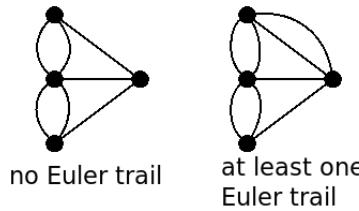
“ \Leftarrow ” Let v and w be the two vertices of G with odd degree. We add a new edge e between v and w and get the graph $G' = G \cup \{e\}$. In G' all vertices have even degree, so by theorem 3.3 there is an Euler circuit C in G' . Removing e from C gives an Euler trail in G . \square

Example 3.5. 1.



has an Euler trail.

2. Adding one bridge in Königsberg will make an Euler trail possible:



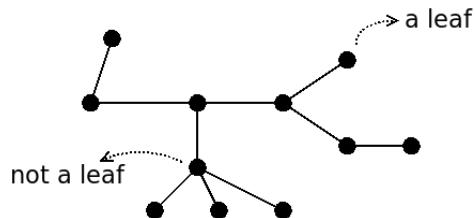
Chapter 4

Trees

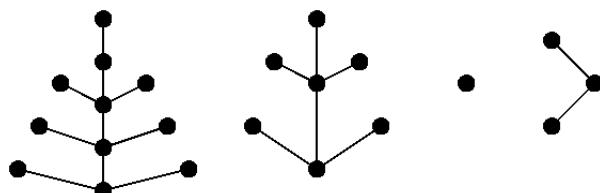
Definition 4.1. 1. A connected graph with no cycles is called a tree (terminology: “with no cycles” = acyclic).

2. A graph with no cycles is called a forest (because it is the union of its components, which are connected graphs with no cycles, i.e., trees).
3. The vertices of degree 1 in a tree are called leaves.

Example 4.2. *A tree:*

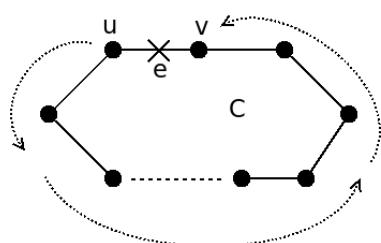


A forest:



Lemma 4.3. *Let G be a connected graph which contains a cycle C . Let e be an edge in C . Then $G \setminus \{e\}$ is connected.*

Proof. Sketch of the proof:



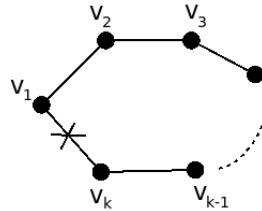
In any path, going from u to v via $e = uv$ can be replaced by going around the “other side” of the cycle. \square

Theorem 4.4. *Let G be a graph of order n . Then the following are equivalent.*

1. G is a tree.
2. G is connected and, whenever e is an edge in G , $G \setminus \{e\}$ is not connected.
3. G contains no cycle and, whenever x and y are non-adjacent vertices of G , $G \cup \{xy\}$ contains exactly one cycle.
4. G is connected and has $n - 1$ edges.
5. G contains no cycle and has $n - 1$ edges.
6. Whenever x and y are vertices in G , there is exactly one path from x to y in G .

Proof. 1. \Rightarrow 2. Let $e = xy$ be an edge of G with x, y vertices. Suppose that $G \setminus \{e\}$ is connected, and let $xv_1 \dots v_k y$ be a path in G from x to y . Then $xv_1 \dots v_k yx$ is a cycle in G , contradiction.

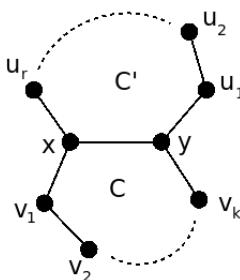
2. \Rightarrow 1. We have to show that G contains no cycle. Suppose that $v_1 v_2 \dots v_k v_1$ is a cycle in G .



Then $G \setminus \{v_1 v_k\}$ is connected (by lemma 4.3), contradiction.

2. \Rightarrow 3. We assume 2. (and thus 1., since 1. \Leftrightarrow 2.) Let x, y be non-adjacent vertices in G . Since G is connected we have a path $xv_1 \dots v_k y$ from x to y in G . Thus $xv_1 \dots v_k yx$ is a cycle in $G \cup \{xy\}$. We have to show that it is the only cycle:

Suppose we have another cycle C' in $G \cup \{xy\}$. Since G contains no cycle, C' must contain the edge xy . We write C' starting from y : $yu_1 \dots u_r xy$, so

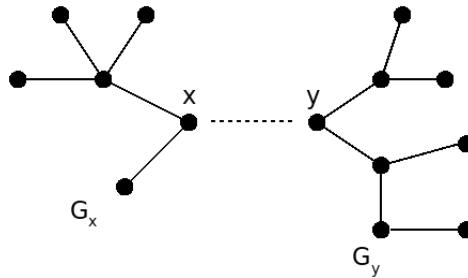


Then $D = xv_1 \dots v_k yu_1 \dots u_r x$ is a path from x to x in G with at least 2 different edges (since $C \neq C'$). Then D contains a cycle (same idea as the proof of proposition 1.30, exercise), contradicting hypothesis 1.

3. \Rightarrow 1. We know that G contains no cycle so we only need to check that G is connected. Let x, y be two different vertices in G . If x and y are adjacent, then there is a path from x to y . If x and y are not adjacent, by hypothesis there is a cycle in $G \cup \{xy\}$. The “other side” of the cycle gives a path in G from x to y .

1. \Rightarrow 4. We proceed by induction on n the number of vertices of G .

- $n = 1$. Then G has no edges (only one vertex).
- $n > 1$ and assume that the result holds for graphs with less than n vertices.
Let xy be an edge in G



The graph $G \setminus \{xy\}$ is not connected (by property 2).

Let G_x be the component of $G \setminus \{xy\}$ containing x , and G_y the component of $G \setminus \{xy\}$ containing y . Since G contains no cycle and is connected, we can check (exercise) that G_x and G_y have no vertices in common and are the only components of $G \setminus \{xy\}$.

So $G = G_x \cup G_y \cup \{xy\}$ and both G_x and G_y are connected without cycles (i.e., are trees). Let n_x be the order of G_x and n_y be the order of G_y . We have $n = n_x + n_y$ and thus $n_x, n_y < n$, so by induction hypothesis, the number of edges in G_x is $n_x - 1$ and the number of edges in G_y is $n_y - 1$. So the number of edges in G is

$$(n_x - 1) + (n_y - 1) + \underbrace{1}_{\text{for } xy} = n_x + n_y + 1 = n - 1.$$

4. \Rightarrow 1. We will do it after Proposition 4.9 (and we will not use it before).

1. \Rightarrow 5 Obvious with 4.

5. \Rightarrow 1. We have to show that G is connected. Suppose not and let G_1, \dots, G_k be the components of G ($k \geq 2$), of respective orders n_1, \dots, n_k . Each G_i is a tree (connected graph with no cycle), so has $n_i - 1$ edges. Therefore G has $(n_1 - 1) + \dots + (n_k - 1) = n - k$ edges, contradiction to the hypothesis. (since $k \geq 2$).

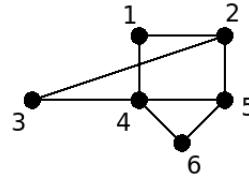
1. \Rightarrow 6. Outline: Since G is connected, there is at least one path between any two vertices. If there were 2 distinct paths there would be a circuit and then a cycle, contradiction.

6. \Rightarrow 1. The graph G is connected. It also has no cycles, since otherwise there would be two different paths between 2 vertices, a contradiction. \square

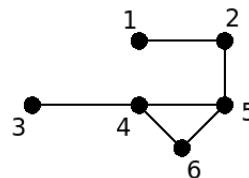
Definition 4.5. Let $G = (V, E)$ be a graph, and let $H = (V', E')$ be a subgraph of G . If $V = V'$ we say that H is a spanning subgraph of G .

If T is a spanning subgraph of G and is also a tree, we call T a spanning tree of G (it can only exist if G is connected)

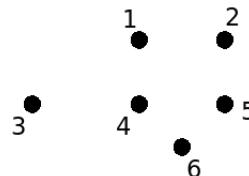
Example 4.6. Let G be



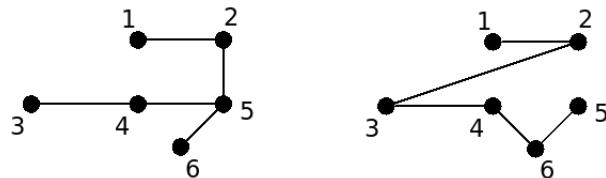
then



is a spanning subgraph, and so is



These are examples of two spanning trees of G :



Trees appear naturally to solve the following kind of problem:

Water is to be supplied by pipelines to n villages, such that the pipelines only meet at villages. What is the least length of pipeline necessary to connect all villages?

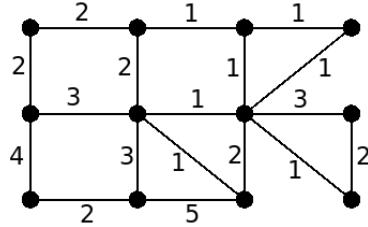
To solve this we need

Definition 4.7. A weighted graph is a graph such that every edge has a positive number, its weight, attached to it.

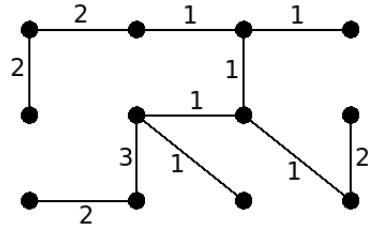
The weight of a graph is the sum of the weights of all its edges.

In the case of the problem above, the weight of the edge between 2 villages is the length of pipeline necessary to connect them. The problem then amounts to finding a connected subgraph of minimum weight.

Example 4.8. Let G be the (weighted) graph



A minimum weight connected spanning subgraph is



It has weight 17 and it is also a tree. There is in general more than one minimum spanning graph (here for instance, you can try to find others).

Proposition 4.9. Let G be a connected weighted graph, and let M be a least weight connected spanning subgraph in G . Then M is a tree.

Proof. M is connected by definition, so we just want to show that M does not contain any cycle. If M contains a cycle C and e is an edge in C , then $M \setminus \{e\}$ is a connected subgraph of G of weight less than the weight of M , a contradiction. \square

Proof of 4. \Rightarrow 1. from Theorem 4.4. Let T be a spanning tree of G (take any minimum weight spanning subgraph of G). Then T has $n - 1$ edges by 1. \Rightarrow 4. Since G has also $n - 1$ edges, we must have $G = T$, so G is a tree. \square

To find a least weight spanning tree in a connected weighted graph, the use the following:

Kruskal's algorithm (1956)

Let $G = (V, E)$ be a weighted connected graph of order n . The algorithm proceeds as follows.

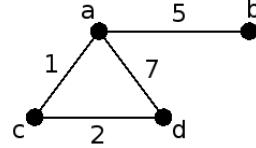
Step 1 Choose an edge e_1 of G such that $w(e_1)$ is as small as possible.

Step 2 If the edges e_1, \dots, e_k have already been chosen, choose $e_{k+1} \in E \setminus \{e_1, \dots, e_k\}$ such that

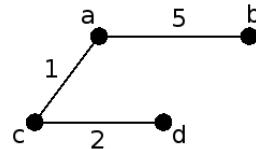
- (i) $\{e_1, \dots, e_k, e_{k+1}\}$ does not contain a cycle (i.e., e_{k+1} does not form a cycle with other edges from $\{e_1, \dots, e_k\}$).
- (ii) $w(e_{k+1})$ is as small as possible subject to (i).

Step 3 Repeat Step 2 until it is impossible to do so.

Example 4.10. 1. We apply the algorithm to the graph

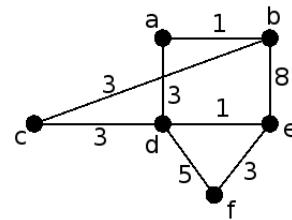


Step 1: ac , Step 2: ac, cd , Step 2: ac, cd, ab , we stop. The result is

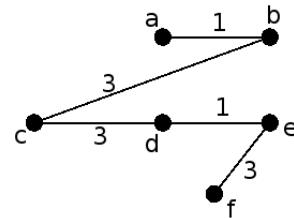


and has weight 8.

2. We apply the algorithm to the graph



Step 1: ab , Step 2: ab, de , Step 2: ab, de, ef , Step 2: ab, de, ef, cb , Step 2: ab, de, ef, cb, cd we stop. The result is



and has weight 15.

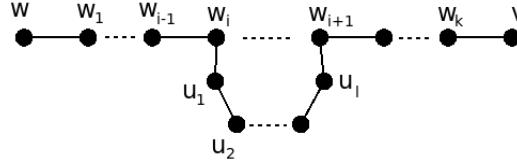
Theorem 4.11. This algorithm produces a minimal weight spanning tree.

Lemma 4.12. Let $G = (V, E)$ be a connected graph and let $H = (V', E')$ be an acyclic subgraph of G with as many edges as possible. Then H is a spanning tree of G .

Proof. We first show that H is a spanning subgraph of G , i.e., that $V' = V$. Suppose there is $v \in V$ such that $v \notin V'$. Let $w \in H$. Since G is connected there is a path $P = \underbrace{w_0 w_1 \dots w_k}_{=w} \underbrace{w_{k+1} \dots w_v}_{=v}$ in G from w to v .

We take such a path with the minimum number of edges outside E' . Since $v \notin V'$, the edge $w_k v$ is not in E' .

Let w_iw_{i+1} be the first edge not in H . So $w_{i-1}w_i \in E'$ and thus $w_i \in V'$. If $w_{i+1} \notin H$ we can add the edge w_iw_{i+1} to H (it will not create a cycle), contradicting the definition of H . So $w_{i+1} \in H$, and we cannot add w_iw_{i+1} to H , i.e., $H \cup \{w_iw_{i+1}\}$ contains a cycle $C = w_{i+1}w_iu_1 \dots u_\ell w_{i+1}$



Therefore $ww_1 \dots w_iu_1 \dots u_\ell w_{i+1} \dots w_k v$ is a path in G from w to v with less edges not in E' than P , contradiction.

We now show that H is a tree. We know that H is acyclic, so we only have to show that H is connected. Let H_1, \dots, H_t be the components of H (they are trees), and assume $t \geq 2$.

Since G is connected and H contains all vertices of G , there is an edge $e \in E \setminus E'$ such that e connects H_1 and H_i for some $i > 1$ (take a vertex x in H_1 , y a vertex in H_2 and a path P in G from x to y . Take for e the first edge not in H_1).

Then we can add e to H without creating a cycle (if it created a cycle, the “other side” of the cycle could connect H_1 and H_i in H , impossible), contradicting the definition of H . \square

Proof of Theorem 4.11. Let H be the graph produced by the algorithm. By lemma 4.12 it is a spanning tree.

Let e_1, \dots, e_{n-1} be the edges of H (where n is the number of vertices of G , i.e., of H), in the order in which they are added by the algorithm.

If T is a different spanning tree of G , there is an edge of H that is not in T : Otherwise T would have more edges than H , which is impossible (they are both trees with n vertices).

We denote by $f(T)$ the smallest i such that e_i is not in T .

Assume now that H is not a minimal weight spanning tree and let T be a minimal weight spanning tree with $f(T)$ as large as possible. Let $k = f(T)$, i.e., e_1, \dots, e_{k-1} are in H and T , but e_k is not in T . By theorem 4.4, $T \cup \{e_k\}$ contains a unique cycle C . Let e'_k be an edge in C that is in T but not in H (there is such an edge: if every edge of T that is in C (=all edges of C , except e_k) were in H , we would have C in H (since $e_k \in H$), contradiction).

Since C is a cycle, $T' = (T \cup \{e_k\}) \setminus \{e'_k\}$ is connected and has $n-1$ edges. So by theorem 4.4 T' is another spanning tree of G . Clearly:

$$w(T') = w(T) + w(e_k) - w(e'_k).$$

In Kruskal’s algorithm, e_k was chosen with the smallest weight such that $\{e_1, \dots, e_k\}$ is acyclic. Since $\{e_1, \dots, e_{k-1}, e'_k\}$ is a subgraph of T , it is also acyclic, so we must have $w(e'_k) \geq w(e_k)$. Therefore $w(T') \leq w(T)$ and T' is a minimal weight spanning tree. However:

$$\underbrace{f(T')}_{\text{since } e_1, \dots, e_k \text{ are in } T'} > k = f(T),$$

contradicting the choice of T . \square

Chapter 5

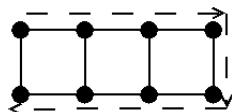
Hamiltonian graphs

Definition 5.1. A Hamiltonian path in G is a path that contains every vertex of G exactly once.

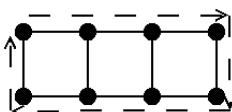
A Hamiltonian cycle is a closed Hamiltonian path.

A graph which contains a Hamiltonian cycle is called a Hamiltonian graph.

Example 5.2. 1. A Hamiltonian path:

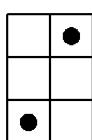


2. A Hamiltonian cycle:

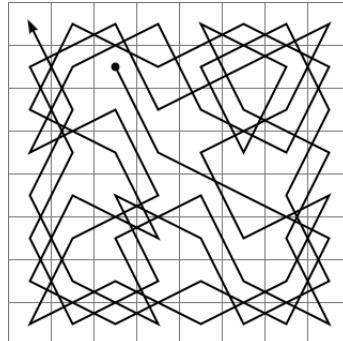
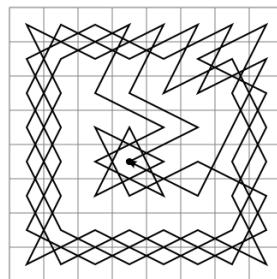


3. On a chessboard, can a knight visit every square exactly once and finish at its starting point?

Recall that a knight move is:



The answer is yes:



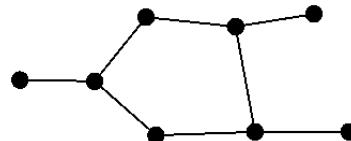
In terms of graph theory: Let $G = (V, E)$ where V is the set of all squares of the chessboard, and there is an edge between two vertices if we can go from one to the other by a knight move.

A solution to this problem is a Hamiltonian cycle. Observe that there are several different solutions to this problem.

4. It is related to the traveling salesman problem: A salesman wants to visit some cities exactly once and go back to his starting point. What is the path with minimum distance? (mathematically formulated by Hamilton)

On a weighted graph, it means finding a Hamilton cycle of minimum weight.

5.



This graph is not Hamiltonian: It has vertices of degree 1 and a vertex of degree 1 cannot be in a cycle. So for a graph to be Hamiltonian we need each vertex to have degree at least 2. But it is not enough (we will see graphs like this that are not Hamiltonian).

6. A circuit is a Hamiltonian graph (obviously).

7. The complete graph K_n for $n \geq 3$ is Hamiltonian:

- Enumerate the vertices from 1 to n (in any way).
- Start at the first one, go to the second, then the third, \dots , then the n th one, then go back to the first. It can be done since any two different vertex are always connected.

Theorem 5.3. Let $G = (V, E)$ be a Hamiltonian graph. Then for any subset S of V with $S \neq \emptyset$ and $S \neq V$, we have

$$\omega(G \setminus S) \leq |S|.$$

(Recall that $\omega(G \setminus S)$ denotes the number of components of $G \setminus S$.)

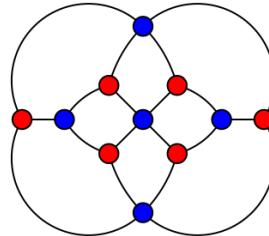
Proof. Let $n = |V|$ and let G_1, \dots, G_k be the components of $G \setminus S$. Let $C = v_1 v_2 \dots v_n v_1$ be any Hamiltonian cycle in G , labelled such that $v_1 \in G_1$.

Let $i \in \{1, \dots, k\}$ and consider the component G_i . Since every vertex of G appears in C , and at least one element of C is not in G_i (for instance an element of S), we can define u_i to be the last element of C that belongs to G_i . Let s_i be the vertex after u_i in C .

Then $s_i \notin G_i$, which implies $s_i \in S$ (otherwise $s_i \in G \setminus S$, the edge $u_i s_i$ is in $G \setminus S$, so s_i is connected to u_i and thus belongs to G_i , a contradiction).

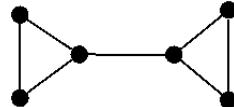
So each component G_i of $G \setminus S$ defines an element $s_i \in S$, and $s_i \neq s_j$ if $i \neq j$ (if $s_i = s_j$ for $i \neq j$ then $u_i = u_j \in G_i \cap G_j$, impossible). The map $\{1, \dots, k\} \rightarrow S$, $i \mapsto s_i$ is thus injective, proving that $k \leq |S|$. \square

Example 5.4. The Herschel graph:



is not Hamiltonian: If we take for S the set of blue vertices, then $G \setminus S$ is so $\omega(G \setminus S) = 6 > |S| = 5$.

Exercise 5.5. Show that this graph is not Hamiltonian:



Theorem 5.6 (Bondy, Chvátal, 1972). Let G be a graph of order n and let u, v be any non-adjacent vertices of G such that $d(u) + d(v) \geq n$. Then G is Hamiltonian if and only if $G \cup \{uv\}$ is Hamiltonian.

Proof. “ \Rightarrow ” Let C be a Hamilton cycle in G . Then C is also a Hamilton cycle in $G \cup \{uv\}$.

“ \Leftarrow ” Suppose that G is not Hamiltonian. Then any Hamilton cycle in $G \cup \{uv\}$ must include the edge uv (otherwise it would be a Hamilton cycle in G).

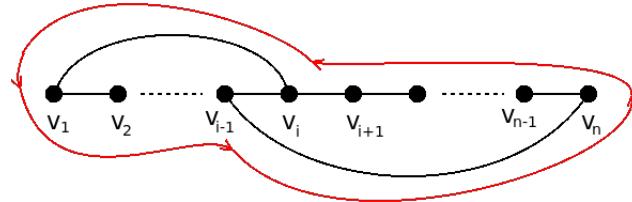
Removing the edge uv , we get a path from u to v in G that contains every vertex exactly once (a Hamiltonian path). Let

$$\underbrace{v_1 v_2 \dots v_{n-1}}_{=u} \underbrace{v_n}_{=v}$$

be this path.

If v_1 is adjacent to v_i , then v_n cannot be adjacent to v_{i-1} , because otherwise

$$v_1 v_2 \dots v_{i-1} v_n v_{n-1} \dots v_{i+1} v_i v_1$$



would be a Hamilton cycle in G , a contradiction. So whenever v_1 is adjacent to v_i , v_n is not adjacent to v_{i-1} .

Therefore, if $k = d(v_1)$ there are k vertices to which v_1 is adjacent and k vertices to which v_n is not adjacent. So $d(v_n) \leq n - 1 - k$. But then

$$d(u) + d(v) = d(v_1) + d(v_n) \leq k + n - 1 - k = n - 1 < n,$$

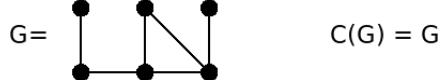
contradicting the hypothesis. \square

Conclusion: Whenever we find two vertices u, v such that $d(u) + d(v) \geq n$, we can add the edge uv and the answer to the question “is the graph Hamiltonian?” stays the same. We can keep doing this until we cannot add any new such edge:

Definition 5.7. Let G be a graph of order n . The closure of G is the graph $c(G)$ obtained by successively joining pairs of non-adjacent vertices u, v such that $d(u) + d(v) \geq n$ (degree computed in the latest graph obtained), until it is no longer possible to do so.

Example 5.8. 1.

2.



We must show that $c(G)$ does not depend on the order in which the edges are added to G (otherwise we could have several possible $c(G)$ for a given graph G).

Lemma 5.9. $c(G)$ does not depend on the order in which we add the vertices.

Proof. Suppose G_1, G_2 are obtained from G as described in Definition 5.7. We show that $G_1 = G_2$. They have the same vertices, so we have to show that they have the same edges.

Let e_1, \dots, e_r and f_1, \dots, f_s be the sequences of edges added to G to obtain G_1 , respectively G_2 . We show that all e_i are edges of G_2 and all f_i are edges of G_1 :

Suppose that some edge in e_1, \dots, e_r is not in G_2 and let $e_{k_1} = uv$ be the first such edge. Let $H = G \cup \{e_1, \dots, e_k\}$. Since $e_{k+1} = uv$ is added next, we have $d_H(u) + d_H(v) \geq n$ (where d_H is the degree computed in H). But H is a subgraph of G_2 since e_1, \dots, e_k appear in G_2 , so $d_{G_2}(u) + d_{G_2}(v) \geq n$, and we will thus join u and v at some point in the construction of G_2 , contradiction.

Therefore e_1, \dots, e_r are all in G_2 . Similarly f_1, \dots, f_s are all in G_1 . \square

Corollary 5.10. *G is Hamiltonian if and only if $c(G)$ is Hamiltonian.*

(This is clear by Theorem 5.6.)

Corollary 5.11. *Let G be a graph of order $n \geq 3$ such that $c(G) = K_n$. Then G is Hamiltonian.*

Corollary 5.12 (Ore's theorem, 1963). *Let G be a graph of order $n \geq 3$ such that the sum of the degrees of every pair of non-adjacent vertices is at least n . Then G is Hamiltonian.*

Proof. In this case we have $c(G) = K_n$. \square

Corollary 5.13 (Dirac's theorem, 1952). *Let G be a graph of order $n \geq 3$. If the degree of every vertex is at least $n/2$ then G is Hamiltonian.*

This leads to a more general sufficient condition for a graph to be Hamiltonian:

Theorem 5.14 (Chvátal, 1972). *Let $G = (V, E)$ be a connected graph of order $n \geq 3$ and degree sequence $d_1 \leq d_2 \leq \dots \leq d_n$ such that for every k with $1 \leq k < n/2$ at least one of the following is true:*

$$(i) \ d_k > k \quad (ii) \ d_{n-k} \geq n - k.$$

Then G is Hamiltonian.

Proof. We show that $c(K) = K_n$: Suppose that $c(G) \neq K_n$. if w is a vertex in G , we denote by $d'(w)$ the degree of w in $c(G)$. Let $d'_1 \leq d'_2 \leq \dots \leq d'_n$ be the degree sequence of $c(G)$. Note that $d(w) \leq d'(w)$ and $d_i \leq d'_i$.

Let $u, v \in V$ be non-adjacent in $c(G)$, and choose them such that

$$d'(u) + d'(v) \text{ is as large as possible.} \quad (5.1)$$

Choose the labels u, v such that $d''(u) \leq d''(v)$. Note that

$$d'(u) + d'(v) < n, \quad (5.2)$$

otherwise u and v would be connected in $c(G)$. Thus $2d''(u) \leq d'(u) + d'(v) < n$ and $d''(u) < n/2$.

Let $k = d'(u)$. Since G is connected, $k \geq 1$, so

$$1 \leq k < n/2. \quad (5.3)$$

We show that k does not satisfy conditions (i) and (ii), thus reaching a contradiction:

For any vertex x , let $N(x)$ be the set of vertices different from x that are not adjacent to x in $c(G)$. Then

$$|N(x)| = n - d'(x) - 1. \quad (5.4)$$

Let $w \in N(v)$. Then $d'(w) \leq d'(u)$ (otherwise $d'(w) + d'(v) > d'(u) + d'(v)$, contradicting (5.1)). Similarly, if $x \in N(u)$ we have $d'(x) \leq d'(v)$, so for every $x \in N(u) \cup \{u\}$ we have

$$d'(x) \leq d'(v) \quad (5.5)$$

(recall that $d'(u) \leq d'(v)$).

By (5.2) we have $d'(u) < n - d'(v)$, so $d'(u) \leq n - d'(v) - 1 = |N(v)|$ i.e., $k \leq |N(v)|$, we have at least k vertices in $N(v)$.

Consider now a vertex $w \in N(v)$. We know that $d'(w) \leq d'(u) = k$, so we have at least k vertices in $c(G)$ with degree at most k , and thus in the degree sequence of $c(G)$ at least d'_1, \dots, d'_k are at most k . In particular

$$d_k \leq d'_k \leq k. \quad (5.6)$$

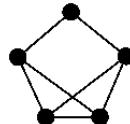
Using (5.3) with (5.6) we get $d_k < n/2$, so condition (i) is not true.

With (5.2) we obtain $d'(v) < n - d'(u) = n - k$, and by (5.5) $d'(x) < n - k$ for every $x \in N(u) \cup \{u\}$.

$$\begin{aligned} |N(u) \cup \{u\}| &= |N(u)| + 1 \\ &= (n - 1 - d'(u)) + 1 \quad \text{by (5.4)} \\ &= n - d'(u) = n - k. \end{aligned}$$

Therefore we have at least $n - k$ vertices of degree less than $n - k$ in $c(G)$, so at least $d'_1, d'_2, \dots, d'_{n-k}$ are less than $n - k$. In particular $d_{n-k} \leq d'_{n-k} < n - k$, so condition (ii) is also not satisfied. \square

Example 5.15. 1.



$n = 5$, degree sequence $2, 3, 3, 3, 3$. Since $n = 2$ we need to consider $k = 1, 2$.

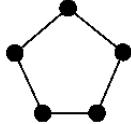
$$d_1 = 2 > 1, \quad \text{and } d_2 = 3 \geq 2,$$

so this graph is Hamiltonian by Chvátal's theorem.

In this case we could also use Ore's theorem or simply check that $c(G) = K_5$.

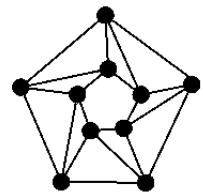
See exercise sheets for a graph where Chvátal's theorem works, but not Ore's.

2. It is possible for a graph to be Hamiltonian without satisfying Chvatal's condition:

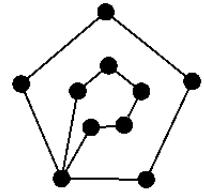


G is clearly Hamiltonian, with degree sequence $2, 2, 2, 2, 2$ and $n = 5$. So $1 \leq k < n/2$ means $k = 1, 2$. We have $d_1 = 2 > 1$, but $d_2 = 2 \not> 2$ and $d_{5-2} = d_3 = 2 \not\geq 3$.

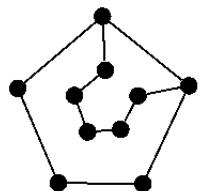
We have seen two notions of “traversability”: Edgewise (Eulerian graphs) and vertexwise (Hamiltonian graphs). It is easy to check if a graph is Eulerian, harder to check if it is Hamiltonian. And there is no obvious link between these two notions:



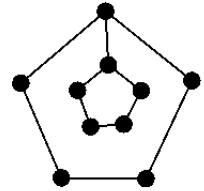
Eulerian and Hamiltonian



Eulerian, not Hamiltonian



Hamiltonian, not Eulerian

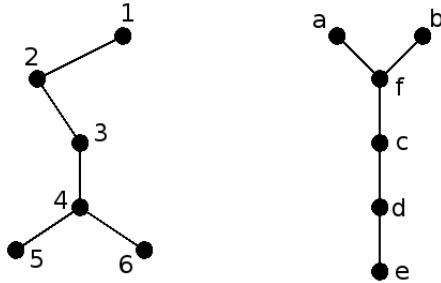


Neither

Chapter 6

Graph isomorphisms

We already used this concept without defining it formally. The graphs



are “the same”.

Definition 6.1. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs. We say that G_1 is isomorphic to G_2 if and only if there is a bijection $f : V_1 \rightarrow V_2$ such that, for every $u, v \in V_1$:

$$uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2.$$

We write $G_1 \cong G_2$ and say that f is an isomorphism from G_1 to G_2 (or between G_1 and G_2).

In the example above, the map f could be:

$$5 \mapsto a, 6 \mapsto b, 4 \mapsto f, 3 \mapsto c, 2 \mapsto d, 1 \mapsto e$$

(there may be more than one such map f).

Remark 6.2. In case of a multigraph (where there can be parallel edges) an isomorphism f from G_1 to G_2 is given by two bijections: $f_v : V_1 \rightarrow V_2$ and $f_e : E_1 \rightarrow E_2$ such that, for every $u, v \in V_1$ and $e \in E_1$:

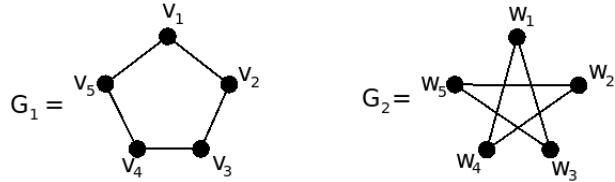
$$e \text{ is an edge between } u \text{ and } v \Leftrightarrow f_e(e) \text{ is an edge between } f_v(u) \text{ and } f_v(v).$$

Remark 6.3. 1. Isomorphic graphs have:

- The same order;
- The same size;
- The same degree sequence (it follows from the definition that $d(u) = d(f(u))$);
- etc.

2. In fact, if $G_1 \cong G_2$, every graph-theoretic property of G_1 can be “translated” into the corresponding property of G_2 , using f .
3. If f is an isomorphism from G_1 to G_2 , then f^{-1} is an isomorphism from G_2 to G_1 .

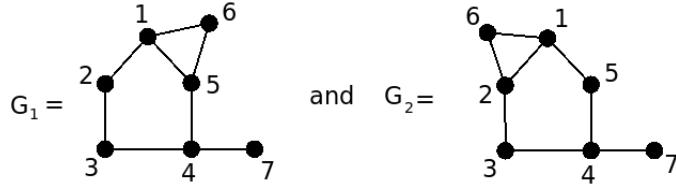
Example 6.4. 1.



Here $G_1 \cong G_2$. A possible isomorphism is

$$f(v_1) = w_1, f(v_2) = w_3, f(v_3) = w_5, f(v_4) = w_2, f(v_5) = w_4.$$

2. The graphs



are not isomorphic: Suppose for the sake of contradiction that they are, and let f be the isomorphism. Since $d(u) = d(f(u))$ we must have $d(f(1)) = d(1) = 3$, $d(f(2)) = d(2) = 2$, $d(f(3)) = 2$, $d(f(4)) = 3$, $d(f(5)) = 3$, $d(f(6)) = 2$, $d(f(7)) = 1$. Since 7 is the only vertex of degree 1 in G_2 , we must have $f(7) = 7$. 47 is an edge in G_1 , so $f(4)f(7) = f(4)7$ is an edge in G_2 . So $f(4) = 4$.

5 is adjacent to 4, so $f(5)$ is adjacent to $f(4) = 4$, so $f(5) = 5$ or $f(5) = 3$. But $d_{G_1}(5) = 3$ and $d_{G_2}(5) = 2$, $d_{G_2}(3) = 2$, so we cannot have $f(5) = 5$ or $f(5) = 3$. So G_1 and G_2 are not isomorphic.

3. In general, the question of checking if two graphs are isomorphic is very difficult.

Chapter 7

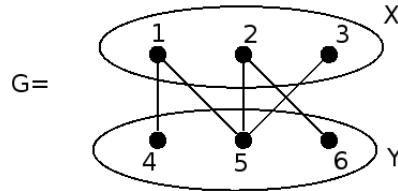
Bipartite graphs

Definition 7.1. A graph $G = (V, E)$ is bipartite if the following hold

1. $V = X \cup Y$ for some sets X, Y with $X \cap Y = \emptyset$;
2. For every edge uv in E , one of u, v is in X and the other in Y .

The pair (X, Y) is called a bipartition of G .

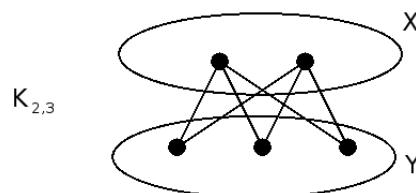
Example 7.2.



is bipartite with $X = \{1, 2, 3\}$ and $Y = \{4, 5, 6\}$.

Definition 7.3. If X and Y are two disjoint sets such that X has r elements and Y has s elements, the complete bipartite graph $K_{r,s}$ is the graph with set of vertices $X \cup Y$ and set of edges $\{uv \mid u \in X, v \in Y\}$.

Example 7.4.



Definition 7.5. A cycle C in a graph is called an odd cycle if C has an odd number of edges.

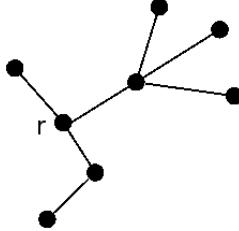
Theorem 7.6. A graph is bipartite if and only if it contains no odd cycles.

To obtain a simple proof of this theorem, we require a little bit more knowledge about trees.

Recall that if T is a tree and x, y are vertices in T , there is a unique path in T from x to y . We denote this path by xTy .

It is sometimes convenient to single out a vertex in a tree T . Such a vertex is then called the root of T (it can be any vertex). A tree T with a fixed root r is called a rooted tree.

Example 7.7.



(We can take any vertex as a root.)

Proof of Theorem 7.6. “ \Rightarrow ” If $C = u_1 \dots u_r$ (with $u_r = u_1$) is an odd cycle, then u_{r-1} and u_1 must be both in X or both in Y , impossible.

“ \Leftarrow ” A graph is bipartite if and only if its components are bipartite, so we can assume that G is connected. The result is clear if G has only 2 vertices, so we will assume that G has at least 3 vertices.

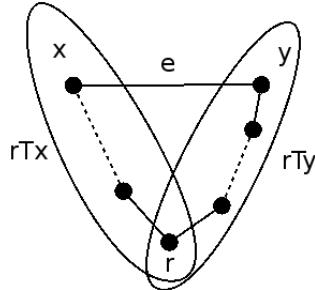
Let T be a spanning tree of G , and pick a root r of T . For $v \in V$ the path rTv has odd or even length. We define

$$X = \{v \in V \mid rTv \text{ has odd length}\},$$

$$Y = \{v \in V \mid rTv \text{ has even length}\}.$$

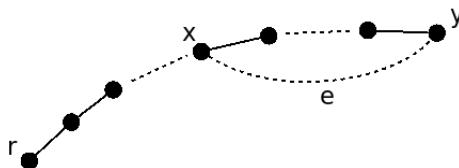
We check that (X, Y) is a bipartition of G : Let $e = xy$ be an edge in G . We consider two cases

1) $e \in T$: Observe that $x \in rTy$ or $y \in rTx$ (otherwise



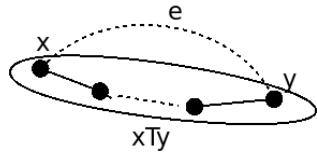
and we obtain a cycle in T , contradiction).

We assume $x \in rTy$ (the other case is similar).



Since $e = xy$ is an edge in T , we must have $rTy = rTxy$ (otherwise we get a cycle in T). So one of x, y is in X and the other in Y .

2) $e \notin T$. Then $xTy \cup \{e\}$ is a cycle:



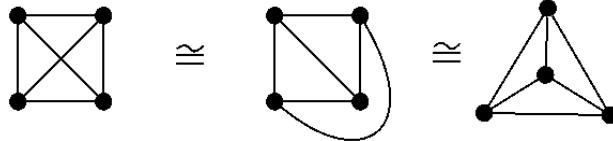
The edges in xTy are all in T so, by case 1, the vertices in xTy alternate between X and Y . Since $xTy \cup \{e\}$ is even by hypothesis, we get that xTy has odd length, and thus that x and y cannot be both in X or both in Y . \square

Chapter 8

Planar graphs

Definition 8.1. A graph is called planar if it can be drawn in the plane so that edges intersect only at vertices to which they are incident.

Example 8.2. Different representations of K_4 :

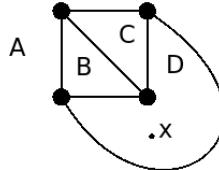


Definition 8.3 (Continued). Such a representation of G without edge crossings is called a planar representation (or planar embedding) of G .

Definition 8.4. A planar representation of G divides the plane into regions called faces:

Let x be a point in the plane. The face of G (more precisely: of this planar representation of G) containing x is the set of points of the plane that can be reached from x by a curve that does not contain a vertex or a point from an edge.

Example 8.5.



This planar representation of K_4 divides the plane into 4 faces: A , B , C and D . The face containing x is D .

The faces depend on the particular plane representation, not only on the graph.

Each plane representation partitions the plane into finitely many faces. Exactly one is infinite in size, we call it the exterior face. The other faces are called interior faces.

Do two different plane representations give the same number of faces? (Yes, Euler, see theorem 8.13.)

We denote by $F(G)$ the set of faces of a given planar representation of G (we will make the slight abuse of notation of still calling it G).

Definition 8.6. Let G be a graph. An edge e of G is called a cut-edge if $\omega(G \setminus \{e\}) > \omega(G)$.

(Recall that $\omega(G)$ is the number of components of G .)

Proposition 8.7. An edge e of G is a cut edge if and only if e is not contained in any cycles of G .

Sketch of the proof: Let K be the component of G containing $e = uv$.

“ \Rightarrow ” Then $\omega(K \setminus \{e\}) > 1$. If e is in a cycle in K , then $K \setminus \{e\}$ is still connected, contradiction.

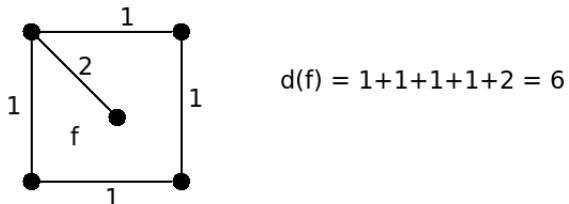
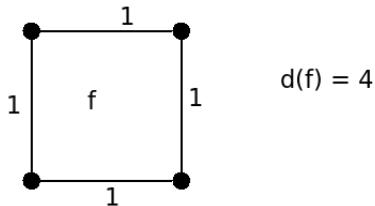
“ \Leftarrow ” If e is not a cut-edge $\omega(K \setminus \{e\}) = 1$, so $K \setminus \{e\}$ is connected. Let $uw_1 \dots w_k v$ be a path in $K \setminus \{e\}$. Then $uw_1 \dots w_k vu$ is a cycle in K , contradiction. \square

We record the following reformulation of Theorem 4.4 1. \Leftrightarrow 2.

Proposition 8.8. A connected graph is a tree if and only if every edge is a cut edge.

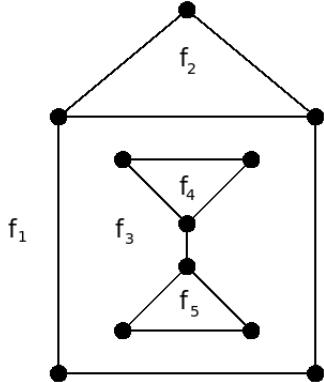
Definition 8.9. Let G be a plane representation of a planar graph. An edge e is called incident with a face f if e is part of the boundary of f .

Definition 8.10. The degree $d(f)$ of a face f is the number of edges incident with f , where each edge entirely inside f (called a pendant edge) is counted twice.



Why counted twice? Because we count the sides of the edge that are in contact with f (see the proof of Proposition 8.12), in case of a pendant edge, both sides of the edge in contact with f .

Example 8.11.



$$d(f_1) = 5, \quad d(f_2) = 3, \quad d(f_3) = 12, \quad d(f_4) = 3, \quad d(f_5) = 3.$$

Proposition 8.12. Let F be the set of faces of a planar graph $G = (V, E)$.

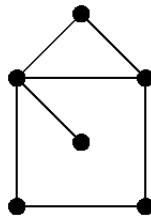
Then

$$\sum_{f \in F} d(f) = 2|E|.$$

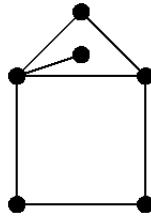
Proof. If an edge is between 2 faces, it is counted twice on the left-hand side (once for each face).

If a face is entirely inside a face f , it is counted twice in $d(f)$ by definition. \square

Observe that we can have different planar representations of the same graph, with different degree sequences of the face:



degree sequence of the faces: 5, 3, 6,

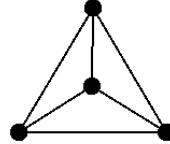


degree sequence of the faces: 5, 5, 4.

Theorem 8.13 (Euler's formula). Let $G = (V, E)$ be a connected planar graph, and consider a planar representation of G with set of faces F . Then

$$|V| - |E| + |F| = 2.$$

Example 8.14.



$$|V| - |E| + |F| = 4 - 6 + 4 = 2.$$

Proof of Theorem 8.13. By induction on $|E|$.

- If $|E| = 0$, then G is

$$\text{and } |V| - |E| + |F| = 1 + 1 = 2.$$

- If $|E| = 1$, then G is

$$\text{and } |V| - |E| + |F| = 2 - 1 + 1 = 2.$$

- If $|E| > 1$. We consider two cases.

Case 1: If G is a tree. Then $|E| = |V| - 1$ and $|F| = 1$ since a tree has only one face (we admit this: a tree has only the exterior face since to have an interior face it would need to have a cycle). So $|V| - |E| + |F| = 2$.

Case 2: If G is not a tree. Then (since G is connected) G contains a cycle C . Let e be an edge in C . Since e is not a cut edge, $G \setminus \{e\}$ is connected, and has of course $|E| - 1$ edges.

Since e is on a cycle, it separates 2 faces (we admit this), so removing e merges these two faces, and thus $G \setminus \{e\}$ has $|F| - 1$ faces.

By induction on $|E|$, the result is true for the graph $G \setminus \{e\}$ i.e., $|V| - (|E| - 1) + (|F| + 1) = 2$ i.e., $|V| - |E| + |F| = 2$.

□

Corollary 8.15. Let $G = (V, E)$ be a planar graph with $|V| \geq 3$. Then $|E| \leq 3|V| - 6$.

(In other words: We cannot have “too many” edges compared to the number of vertices.)

Proof. We consider two cases.

Case 1: G is connected. The result is true if $|E| < 3$ (since $3 \leq 3 \cdot 3 - 6$), so we assume $|E| \geq 3$.

Let F be the set of faces of a planar embedding of G . For any $f \in F$, $d(f) \geq 3$ (if f is an interior face it has at least 3 edges in its boundary, since parallel edges are not allowed; if f is the exterior face and $d(f) = 2$ then G is

contradicting that $|E| \geq 3$).

So $\sum_{f \in F} d(f) \geq 3 \cdot |F|$. But we know that $\sum_{f \in F} = 2|E|$, so $2|E| \geq 3|F|$ i.e., $|F| \leq \frac{2}{3}|E|$. Using now Euler’s formula, we obtain

$$2 = |V| - |E| + |F| \leq |V| - |E| + \frac{2}{3}|E| = |V| - \frac{1}{3}|E|.$$

Therefore $|E| \leq 3|V| - 6$.

Case 2: If G is not connected. Write $G = G_1 \cup \dots \cup G_k$, where the G_i are the components of G . Connect the components by adding $k - 1$ new edges while still keeping the graph planar (for instance: arrange the components around a circle, and connect G_1 to G_2 , G_2 to G_3 , etc). The resulting graph is connected and has $|E| + (k - 1)$ edges. By the previous case $|E| + k - 1 \leq 3|V| - 6$ and the result follows. \square

Corollary 8.16. *Let $G = (V, E)$ be a planar graph. Then some vertex of G has degree at most 5.*

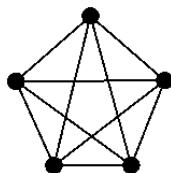
Proof. Let $n = |V|$. If $n = 1$ or $n = 2$ the result is clear, so assume $n \geq 3$. Let d be the smallest degree of any vertex in G . We have $E \leq 3n - 6$ and

$$nd \leq \sum_{v \in V} d(v) = 2|E| \leq 2(3n - 6),$$

i.e., $nd \leq 6n - 12$ so $d \leq 6 - \frac{12}{n}$ and thus $d \leq 5$. \square

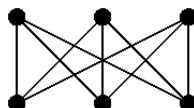
Corollary 8.17. *The graph K_5 is not planar.*

Recall that K_5 is



Lemma 8.18. *The graph $K_{3,3}$ is not planar.*

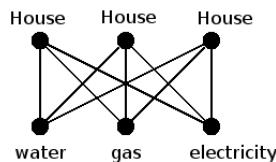
Recall that $K_{3,3}$ is



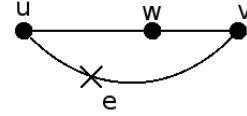
Proof. Suppose it is and consider a planar representation of $K_{3,3}$. Since $K_{3,3}$ is bipartite, it contains no odd cycles, so there are no cycles of length less than 4 (since a cycle of length less than 4 has length 3).

So $d(f) \geq 4$ for every face, and $2|E| = \sum_{f \in F} d(f) \geq 4 \cdot |F|$. Therefore $|E| \geq 2|F|$. Since $K_{3,3}$ has 9 edges we get $9 \geq 2 \cdot |F|$ i.e., $|F| \leq 4$. But $|V| - |E| + |F| = 2$ i.e., $6 - 9 + |F| = 2$, so $|F| = 5$, contradiction. \square

Example 8.19. *We want to provide gas, water and electricity to 3 houses. It cannot be done without crossing some of the lines, because it corresponds to the graph $K_{3,3}$:*

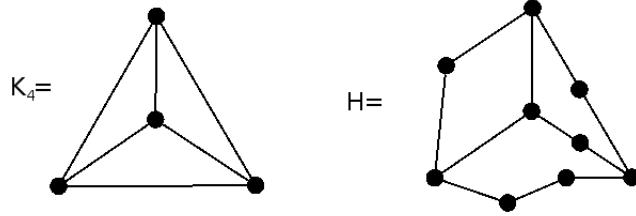


Definition 8.20. Let $G = (V, E)$ be a graph, and let $e = uv$ be an edge in G . We say that we *subdivide* the edge e when we delete it and replace it by a path uwv , where w is a new vertex (i.e., $w \notin V$):



We say that e has been subdivided. A subdivision of G is a graph that can be obtained from G by a sequence of subdivisions.

Example 8.21.



H is a subdivision of K_4 .

The next two lemmas are obvious.

Lemma 8.22. Let G be a graph. G is planar if and only if every subdivision of G is planar if and only if one of the subdivisions of G is planar.

Lemma 8.23. Let G be a graph. G is planar if and only if every subgraph of G is planar.

(Recall that G is a subgraph of G .)

Definition 8.24. Any subdivision of K_5 or of $K_{3,3}$ is called a Kuratowski graph. A K -subgraph is a subgraph that is a Kuratowski graph.

By Lemma 8.22, a Kuratowski graph is non-planar, and by Lemma 8.23, a graph with a K -subgraph is non-planar. The converse is also true:

Theorem 8.25 (Kuratowski, 1930). A graph is planar if and only if it does not contain a K -subgraph.

No proof (too long).

Chapter 9

Networks

Stuttgart 1968: A new road is built. Consequence: The traffic gets worse until the road is closed.

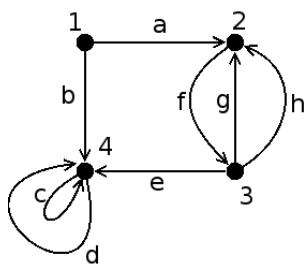
New York 1990: 42nd street is closed. Consequence: The traffic improves.
(Braess paradox)

We are not quite going to look into this, because it is also caused by drivers trying to maximise apparent immediate gain rather than thinking about longer-term consequences, but it illustrates why looking at how “things” can move in a network is interesting.

Definition 9.1. A directed pseudograph (DPG) is a triple (V, E, ψ) , where

- V is a non-empty set of points, called vertices.
- E is a set, disjoint from V , whose elements are called arcs.
- ψ is a map, called the incidence function, that associates to each arc in E an ordered pair of vertices of V (the vertices may be equal).

Example 9.2.



$$V = \{1, 2, 3, 4\}, E = \{a, b, c, d, e, f, g, h\}$$

$$\psi(a) = (1, 2), \psi(b) = (1, 4), \psi(c) = (4, 4), \psi(d) = (4, 4), \psi(e) = (3, 4), \psi(f) = (2, 3), \psi(g) = (3, 2), \psi(h) = (3, 2).$$

We cannot simply represent an arc by, for instance, $(3, 2)$, because there can be several such arcs. So we give them all a different name and use the incidence function to tell us from where to where they go.

Definition 9.3. Let $D = (V, E, \psi)$ be a DPG.

1. A directed walk W in D is a sequence $W = (v_0, a_1, v_1, a_2, \dots, a_k, v_k)$ with $v_i \in V$, $a_i \in E$, and such that $\psi(a_i) = (v_{i-1}, v_i)$ for $i = 1, \dots, k$.
We define similarly directed paths, cycles, etc.
2. A walk in D is a sequence $W = (v_0, a_1, v_1, a_2, \dots, a_k, v_k)$ with $v_i \in V$, $a_i \in E$, and such that for $i = 1, \dots, k$, $\psi(a_i) = (v_{i-1}, v_i)$ or $\psi(a_i) = (v_i, v_{i-1})$ (in this later case we say that a_i is a reverse arc of W).
We define similarly paths, cycles, etc.

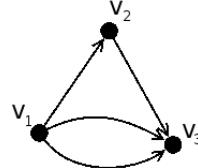
Example 9.4. Using the DPG from the previous example, $(1, b, 4, c, 4, d, 4, c, 4)$ is a directed path, and $(1, b, 4, c, 4, e, 3)$ is a path which is not a directed path (e is a reverse arc).

Definition 9.5. Let $D = (V, E, \psi)$ be a DPG. For $v \in V$ we define

$$\begin{aligned} d_+(v) &= \text{the in-degree of } v \\ &= \text{the number of arcs that end at } v \end{aligned}$$

$$\begin{aligned} d_-(v) &= \text{the out-degree of } v \\ &= \text{the number of arcs starting at } v \end{aligned}$$

Example 9.6.



$$d_+(v_1) = 0, d_-(v_1) = 3, d_+(v_2) = 1, d_-(v_2) = 1, d_+(v_3) = 3, d_-(v_3) = 0.$$

Proposition 9.7. Let $D = (E, V, \psi)$ be a DPG. Then

$$\sum_{v \in V} d_+(v) = \sum_{v \in V} d_-(v) = |E|.$$

Proof. Exercise, see Proposition 1.21. □

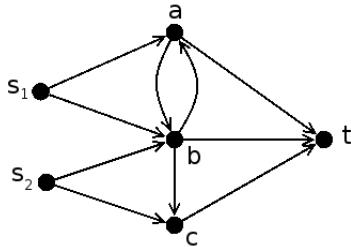
Definition 9.8. A network is a DPG (V, E, ψ) together with two non-empty subsets of V :

- S , called the source, such that $d_+(v) = 0$ for every $v \in S$;
- T , called the sink, such that $d_-(v) = 0$ for every $v \in T$.

The remaining vertices are called intermediate vertices.

(In networks, vertices are often called nodes.)

Example 9.9. $N = (E, V, \psi, S, T)$ is a network:

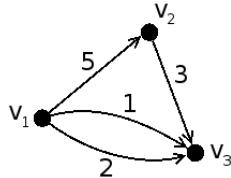


with $S = \{s_1, s_2\}$, $T = \{t\}$ and intermediate vertices a, b, c .

Intuitively: S gives the entrance points, and T the exit points of the network.

Definition 9.10. Let $D = (V, E, \psi)$ be a DPG. A capacity on D is a function $c : E \rightarrow \mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\}$.

Example 9.11.



Intuitively, the capacity represents how much can travel along an arc.

Definition 9.12. Let $N = (V, E, \psi, S, T)$ be a network and let c be a capacity on N . A flow on N is a function $f : E \rightarrow \mathbb{R}_+ \cup \{0\}$ such that

1. $0 \leq f(e) \leq c(e)$ for every $e \in E$.
2. For every intermediate vertex v , the in-flow:

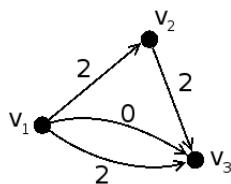
$$f_+(v) \stackrel{\text{def}}{=} \sum_{e \in E, \psi(e) = (u, v)} f(e)$$

is equal to the out-flow:

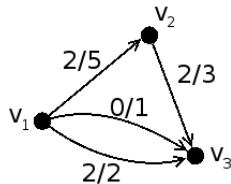
$$f_-(v) \stackrel{\text{def}}{=} \sum_{e \in E, \psi(e) = (v, u)} f(e)$$

(this is known as Kirchhoff's rule).

Example 9.13. With the capacity given by the previous example, this is a flow (where $S = \{v_1\}$ and $T = \{v_3\}$):



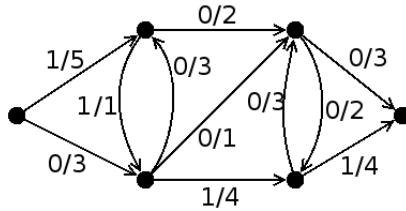
We often write



to indicate both the capacity and the flow at the same time on the drawing. (So, for instance, $2/5$ is not a fraction. It just means that the arc has capacity 5 and that the flow on it is 2.)

The flow represents what is actually circulating in the network.

A more complicated example:



Question: For a given network and capacity, what is the “largest” possible flow, and how to find it?

Examples of applications: Electric circuits, pipelines, transportation systems, etc.

Lemma 9.14. *Let f be a flow on a network $N = (V, E, \psi, S, T)$ with capacity c . Then*

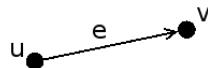
$$\underbrace{\sum_{s \in S} f_-(s)}_{\text{out-flow from the source}} = \underbrace{\sum_{t \in T} f_+(t)}_{\text{in-flow to the sink}}.$$

Proof. We have

$$\sum_{w \in V} (f_+(w) - f_-(w)) = \underbrace{\sum_{w \in I} (f_+(w) - f_-(w))}_{=0 \text{ by def of flow}} + \sum_{t \in T} f_+(t) - \sum_{s \in S} f_-(s).$$

So the result is true if we show that $\sum_{w \in V} (f_+(w) - f_-(w)) = 0$.

Consider an arc $e \in E$:



In the sum $\sum_{w \in V} (f_+(w) - f_-(w))$ the number $f(e)$ appears twice: Once as $f(e)$ in $f_+(v) - f_-(v)$, once as $-f(e)$ in $f_+(u) - f_-(u)$. Therefore $\sum_{w \in V} (f_+(w) - f_-(w)) = 0$. \square

Notation 9.15. *We define, for $A, B \subseteq V$:*

- $f(A, B) = \sum_{e \in E, e \text{ from } A \text{ to } B} f(e)$.
- $f_-(A) = f(A, V \setminus A)$ (what “leaves” A).
- $f_+(A) = f(V \setminus A, A)$ (what “enters” A).

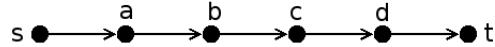
(The previous lemma says $f_-(S) = f_+(T)$.)

Lemma 9.16. *For any $A \subseteq V$:*

$$\sum_{v \in A} f_-(v) - f_+(v) = f_-(A) - f_+(A).$$

Proof. Exercise. □

Remark 9.17. In general, $\sum_{v \in A} f_-(v) \neq f_-(A)$ and $\sum_{v \in A} f_+(v) \neq f_+(A)$. Try it for instance on



for some sets A and some simple capacity and flow.

Definition 9.18. The value of a flow f is

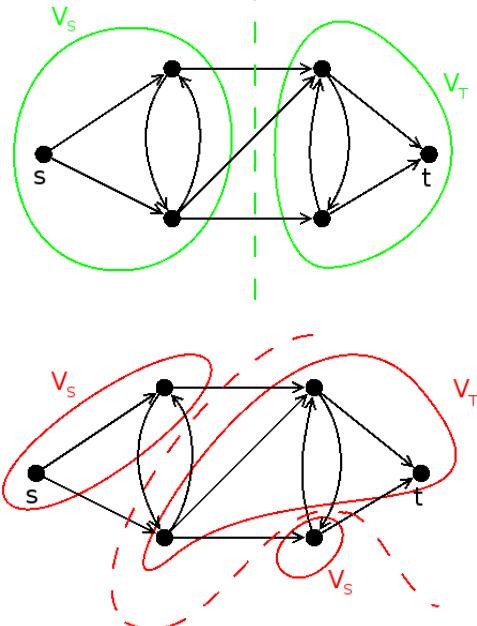
$$v(f) = f_-(S) = f_+(T).$$

Can we construct a flow with maximal possible $v(f)$?

Definition 9.19. A cut in a network $N = (V, E, \psi, S, T)$ is a pair (V_S, V_T) of subsets of V such that

1. $V = V_S \cup V_T$.
2. $V_S \cap V_T = \emptyset$ (so $V_S = V \setminus V_T$ and $V_T = V \setminus V_S$).
3. $S \subseteq V_S$.
4. $T \subseteq V_T$.

Example 9.20.



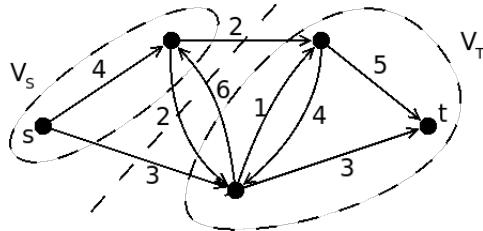
The green (V_S, V_T) and the red (V_S, V_T) are both cuts.

It is called a cut because it cuts N into two parts: one that contains S and the other that contains T .

Definition 9.21. *The capacity of a cut (V_S, V_T) is defined by*

$$c(V_S, V_T) = \sum_{e \in E, e \text{ from } V_S \text{ to } V_T} c(e).$$

Example 9.22.



Here $c(V_S, V_T) = 2 + 2 + 3 = 7$.

Lemma 9.23. *For any flow f and any cut (V_S, V_T) on N :*

$$v(f) = f_-(V_S) - f_+(V_S).$$

Proof. If $v \in V_S \setminus S (= I \cap V_S)$ we have $f_-(v) - f_+(v) = 0$ by definition of flow. So

$$\begin{aligned} f_-(V_S) - f_+(V_S) &= \sum_{v \in V_S} f_-(v) - f_+(v) \text{ by Lemma 9.16} \\ &= \sum_{v \in S} (f_-(v) - \underbrace{f_+(v)}_{=0 \text{ since } v \in S}) \\ &= f_-(S) \\ &= v(f) \end{aligned}$$

□

Notation 9.24. *We say that an arc $e \in E$ is*

- *f -zero if $f(e) = 0$;*
- *f -positive if $f(e) > 0$;*
- *f -saturated if $f(e) = c(e)$;*
- *f -unsaturated if $f(e) < c(e)$.*

Theorem 9.25. *For any flow f and any cut (V_S, V_T) on N :*

1. $v(f) \leq c(V_S, V_T)$;
2. $v(f) = c(V_S, V_T)$ if and only if each arc from V_S to V_T is f -saturated and each arc from V_T to V_S is f -zero.

Proof. 1. By Lemma 9.23 $v(f) = f_-(V_S) - f_+(V_S)$ where

$$\begin{aligned} f_-(V_S) &\stackrel{\text{def}}{=} f(V_S, V \setminus V_S) \\ &= f(V_S, V_T) \\ &= \sum_{e \in E, e \text{ from } V_S \text{ to } V_T} f(e) \\ &\leq \sum_{e \in E, e \text{ from } V_S \text{ to } V_T} c(e) \\ &= c(V_S, V_T). \end{aligned}$$

Since $f_+(V_S) \geq 0$ we obtain $v(f) \leq c(V_S, V_T)$.

2. To have $v(f) = c(V_S, V_T)$ we must have

- $f_-(V_S) = c(V_S, V_T)$, so every arc from V_S to V_T must be f -saturated.
- $f_+(V_S) = 0$, so every arc from V_T to V_S must be f -zero.

□

Definition 9.26. 1. A flow f on N is called a maximum flow if there is no flow f' on N such that $v(f') > v(f)$.

2. A cut (V_S, V_T) on N is called a minimum cut if there is no cut (V'_S, V'_T) on N such that $c(V'_S, V'_T) < c(V_S, V_T)$.

As a consequence of theorem 9.25, if f^* is a maximum flow and (V_S^*, V_T^*) is a minimum cut, then

$$v(f^*) \leq c(V_S^*, V_T^*).$$

Corollary 9.27. Let f be a flow and (V_S, V_T) be a cut such that $v(f) = c(V_S, V_T)$. Then f is a maximum flow and (V_S, V_T) is a minimum cut.

Proof. Let f^* be a maximum flow and (V_S^*, V_T^*) be a minimum cut. Then

$$v(f) \leq v(f^*) \leq c(V_S^*, V_T^*) \leq c(V_S, V_T),$$

and $v(f) = c(V_S, V_T)$ by hypothesis. Therefore

$$v(f) = v(f^*) \text{ and } c(V_S, V_T) = c(V_S^*, V_T^*).$$

□

Let f be a flow in a network N with capacity c , and let P be a path in N . For an arc a in P we define:

$$i(a) = \begin{cases} c(a) - f(a) & \text{if } a \text{ is a forward arc in } P \\ f(a) & \text{if } a \text{ is a reverse arc in } P \end{cases}$$

and

$$i(P) = \min_{a \in P} i(a).$$

Intuitively, the idea is that, in case $i(P) > 0$, we might be able to add $i(P)$ to f on the arcs in P , and thus get a new flow with higher value (cf. Theorem 9.252.).

We say that P is f -saturated if $i(P) = 0$ and f -unsaturated if $i(P) > 0$. An f -incrementing path is an f -unsaturated path from some $x \in S$ to some $y \in T$ that only contains x and y as elements of $S \cup T$.

Lemma 9.28. *Let P be an f -incrementing path and define*

$$\tilde{f} : E \rightarrow \mathbb{R}_+ \cup \{0\}, \quad \tilde{f}(a) = \begin{cases} f(a) + i(P) & \text{if } a \text{ is a forward arc of } P \\ f(a) - i(P) & \text{if } a \text{ is a reverse arc of } P \\ f(a) & \text{otherwise} \end{cases}$$

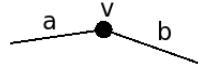
Then \tilde{f} is a flow and $v(\tilde{f}) = v(f) + i(P)$. The flow \tilde{f} is called the revised flow based on P .

Proof. (1) The condition $0 \leq \tilde{f}(a) \leq c(a)$ follows from the definition of i .

(2) The condition $\sum_{a \in E, \psi(a)=(u,v)} \tilde{f}(a) = \sum_{a \in E, \psi(a)=(v,u)} \tilde{f}(a)$ (for $v \in I$):

If v is not in P , this is the same as for f .

If v is in P : Since $v \in I$ and P goes from S to T , P “traverses” v :



We consider several cases, depending on the “direction” of a, b :

- a and b are forward arcs of P :

Then a adds $i(P)$ to the left hand side and b adds $i(P)$ to the right hand side. The equality is preserved.

- a is a forward arc of P and b a reverse arc:

Then a adds $i(P)$ to the left hand side and b adds $-i(P)$ to the left hand side. The equality is preserved.

- The other two cases are similar.

(3) $v(\tilde{f}) = v(f) + i(P)$:

Since P is an f -incrementing path, only the first arc of P is between S and I , so

$$v(\tilde{f}) = \sum_{x \in S, e \in E \text{ s.t. } \psi(e)=(x,u)} \tilde{f}(e) = \sum_{\dots} f(e) + \underbrace{i(P)}_{\text{added by the first arc of } P} = v(f) + i(P).$$

□

Theorem 9.29. *A flow f on N is a maximum flow if and only if N contains no f -incrementing path.*

Proof. “ \Rightarrow ” If f is a maximum flow then N contains no f -incrementing path by Lemma 9.28 (we would have $v(\tilde{f}) > v(f)$).

“ \Leftarrow ” Assume now that N contains no f -incrementing path. Define

$$V_S = S \cup \{ \text{all the vertices } u \text{ such that there is an element } x \in S \text{ and an } f\text{-unsaturated path in } N \text{ from } x \text{ to } u \},$$

and

$$V_T = V \setminus V_S.$$

Since N has no f -incrementing path, no element of T is in V_S , so $T \subseteq V_T$ and (V_S, V_T) is a cut in N .

Fact: (i) Each arc from V_S to V_T is f -saturated.
(ii) Each arc from V_T to V_S is f -zero.
Proof of (i): Let a be an arc from $u \in V_S$ to $v \in V_T$. Since $u \in V_S$ there is an f -unsaturated path from some $x \in S$ to u . If a is f -unsaturated, then this path can be extended by a and would give an f -unsaturated path from x to v . So we would have $v \in V_S$, contradiction.

Proof of (ii): Similar, left as an exercise.

Using the Fact and Theorem 9.25, we obtain $v(f) = c(V_S, V_T)$, and by Corollary 9.27 f is a maximum flow (and (V_S, V_T) is a minimum cut). \square

Remark 9.30. $(V_S, V \setminus V_S)$ with V_S as in the proof is a minimal cut.

This proof gives us the following: If we start with a maximum flow f , we get a minimal cut (V_S, V_T) such that $v(f) = c(V_S, V_T)$. Therefore

Theorem 9.31 (Max-flow, min-cut, Ford-Fulkerson 1956). *In any network, the value of a maximum flow is equal to the capacity of a minimum cut.*

The Ford-Fulkerson algorithm.

It is easier to state using the following definition.

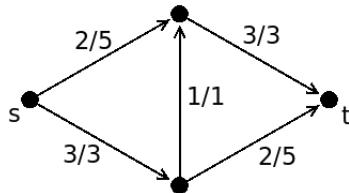
Definition 9.32. Let N be a network and let f be a flow in N . The residual network of f is the network with:

- Same vertices, source and sink as N ;
- Every arc $e \in E$ is given the new capacity

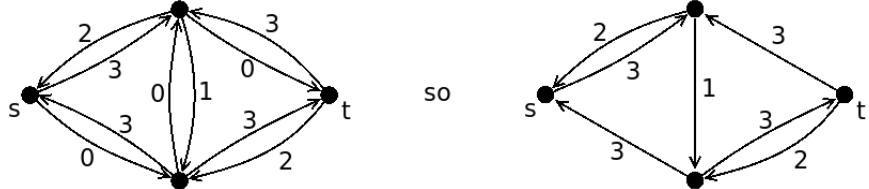
$$c_f(e) = c(e) - f(e);$$

- For every arc in E from u to v we add an edge from v to u with capacity $f(e)$;
- Remove every arc e with $c_f(e) = 0$ (a capacity only takes positive values).

Example 9.33.



The residual network is



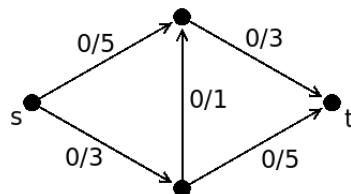
The algorithm:

1. Start with a flow f of value 0 (the zero flow).
2. Repeat the following:
 - (a) Build the residual network N_f of f .
 - (b) Find a directed path P from some $s \in S$ to some $t \in T$ in N_f containing no other point from S or T . Stop if there is no such path (f is then a maximal flow).
 - (c) Take $d = \min_{e \in P} c_f(e)$.
 - (d) For every arc e of P , let e_N be the arc in the original network between the same vertices. We then add to the flow f at e :
 - d if e and e_N go in the same direction,
 - $-d$ if e and e_N go in opposite directions.
 (So we end up modifying the values of f along the path P .)
3. The final flow you obtained (before the residual network in which you could not find a path) is a maximum flow.
4. If at the end you wish to find a minimum cut, proceed as follows (cf. Remark 9.30): Working in the final residual network (the one where you could not find a path), put in the set V_S all the vertices of the source, and all the vertices that you can reach from a path starting in the source. Take the set of all remaining vertices for V_T (since you could not find a path from the source to the sink, V_T contains at least the sink).

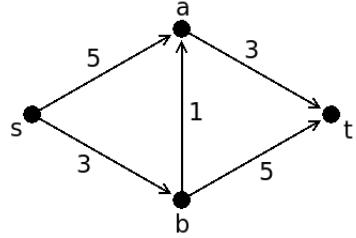
Then (V_S, V_T) is a minimum cut (again, see Remark 9.30).

We carry out the algorithm on the network above:

(1)



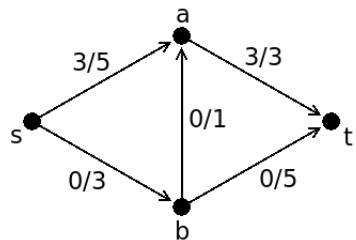
(2)(a)



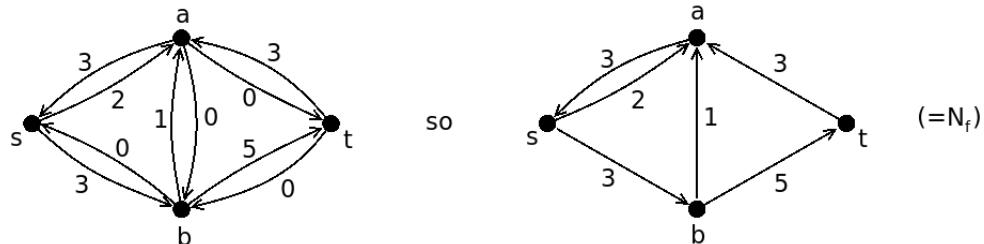
(2)(b) Take $P = sat$ (I do not give a name to the edges in P since there are no parallel edges, so no choice).

(2)(c) $d = 3$.

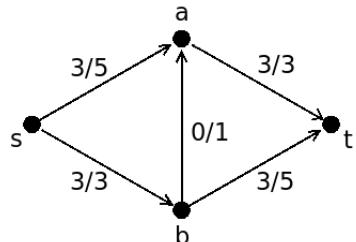
(2)(d)

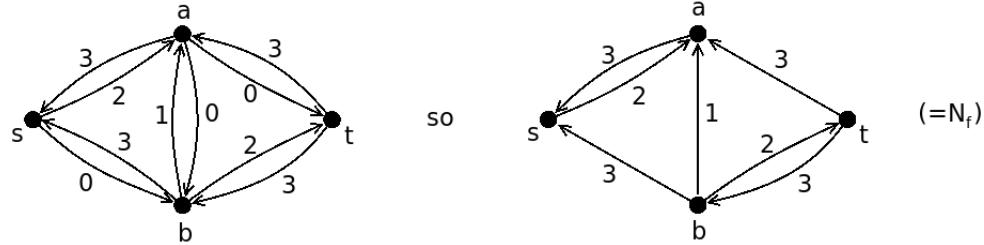
(new f)

(2)(a)

(2)(b) Take for instance $P = sbt$.(2)(c) $d = 3$.

(2)(d)

(new f)

(2)(a) N_f :

There is no path P , so we stop and this f is a maximal flow, with value 6.

It is confirmed by a quick look at the original network: There is indeed a cut with capacity 6 (which must be a minimum cut, as we saw, and its capacity is equal to the value of a maximum flow).

Remark 9.34. *This algorithm will stop after a finite number of steps if the capacities of the network are rational numbers:*

It is easy to see if they are integers, since the algorithm gives an increase of the value of the flow by at least 1 at each step. It must stop in a finite number of steps since the value of maximum flow is bounded by the capacity of any cut. To get the same result for capacities with rational values, just multiply everything by a large enough integer to go back to the integer case, then divide the flow at the end by the same large integer.

Surprisingly enough, the algorithm may not terminate if you allow the capacities to take values in the real numbers.

Chapter 10

Some applications of the Ford-Fulkerson result

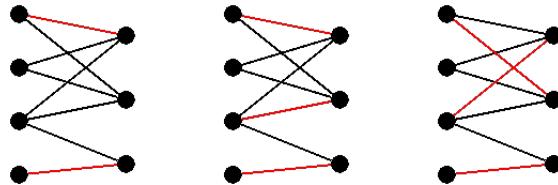
10.1 Matchings

Definition 10.1. Let G be a graph.

1. We say that two edges of G are adjacent if they have a common vertex.
2. A matching in G is a set M of edges of G such that M does not contain adjacent edges.
3. A bipartite matching is a matching in a bipartite graph.

Matchings are often used in bipartite graphs, in order to pair (match) objects of different type (see next section for an example).

Here are some matchings (in red) in the same bipartite graph:



It is often interesting to find matchings that are as large as possible. the first two items in the following definition present two possible interpretations of “as large as possible”.

Definition 10.2. Let G be a graph and let M be a matching in G .

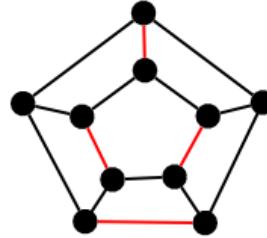
1. We say that M is a maximal matching (in G) if there is no matching M' (in G) such that $M \subsetneq M'$.
2. We say that M is of maximum cardinality¹ if there is no matching M' (in G) such that $|M'| > |M|$.

¹such an M is commonly called a maximum matching, but this terminology conflicts with another common use of “maximum”, and is too close to “maximal”, so we will avoid it

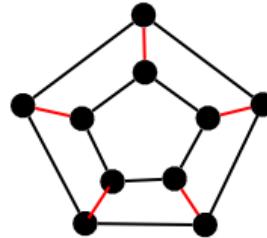
3. A *perfect matching* M (in G) is a matching that contains every vertex of G , in the sense that for every vertex v in G , there is an edge e in M that is adjacent to v .

Note that a matching of maximum cardinality is necessarily maximal, but that the converse does not hold (see example below). Also, a perfect matching is necessarily of maximum cardinality.

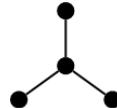
Example 10.3. A maximal matching (that is not of maximum cardinality):



A perfect matching:



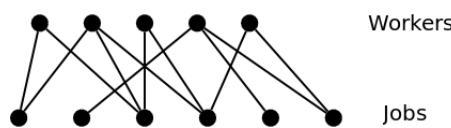
We can also observe that a graph with a perfect matching must have an even number of vertices, but having an even number of vertices is not sufficient to have a perfect matching. For instance the following graph does not have a perfect matching (obviously):



10.2 Allocation problems

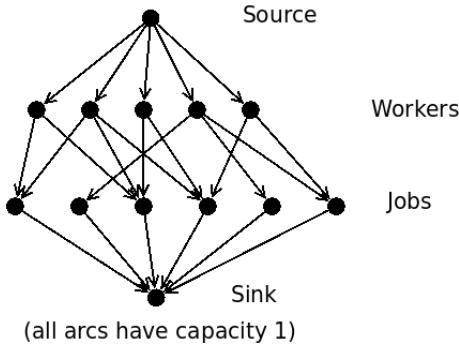
Consider the following problem: You have a group of workers, and a group of jobs to be done. Each worker can only do one job at a time, and is only qualified to do some of the jobs.

You want to give jobs to as many workers as possible. You build a bipartite graph G with bipartition (X, Y) as follows: X is the set of workers, Y is the set of jobs, and you put an edge between $x \in X$ and $y \in Y$ if worker x is qualified to do job y .



What you want is a matching in G of maximum cardinality. (You are “matching” as many workers as possible to a job, hence the terminology “matching”.)

This can easily be solved using network flows: Turn all the edges into directed edges from the workers to the jobs. Add a source “before” the workers with arcs of capacity 1 between the source and each worker (it will ensure that no worker can be affected to more than 1 job). Then add a sink “after” the jobs, with arcs of capacity one between each job and the sink (it will ensure that each job is done by only 1 worker). Then look for a maximal flow.



Chapter 11

Matrices and graphs (some random results)

There are a lot of results about graphs involving linear algebra. We restrict ourselves to the case of a few results involving matrices, and recall:

Definition 11.1. 1. We denote by $M_n(\mathbb{R})$, respectively $M_n(\mathbb{C})$, the set of all square $n \times n$ matrices with coefficients in \mathbb{R} , respectively \mathbb{C} .

2. Let $A \in M_n(\mathbb{R})$ (respectively $M_n(\mathbb{C})$). We say that $v \in \mathbb{R}^n$ (respectively \mathbb{C}^n) is an eigenvector of A if the following two conditions hold:

- (a) $v \neq 0$;
- (b) there is $\lambda \in \mathbb{R}$ or \mathbb{C} such that $Av = \lambda v$.

When this holds, λ is called an eigenvalue of A (associated to the eigenvector v).

Remark 11.2. • Eigenvectors are very useful because, on an eigenvector, multiplying by A is the same as multiplying by the eigenvalue λ , which is much simpler than matrix multiplication.

- It is possible to show that a complex matrix has always at least one eigenvector, with associated eigenvalue in \mathbb{C} (it could be in \mathbb{R} but we only know for sure that it can be found in \mathbb{C}).

Recall that a matrix A is symmetric if it is equal to its transpose (i.e., $A = A^T$). A symmetric matrix must be square, and its entries are “mirrored” across the diagonal. For instance:

$$\begin{pmatrix} -1 & 0 & 5 \\ 0 & 1 & 3 \\ 5 & 3 & 0 \end{pmatrix} \text{ is symmetric.}$$

Lemma 11.3. Let $A \in M_n(\mathbb{R})$ be symmetric, and let v, w be eigenvectors of A with different eigenvalues. Then v and w are orthogonal (i.e. $v^T w = 0$).

Proof. By hypothesis $Av = \lambda v$ and $Aw = \mu w$ for some $\lambda, \mu \in \mathbb{R}$. Since A is symmetric, we have $(w^T Av)^T = v^T A^T w = v^T Aw$. Using the hypothesis on v and w we get $(w^T(\lambda v))^T = v^T(\mu w)$, so $\lambda v^T w = \mu v^T w$. Since $\lambda \neq \mu$ we must have $v^T w = 0$. \square

Lemma 11.4. *Let $A \in M_n(\mathbb{R})$ be symmetric and let λ be an eigenvalue of A . Then $\lambda \in \mathbb{R}$.*

Proof. Let $v \in \mathbb{R}^n \setminus \{0\}$ be such that $Av = \lambda v$. Taking the complex conjugate we get $\bar{A}\bar{v} = \bar{\lambda}\bar{v}$, so $A\bar{v} = \bar{\lambda}\bar{v}$, which shows that λ and $\bar{\lambda}$ are eigenvalues of A . If they are different, we get $v^T \bar{v} = 0$ by Lemma 11.3, so $\|v\| = 0$, which gives $v = 0$, contradiction. So $\bar{\lambda} = \lambda$, i.e., $\lambda \in \mathbb{R}$. \square

We state the following two results without proofs (see a linear algebra course).

Proposition 11.5. *Let $A \in M_n(\mathbb{R})$ be symmetric. Then there is an invertible matrix $P \in M_n(\mathbb{R})$ such that*

$$PAP^{-1} = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

where $\lambda_1 \leq \dots \leq \lambda_n$ are the eigenvalues of A (and the entries outside of the diagonal are all 0).

Proposition 11.6. *Let $A \in M_n(\mathbb{R})$. For any invertible matrix $P \in M_n(\mathbb{R})$, we have*

$$\text{tr}(A) = \text{tr}(PAP^{-1}).$$

(Where $\text{tr}(A)$, the trace of A , is the sum of the diagonal entries of A .)

Recall that the adjacency matrix of a graph is a symmetric matrix.

Proposition 11.7. *Let A be the adjacency matrix of a graph G . Let t be the number of triangles (cycles of length 3) of G . Then $\text{tr } A^3 = 6t$.*

Proof. Let v_1, \dots, v_n be the vertices of G . A triangle is a walk of length 3 from any v_i to itself. The number of such walks is the (i, i) entry of the matrix A^3 .

Therefore $\text{tr } A^3$ is the number of all closed walks of length 3 in G . Each triangle gives rise to 6 such walks (3 possible starting points, and you can do the walk in one direction, and then in the other). Thus $\text{tr } A^3 = 6t$. \square

11.1 Bipartite graphs

Lemma 11.8. *Let G be a bipartite graph with adjacency matrix A . If λ is an eigenvalue of A then $-\lambda$ is an eigenvalue of A .*

Proof. Let (X, Y) be a bipartition of G , with $X = \{v_1, \dots, v_r\}$ and $Y = \{v_{r+1}, \dots, v_{r+s}\}$. If we list the vertices in the order v_1, \dots, v_{r+s} the matrix A is of the form

$$A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix},$$

for some matrix B of size $r \times s$.

Let $w = \begin{pmatrix} x \\ y \end{pmatrix}$ be an eigenvector for λ , with $x \in \mathbb{R}^r$ and $y \in \mathbb{R}^s$. Then

$$\lambda w = Aw = \begin{pmatrix} Bx \\ B^T y \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}.$$

Therefore $Bx = \lambda x$ and $B^T y = \lambda y$. Let

$$w' := \begin{pmatrix} x \\ -y \end{pmatrix}.$$

Then

$$Aw' = \begin{pmatrix} -By \\ B^T x \end{pmatrix} = \begin{pmatrix} -\lambda x \\ \lambda y \end{pmatrix} = -\lambda \begin{pmatrix} x \\ -y \end{pmatrix} = \lambda w',$$

which shows that $-\lambda$ is an eigenvalue of A . \square

Theorem 11.9. *Let G be a graph with adjacency matrix A . The following statements are equivalent.*

1. G is bipartite;
2. The eigenvalues of A occur in pairs $\lambda, -\lambda$;

Proof. The fact that (1) implies (2) is Proposition 11.8. We prove that (2) implies (1):

Let k be an odd integer. Let P be an invertible matrix as given by Proposition 11.5. We first observe:

$$PA^k P^{-1} = \underbrace{(PAP^{-1})(PAP^{-1}) \cdots (PAP^{-1})}_{k \text{ times}} = (PAP^{-1})^k.$$

Using Proposition 11.6, we get

$$\begin{aligned} \text{tr}(A^k) &= \text{tr}((PA^k P^{-1})^k) \\ &= \text{tr}\left(\begin{pmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{pmatrix}\right) \\ &= \lambda_1^k + \cdots + \lambda_n^k. \end{aligned}$$

Since k is odd and every λ_i comes together with $\lambda_j = -\lambda_i$, we have $\lambda_i^k + \lambda_j^k = 0$. It follows that

$$\text{tr}(A^k) = 0.$$

But $\text{tr}(A^k)$ is the sum of the number of walks of length k from v_1 to v_1 , v_2 to v_2 , \dots , v_n to v_n . So there are no closed walks of length k in G , i.e., there are no cycles of odd length in G , i.e., G is bipartite. \square

11.2 Regular graphs

Regular that a graph G is called k -regular if every vertex of G has degree k .

Proposition 11.10. *Let G be a graph with adjacency matrix A , and let $u = (1, \dots, 1)^T$.*

The graph G is k -regular if and only if $Au = ku$ (in this case, k is an eigenvalue of A).

Proof. Write $A = (a_{ij})$. We have

$$Au = \begin{pmatrix} a_{11} + \dots + a_{1n} \\ \vdots \\ a_{n1} + \dots + a_{nn} \end{pmatrix}.$$

Observe that $a_{i1} + \dots + a_{in}$ is the sum of the coefficients of A in row i , so is the degree of v_i .

If G is k -regular, then $d(v_i) = k$ for every i , so that $Au = ku$.

Conversely, assume $Au = ku = \begin{pmatrix} k \\ \vdots \\ k \end{pmatrix}$. Then $d(v_i) = k$ for every i , i.e., G is k -regular. \square

Proposition 11.11. *Let G be a k -regular graph with adjacency matrix A . Then:*

1. *If G is connected, then any eigenvector for the eigenvalue k is a multiple of u (i.e., the multiplicity of the eigenvalue k is one);*
2. *For any eigenvalue λ of A , we have $|\lambda| \leq k$.*

Proof. Write $A = (a_{ij})$.

1. We show that any eigenvector for k is a multiple of u (so that the eigenspace associated to k has dimension 1): Let $x = (x_1, \dots, x_n)^T$ be an eigenvector for k . Let x_j be an entry of x with maximal absolute value.

Fact: If v_i is a vertex adjacent to v_j , then $x_i = x_j$.

Proof of the Fact: Since $Ax = kx$, we have $(Ax)_j = kx_j$, so

$$\sum_{r=1}^n a_{jr}x_r = kx_j.$$

But $a_{jr} = 1$ if there is an edge between v_j and v_r and 0 otherwise. So, if v_{i_1}, \dots, v_{i_k} are the vertices adjacent to v_j (there are k of them since G is k -regular), the above equation can be rewritten as

$$x_{i_1} + \dots + x_{i_k} = kx_j,$$

Since x_j is largest in absolute value, we must have $x_{i_1} = \dots = x_{i_k} = x_j$ (otherwise the left-hand side will end up smaller than kx_j). In other

words: If v_i is a vertex adjacent to v_j , then $x_i = x_j$. **End of the proof of the Fact.**

We can now replace x_j by any vertex adjacent to it, and use the Fact again. If we keep doing this, and since the graph is connected, we will get that $x_i = x_j$ for every i . In particular:

$$x = (x_j, \dots, x_j)^T = x_j u.$$

2. Let $y = (y_1, \dots, y_t)^T$ be an eigenvector for λ . Let y_j be a coordinate of y of maximal absolute value. As above, we have

$$y_{i_1} + \dots + y_{i_k} = \lambda y_j,$$

where v_{i_1}, \dots, v_{i_k} are the vertices adjacent to v_j . So

$$|\lambda| |y_j| = |y_{i_1} + \dots + y_{i_k}| \leq |y_{i_1}| + \dots + |y_{i_k}| \leq k |y_j|$$

(the last inequality is because of the definition of y_j). Therefore $|\lambda| \leq k$.

□

If $P(X) = a_0 + a_1 X + \dots + a_r X^r \in \mathbb{R}[X]$, and $A \in M_n(\mathbb{R})$, we define

$$P(A) = a_0 I_n + a_1 A + \dots + a_r A^r.$$

Definition 11.12. *If G is a graph and A is the adjacency matrix of G , we define*

$$\mathcal{A}(G) := \{P(A) \mid P(X) \in \mathbb{R}[X]\},$$

which is called the adjacency algebra of G .

Let J_n be the matrix in $M_n(\mathbb{R})$ with only 1 as entries:

$$J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \dots & \vdots \\ 1 & \dots & 1 \end{pmatrix}.$$

Proposition 11.13. *Let G be a graph with n vertices. The matrix J_n belongs to the $\mathcal{A}(G)$ if and only if G is a regular connected graph.*

Proof. Let v_1, \dots, v_n be the enumeration of the vertices of G used to compute the matrix A .

“ \Rightarrow ” By definition of $\mathcal{A}(G)$, there is a polynomial $P(X) \in \mathbb{R}[X]$ such that $J_n = P(A)$. It follows that $AJ_n = J_n A$. A direct computation show that the entry of coordinates (i, j) of AJ_n is equal to $d(v_i)$, and the entry of coordinates (i, j) of $J_n A$ is equal to $d(v_j)$. Since $AJ_n = J_n A$, we get $d(v_i) = d(v_j)$ for every i, j , so the graph is regular.

Assume that G is disconnected. Then there are two vertices v_i, v_j with no walk between them (no matter what length the walk has). It means that the entry (i, j) of A^r is 0 for every $r \in \mathbb{N} \cup \{0\}$. It follows that $P(A)$ has entry 0 at coordinates (i, j) , so it cannot be equal to J_n , contradiction.

“ \Leftarrow ”: Suppose that G is k -regular and connected. By Proposition 11.10, k is an eigenvalue of A . It follows that, if $m(X)$ is the minimal polynomial of A , then $m(X) = (X - k)Q(X)$ for some polynomial $Q(X)$ (see a linear algebra course). Since $m(A) = 0$, we get $AQ(A) = kQ(A)$. It means that every column of $Q(A)$ is an eigenvector of A corresponding to the eigenvalue k . By Proposition 11.11, every column of $Q(A)$ is a multiple of the vector u . Using now that $Q(A)$ is a symmetric matrix, we obtain that these multiple need to be all by the same number, so that $Q(A)$ is a multiple of J_n : $Q(A) = \alpha J_n$ for some $\alpha \neq 0$. Thus $J_n = \alpha^{-1}Q(A) \in \mathcal{A}(G)$. \square

Chapter 12

Tropical arithmetic and shortest paths

In tropical arithmetic, we work with elements from the set $\mathbb{R} \cup \{\infty\}$ and we redefine the usual sum and product as follows:

$$x \oplus y := \min(x, y) \quad \text{and} \quad x \odot y := x + y,$$

i.e., the tropical sum of two numbers is their minimum, and the tropical product of two numbers is their usual sum. We follow the usual convention that \odot is computed before \oplus when both occur in an expression.

Observe that \oplus and \odot are

- associative: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ and $(x \odot y) \odot z = x \odot (y \odot z)$,
- commutative: $x \oplus y = y \oplus x$, $x \odot y = y \odot x$,

and that the distributive law also holds:

$$x \odot (y \oplus z) = x \odot y \oplus x \odot z.$$

Example 12.1.

$$2 \oplus 3 = 2, \quad 2 \odot 3 = 5$$

$$2 \odot (3 \oplus 1) = 2 \odot 1 = 3 \text{ while } 2 \odot 3 \oplus 2 \odot 1 = 5 \oplus 3 = 3.$$

Infinity is the identity element for the sum, and 0 is the identity element for the product:

$$x \oplus \infty = x \quad \text{and} \quad x \odot 0 = x.$$

We also have

$$x \odot \infty = \infty.$$

Note that there is no subtraction. For instance, we cannot compute 10 minus 3, since the equation $x \oplus 3 = 10$ does not have a solution ($x \oplus 3 = \min(x, 3) \leq 3$).

We will compute as usual with vectors and matrices, but using the tropical operations. For instance:

$$3 \odot \begin{pmatrix} 1 & -2 & 4 & \infty \end{pmatrix} := \begin{pmatrix} 3 \odot 1 & 3 \odot (-2) & 3 \odot 4 & 3 \odot \infty \end{pmatrix} = \begin{pmatrix} 4 & 1 & 7 & \infty \end{pmatrix},$$

$$\begin{pmatrix} 1 & -2 \\ 4 & \infty \end{pmatrix} \oplus \begin{pmatrix} 0 & 3 \\ \infty & 5 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 4 & 5 \end{pmatrix},$$

$$\begin{aligned} \begin{pmatrix} 1 & -2 \\ 4 & \infty \end{pmatrix} \odot \begin{pmatrix} 0 & 3 \\ \infty & 5 \end{pmatrix} &= \begin{pmatrix} 1 \odot 0 \oplus (-2) \odot \infty & 1 \odot 3 \oplus (-2) \odot 5 \\ 4 \odot 0 \oplus \infty \odot \infty & 4 \odot 3 \oplus \infty \odot 5 \end{pmatrix} \\ &= \begin{pmatrix} 1 \oplus \infty & 4 \oplus 3 \\ 4 \oplus \infty & 7 \oplus \infty \end{pmatrix} \\ &= \begin{pmatrix} 1 & 3 \\ 4 & 7 \end{pmatrix}. \end{aligned}$$

These redefined operations are convenient for determining the length of a shortest path in a graph.

We consider a directed graph G with vertices v_1, \dots, v_n , where each edge e is given a non-negative weight $d(e) \in \mathbb{R}$. It turns G into a weighted directed graph. We define

$$d_{ij} := \begin{cases} 0 & \text{if } i = j \\ d(v_i v_j) & \text{if } i \neq j \text{ and the edge } v_i v_j \text{ exists} \\ \infty & \text{if } i \neq j \text{ and there is no edge } v_i v_j, \end{cases}$$

and the matrix $D_G := (d_{ij})_{i,j=1,\dots,n}$.

We consider the tropical products of D_G by itself r times

$$D_G^{\odot r} := \underbrace{D_G \odot \cdots \odot D_G}_{r \text{ times}}.$$

Proposition 12.2. *The entry (i, j) of the matrix $D_G^{\odot r}$ is the length of a shortest walk from the vertex v_i to the vertex v_j in G containing at most r edges.*

Proof. We prove the result by induction on r :

• $r = 1$: the shortest path from v_i to v_j of length at most 1 is necessarily the edge $v_i v_j$. Its length is the entry (i, j) of D_G by definition of D_G .

• $r \geq 2$, and we assume that the result holds for any integer up to r . We show the result for $r + 1$.

A shortest path with at most $r + 1$ edges from v_i to v_j is made of a shortest path with at most r edges from v_i to some v_k (which has length d_{ik}^r by induction), followed by a path with at most 1 edge from v_k to v_j (which has length d_{kj}). So the length of such a path is

$$\begin{aligned} d_{ij}^{r+1} &= \min\{d_{ik}^r + d_{kj} \mid k = 1, \dots, n\} \\ &= \min\{d_{ik}^r \odot d_{kj} \mid k = 1, \dots, n\} \\ &= (d_{i1}^r \odot d_{1j}) \oplus \cdots \oplus (d_{in}^{r-1} \odot d_{nj}), \end{aligned}$$

which is exactly the formula for the (i, j) -entry of the matrix $D_G^{\odot(r+1)}$. \square

Corollary 12.3. *The entry (i, j) of the matrix $D_G^{\odot(n-1)}$ (recall that n is the number of vertices of G) is the length of a shortest walk from the vertex v_i to the vertex v_j in G .*

Proof. A shortest walk from v_i to v_j will visit each vertex at most once (if it visit a vertex twice, we can simply remove the part between the two occurrences of this vertex). Therefore, such a shortest walk is a path and will use at most n vertices and thus $n-1$ edges. The result then follows from Proposition 12.2. \square