
MATH20150 - 2019 exam - Solution

1. (a) Give it the weight 2.

(b) Yes: put the long vertical edge starting in v to the left side.

2. (a) Yes: If you put a vertex at each intersection of lines, and count the lines
as edges, we have an Eulerian graph (the degree of each vertex is even).

(b) Let v1, . . . , vn be the vertices of G. The i-th diagonal entry of A2 is the
number of walks of length 2 from vi to vi (seen in class), so is the degree
of vi. The result follows since the sum of the degrees of the vertices is
2|E|.

3. (a) i. ⇒ ii. Let e be an edge in the cycle of G. Then G \ {e} has no cycle,
and is still connected. So G \ {e} is a tree.

11. ⇒ i. Because adding a new edge to a tree adds a single sycle (seen
in class).

(b) Let G1, G2 be two components of G \ S. Take a path in T from a vertex
in G1 to a vertex in G2. At least one edge of this path in not in G \ S
since G1 and G2 are different components. Since this edge is not in G\S,
it is in S.

4. (a) Easy, just follow the definition. Note that each vertex of this line graph
has even degree (4 to be precise).

(b) Let e = uv be an edge in G / a vertex in L(G). Say that d(u) = 2r and
d(v) = 2s. Then, in L(G), e is adjacent to 2r − 1 vertices thanks to u
(the other edges that u is adjacent to), and to 2s − 1 vertices thanks to
v. So dL(G)(e) = 2(r + s) − 2 which is even. Every vertex of L(G) has
even degree, so L(G) is Eulerian.

(c) No: A counter-example is provided by K4 (not Eulerian), cf. first ques-
tion. It is also easy to come up with another graph with 4 vertices where
it does not work.

5. (a) Let v be the number of vertices, e the numbre of edges, and f the number
of faces. Since v − e + f = 2 we get that f = 8. We also know that a
face has degree at least 3, so if s is the sum of the degrees of the faces,
we have s ≥ 24, with equality when each face has degree 3. But we know
that s = 2e = 24, so each face has degree 3.

(b) Follow the algorithm seen in class: It will give a maximum flow (of value
10), and can also be used to get a minimal cut (or: the minimal cut can
be found by inspection, the graph is small enough). The fact that the
cut is minimal comes either from finding it via the algorithm, or using
the max-cut / min-flow theorem (check that its capacity is equal to the
value of the maximum flow).

1

