

The hitchhiker＇s guide to ．．．tensors，polynomials，and everything

Dirk Werner Freie Universität Berlin

Galway， 3 May 2018

... est omnis divisa in partes tres

... est omnis divisa in partes tres

- Tensor products

... est omnis divisa in partes tres

- Tensor products
- Polynomials on Banach spaces

... est omnis divisa in partes tres

- Tensor products
- Polynomials on Banach spaces
- Infinite-dimensional holomorphy

－Tensor products

－Polynomials on Banach spaces
－Infinite－dimensional holomorphy

Abstract

Ryan，Raymond A． The Dunford－Pettis property and projective tensor products．（English）Zb10656．46057 Bull．Pol．Acad．Sci．，Math．35，No．11－12，785－792（1987）． The author addresses the question if the tensor product basis of two shrinking bases in Banach spaces X and Y is shrinking w．r．t．the projective tensor norm（this is known to be the case for the injective tensor norm）．He proves the obvious necessary condition＂Every operator from X to Y^{*} is compact＂to be sufficient，too，and shows its validity if X has the Dunford－Pettis property．Moreover it is investigated under what conditions the projective tensor product of two Banach spaces fails to contain a copy of ℓ^{1} ．Reviewer：Dirk Werner（Berlin）

MSC：

46M05 Tensor products of topological linear spaces
46B22 Radon－Nikodým，Kreĭn－Milman and related properties
46B15 Summability and bases in normed spaces

Keywords：

tensor product basis；shrinking bases；projective tensor norm；injective tensor norm；Dunford－Pettis property

Alexander Grothendieck

... standing on the shoulders of giants (1)

Alexander Grothendieck

... standing on the shoulders of giants (1)

Alexander Grothendieck

X, Y vector spaces, $B: X \times Y \rightarrow \mathbb{R}$ bilinear.

Tensor products

X, Y vector spaces, $B: X \times Y \rightarrow \mathbb{R}$ bilinear. For $x \in X, y \in Y$ define $(x \otimes y)(B)=B(x, y)$.

Tensor products

X, Y vector spaces, $B: X \times Y \rightarrow \mathbb{R}$ bilinear.
For $x \in X, y \in Y$ define $(x \otimes y)(B)=B(x, y)$. This is a linear form.
X, Y vector spaces, $B: X \times Y \rightarrow \mathbb{R}$ bilinear.
For $x \in X, y \in Y$ define $(x \otimes y)(B)=B(x, y)$. This is a linear form. Let $X \otimes Y$ be the linear span of all $x \otimes y$ (tensor product of X and Y).

Tensor products

X, Y vector spaces, $B: X \times Y \rightarrow \mathbb{R}$ bilinear.
For $x \in X, y \in Y$ define $(x \otimes y)(B)=B(x, y)$. This is a linear form. Let $X \otimes Y$ be the linear span of all $x \otimes y$ (tensor product of X and Y).

Example: $X=L^{1}[0,1]=Y, X \otimes Y \subset L^{1}([0,1] \times[0,1])$.
X, Y vector spaces, $B: X \times Y \rightarrow \mathbb{R}$ bilinear.
For $x \in X, y \in Y$ define $(x \otimes y)(B)=B(x, y)$. This is a linear form. Let $X \otimes Y$ be the linear span of all $x \otimes y$ (tensor product of X and Y).

Example: $X=L^{1}[0,1]=Y, X \otimes Y \subset L^{1}([0,1] \times[0,1])$.
Universal property: A bilinear mapping on $X \times Y$ generates a linear mapping on $X \otimes Y$:

X, Y vector spaces，$B: X \times Y \rightarrow \mathbb{R}$ bilinear．
For $x \in X, y \in Y$ define $(x \otimes y)(B)=B(x, y)$ ．This is a linear form． Let $X \otimes Y$ be the linear span of all $x \otimes y$（tensor product of X and Y ）．

Example：$X=L^{1}[0,1]=Y, X \otimes Y \subset L^{1}([0,1] \times[0,1])$ ．
Universal property：A bilinear mapping on $X \times Y$ generates a linear mapping on $X \otimes Y$ ：

－The tensor product linearises all bilinear maps．
X, Y vector spaces，$B: X \times Y \rightarrow \mathbb{R}$ bilinear．
For $x \in X, y \in Y$ define $(x \otimes y)(B)=B(x, y)$ ．This is a linear form． Let $X \otimes Y$ be the linear span of all $x \otimes y$（tensor product of X and Y ）．

Example：$X=L^{1}[0,1]=Y, X \otimes Y \subset L^{1}([0,1] \times[0,1])$ ．
Universal property：A bilinear mapping on $X \times Y$ generates a linear mapping on $X \otimes Y$ ：

－The tensor product linearises all bilinear maps．

X, Y Banach spaces, $u \in X \otimes Y$.

X, Y Banach spaces, $u \in X \otimes Y$. "Projective" norm on $X \otimes Y$:
$\|u\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|x_{j}\right\|\left\|y_{j}\right\|: u=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}=\sup \{|u(B)|: B$ bilinear form of norm 1$\}$
X, Y Banach spaces, $u \in X \otimes Y$. "Projective" norm on $X \otimes Y$:
$\|u\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|x_{j}\right\|\left\|y_{j}\right\|: u=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}=\sup \{|u(B)|: B$ bilinear form of norm 1$\}$
Completion of $X \otimes Y$ for this norm: $X \hat{\otimes}_{\pi} Y$.
X, Y Banach spaces, $u \in X \otimes Y$. "Projective" norm on $X \otimes Y$:
$\|u\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|x_{j}\right\|\left\|y_{j}\right\|: u=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}=\sup \{|u(B)|: B$ bilinear form of norm 1$\}$
Completion of $X \otimes Y$ for this norm: $X \hat{\otimes}_{\pi} Y$.
Example: $X=L^{1}[0,1]=Y, X \hat{\otimes}_{\pi} Y=L^{1}([0,1] \times[0,1])$.
X, Y Banach spaces, $u \in X \otimes Y$. "Projective" norm on $X \otimes Y$:
$\|u\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|x_{j}\right\|\left\|y_{j}\right\|: u=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}=\sup \{|u(B)|: B$ bilinear form of norm 1$\}$
Completion of $X \otimes Y$ for this norm: $X \hat{\otimes}_{\pi} Y$.
Example: $X=L^{1}[0,1]=Y, X \hat{\otimes}_{\pi} Y=L^{1}([0,1] \times[0,1])$.
Universal property as before for continuous maps:

X, Y Banach spaces, $u \in X \otimes Y$. "Projective" norm on $X \otimes Y$:
$\|u\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|x_{j}\right\|\left\|y_{j}\right\|: u=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}=\sup \{|u(B)|: B$ bilinear form of norm 1$\}$
Completion of $X \otimes Y$ for this norm: $X \hat{\otimes}_{\pi} Y$.
Example: $X=L^{1}[0,1]=Y, X \hat{\otimes}_{\pi} Y=L^{1}([0,1] \times[0,1])$.
Universal property as before for continuous maps:

- The projective tensor product linearises all continuous bilinear maps.

Enter RR：

Grothendieck＇s 14 natural tensor norms

Bul．Soc．tut Shé Paub 8 （195），

per A．erothmalioak（aïo mulo）．
Husepectien－
1．gantan his trexis．

 ture se（4）montreve swe preage toution 180 awestione co le thioric

 de texto．

Enter RR：

Grothendieck＇s 14 natural tensor norms

Bul．Soc．tut Shé Paub 8 （195），

per L．erothmaliook（aio muino）．

Mrepectien．

1．gantan hil truxil．

Jungu＇su 53，at4 10 wexte mo oonticent proseque avome dimoge

 ；（Hotiment 20 th．2，cerollarive 3，et 20 th．3）me se berse pen

 de texte．

 avons inebre len diveroen（O－normine waselles par 1 ear olgne usu－ $\mathrm{t}_{\mathrm{tan}}$ ），oines sue leur now．Ghaque fose quen pour une de coe ©－nor－

Enter RR：

Grothendieck＇s 14 natural tensor norms

Bul．Soc．tut She Paub 8 （1956），

mexvise zmorian masuanomas．

par L．erotmontioak（a\％io muino）．

usepoctien．

1．gantan has trexis．

 saux asfriatioe（65，205，th． 4 et 54，at9）．Jo menee su＇th pertir al
 truitie per to looteur astiontif，i 1＇alde dee indicetione Abratilibe ate texte．

Enter RR:

Grothendieck's 14 natural tensor norms

Bul. Soc. tut She Paub 8 (1956),

per L.erothmaliook (aio muino).

Lusepectien.

1. gantan hil truxil.

 ture se (4) montrore sue prosge toution lees ameetione do le thioric

 truitio par 10 leoteur attontif, i l'alde dee indiontione ahrallibe 4. texte.

 avone ine 6 re len diveraen θ-norsane casellees par lear olgne uau-

Théorème fondamental: $\|\cdot\|_{w_{2}} \leq\|\cdot\|_{/ \pi \backslash} \leq K_{G}\|\cdot\|_{w_{2}}$

Bul．Soc．tut Shé Paub 8 （195），

per L．erothmaliook（aio muio）．

uscepoctien－

 ture se（4）montrove que preegen toutioe lee ametione co lo thiorio

 de texto．

Théorème fondamental：$\|\cdot\|_{W_{2}} \leq\|\cdot\| / \pi \backslash \leq K_{G}\|\cdot\|_{W_{2}}$
First proof＂understandable for average mathematicians＂（A．Pietsch）by Joram Lindenstrauss and Olek Pełczyński（1968，matrix inequality）．

Bul．Soc．Tut Säo Paub 8 （1952），

Hyeepexien

 truitio par 10 looteur attontif，il l＇alde dee indioetione ahratilibe ta texte．

Théorème fondamental：$\|\cdot\|_{w_{2}} \leq\|\cdot\|_{/ \pi \backslash} \leq K_{G}\|\cdot\|_{W_{2}}$
First proof＂understandable for average mathematicians＂（A．Pietsch）by Joram Lindenstrauss and Olek Pełczyński（1968，matrix inequality）． Nola Alon：＂The most important discovery in science in the last 50 years．＂

．．．standing on the shoulders of giants（2）

Stefan Banach

Stefan Banach

... standing on the shoulders of giants (2)

Stefan Banach

Homogeneous polynomials

Über homogene Polynome in $\left(L^{2}\right)$

S．BANACH（Liwow）．

§ 1.

Wir bezeichnen mit E, E^{\prime} zwei vektorielle，normierte und vollständige Räume．Eine für beliebige x_{1}, \ldots, x ，aus E erklärte Operation $u\left(x_{1}, \ldots, x_{2}\right)$ ，deren Werte dem Raume E^{\prime} angehören， nennen wir eine n－lineare Operation，falls sie stetig und additiv inbezug auf jede der Veränderlichen x_{1}, \ldots, x_{n} ist．Es ist bequem eine derartige Operation mit
（1）
$a x_{1} \ldots \ldots x_{n}$
zu bezeichnen．
Eine n－lineare Operation（ $n>1$ ）heiße symmetrisch，wenn sich ihr Wert bei beliebigen Permutationen dor Variablen nicht ãndert．Werden in einer symmetrischen n－linearen Operation r_{1} Variablen gleich z_{1} ，weitere r_{2} Variablen gleich z_{2}, \ldots, ，schließlich die letzten r_{2} Varisblen gleich z_{k} gesetzt $\left(r_{1}+\ldots+r_{k}=n\right)$ ，so bezeichnen wir die so entstandene Operation mir

$$
a z_{1}^{\prime_{1}^{1}} \cdots \cdots z_{k}^{\prime k} .
$$

Insbesondere ist

$$
a z^{*}=a z \ldots \ldots z
$$

Die Operation $a z^{\prime \prime}$ nennen wir ein homogenes Polynom n－ten Grades．Wie leicht $2 u$ sehen，enstehen aus verschiedenen sym－ metrischen n－linearen Operationen stets verschiedene homogene Polynome n－ten Grades．

Als Norm einer n－linearen Operation $a x_{1} \ldots x_{*}$ erklarren wir die Zahl

Homogeneous polynomials

Uber homogene Polynome in $\left(L^{2}\right)$

von

S．BANACH（Liwow）．

81.

Wir bezeichnen mit E, E^{\prime} zwei vektorielle，normierte und vollstāndige Räume．Eine für beliebige $x_{1}, \ldots, x_{\text {，}}$ ，aus E erklärte Operation $u\left(x_{1}, \ldots, x_{2}\right)$ ，deren Werte dem Raume E^{\prime} angehören， nennen wir eine n－lineare Operation，falls sie stetig und additiv inbezug auf jede der Veränderlichen x_{1}, \ldots, x_{n} ist．Es ist bequem eine derartige Operation mit

$$
\begin{equation*}
a x_{1} \ldots \ldots x_{n} \tag{1}
\end{equation*}
$$

zu bezeichnen．
Eine n－lineare Operation $(n>1)$ heiBe symmetrisch，wenn sich ihr Wert bei beliebigen Permutationen der Variablen nicht andert．Werden in einer symmetrischen n－linearen Operation r Variablen gleich z_{1} ，weitere r_{2} Variablen gleich z_{2}, \ldots ，schließlich die letzten r_{k} Varibblen gleich z_{k} gesetzt $\left(r_{1}+\ldots+r_{k}=n\right)$ ，so bezeichnen wir die so entstandene Operation mir

$$
a z_{1}^{\prime_{1}^{\prime}} \cdots \cdots z_{k}^{z_{k}^{\prime}} .
$$

Insbesondere ist

$$
a z^{*}=a z \ldots \ldots z
$$

Die Operation $\alpha z^{\prime \prime}$ nennen wit ein homogenes Polynom n－ten Grades．Wie leicht $2 u$ sehen，enstehen aus verschiedenen sym－ metrischen n－linearen Operationen stets verschiedene homogene Polynome n－ten Grades．

Als Norm einer n－linearen Operation $a x_{1} \ldots x_{\text {e }}$ erklirren wir die Zahl

Die „Mathematischen Monographien＂erschemen als kartonierte Oktavblinde von ungefalir 150 bis 300 Seiten．

Bis jetzt sind erschisenen：

Band I．S．Banach．Theorie des opérations linéaires， VIII $+=56$ Seitea，Prein 3 Dollar U．S．A．
Band II．S．Sahss，Théorie de l＇integrale（vergriffen）， $\mathrm{X}+$ sga Seiten，Precis \＆Dollar U．S．A．
Band III．C．Kuratowaki，Topologie I， $\mathrm{X}+\Omega 88$ Seiten，Preis 4,50 Dollar U．S．A．
Band IV．W．Sierpifishi，Hypothèse du continu， VI +194 Seiten，Preir 3,50 Dollar U．S．A．
Band V．A．$Z_{\text {Ygmund，}}$ Trigonometrical Series，
IV +332 Seiten，Preis 6 Dollar U．S．A．
Band VI．S．Kaczmayz und H．Steinhaua，

> Theorie der Orlhogonalreeihen,

$$
\text { VI }+300 \text { Sciten, Preis } 5 \text { Dollar U.S.A. }
$$

S．Banach In Vorbercitung（unter anderen）： C．Kuratows ki，Topologie II
S．Mazur，Allsemeine Tologie II，
S．$S_{\text {a }} \mathrm{kn}$ ．Theory of Integral（englieshe，neu benrbeitete Aotlage）．
J．Schauder．Partielle Differentiolglecichuagen vome elliptivchen Typus，
A．Taraki，Arithmetik der Kardianleohlen．
Die Bände sind portofrei gegen eine direlat an
．．MONOGRAFJE MATEMATYCZNE＂ SEMINAR．MATEMAT．UNIWERS． WARSZAWA（Polen），OCZKI Nr． 3 ，
gerichtete Bestellung unter gleichzeitiger Überweisung des Betrages （oder dessen Einzablung auf das Polnische Postschechkonto P．K．O． N：45．177 Prof．Dr．K．Kuratowaki，，Monografje Mntemntyczne＂， $\mathrm{W}_{\text {arssawa }}$ ） au bexichen．Auch in Buchhandlungen erhallelich．
Der Preis dieses Bandes beträgt 5 Dollar U．S．A．
Die Mitglieder der Polaiselien Mathematischen Gesellechaft erlanten jeden Band sum Vorzngspreiso von is It．（in 3 Monatasahlinugen）．
$B: X \times X \rightarrow Y$ continuous bilinear
$\leadsto P: X \rightarrow Y, x \rightarrow B(x, x)$ continuous 2-homogeneous polynomial
$B: X \times X \rightarrow Y$ continuous bilinear
$\leadsto P: X \rightarrow Y, x \rightarrow B(x, x)$ continuous 2-homogeneous polynomial
B is not uniquely determined by P, but it is if we require B to be symmetric.
$B: X \times X \rightarrow Y$ continuous bilinear
$\leadsto P: X \rightarrow Y, x \rightarrow B(x, x)$ continuous 2-homogeneous polynomial
B is not uniquely determined by P, but it is if we require B to be symmetric.

Likewise: $B: X \times \cdots \times X \rightarrow Y$ m-linear, continuous, symmetric $\leadsto P: X \rightarrow Y, x \mapsto B(x, \ldots, x)$ continuous m-homogeneous polynomial and vice versa
$B: X \times X \rightarrow Y$ continuous bilinear
$\leadsto P: X \rightarrow Y, x \rightarrow B(x, x)$ continuous 2-homogeneous polynomial
B is not uniquely determined by P, but it is if we require B to be symmetric.

Likewise: $B: X \times \cdots \times X \rightarrow Y m$-linear, continuous, symmetric $\leadsto P: X \rightarrow Y, x \mapsto B(x, \ldots, x)$ continuous m-homogeneous polynomial and vice versa

All continuous m-homogeneous polynomials form a Banach space, $\mathcal{P}\left({ }^{m} X ; Y\right)$, under the norm $\|P\|=\sup \{\|P(x)\|:\|x\| \leq 1\}$.

Let $\widehat{\otimes}_{m, \pi} X=X \hat{\otimes}_{\pi} \cdots \hat{\otimes}_{\pi} X$ ．

Let $\widehat{\otimes}_{m, \pi} X=X \hat{\otimes}_{\pi} \cdots \hat{\otimes}_{\pi} X$.
Let $\otimes_{s, m, \pi} X$ be the closed linear span of the $x \otimes \cdots \otimes x$ ("symmetric tensor product").

Let $\widehat{\otimes}_{m, \pi} X=X \hat{\otimes}_{\pi} \cdots \hat{\otimes}_{\pi} X$.
Let $\widehat{\otimes}_{s, m, \pi} X$ be the closed linear span of the $x \otimes \cdots \otimes x$ ("symmetric tensor product").

Theorem (RR 1980)

$\widehat{\otimes}_{s, m, \pi} X$ linearises all continuous m-homogeneous polynomials:

Hahn－Banach theorem：Extension theorem for functionals，not necessarily for operators．

Hahn－Banach theorem：Extension theorem for functionals，not necessarily for operators．

Polynomial version（Aron－Berner）：Extension from X to $X^{* *}$ ．

Hahn－Banach theorem：Extension theorem for functionals，not necessarily for operators．

Polynomial version（Aron－Berner）：Extension from X to $X^{* *}$ ．
－Approach by ultraproducts（RR＋Mikael Lindström）

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)
- Positive polynomials (RR + Jim Cruickshank, John Loane)

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)
- Positive polynomials (RR + Jim Cruickshank, John Loane)

Aim: Geometric properties of $\mathcal{P}\left({ }^{m} X\right)$
(RR + Chris Boyd, Bogdan Grecu, Barry Turett)

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)
- Positive polynomials (RR + Jim Cruickshank, John Loane)

Aim: Geometric properties of $\mathcal{P}\left({ }^{m} X\right)$
(RR + Chris Boyd, Bogdan Grecu, Barry Turett)

- Rotundity of $\mathcal{P}\left({ }^{m} X\right)$?

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)
- Positive polynomials (RR + Jim Cruickshank, John Loane)

Aim: Geometric properties of $\mathcal{P}\left({ }^{m} X\right)$
(RR + Chris Boyd, Bogdan Grecu, Barry Turett)

- Rotundity of $\mathcal{P}\left({ }^{m} X\right)$?
- Smoothness?

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)
- Positive polynomials (RR + Jim Cruickshank, John Loane)

Aim: Geometric properties of $\mathcal{P}\left({ }^{m} X\right)$
(RR + Chris Boyd, Bogdan Grecu, Barry Turett)

- Rotundity of $\mathcal{P}\left({ }^{m} X\right)$?
- Smoothness?
- Extreme points

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)
- Positive polynomials (RR + Jim Cruickshank, John Loane)

Aim: Geometric properties of $\mathcal{P}\left({ }^{m} X\right)$
(RR + Chris Boyd, Bogdan Grecu, Barry Turett)

- Rotundity of $\mathcal{P}\left({ }^{m} X\right)$?
- Smoothness?
- Extreme points
- Schauder bases

Hahn-Banach theorem: Extension theorem for functionals, not necessarily for operators.

Polynomial version (Aron-Berner): Extension from X to $X^{* *}$.

- Approach by ultraproducts (RR + Mikael Lindström)
- Study of extendible polynomials (RR + Pádraigh Kirwan)
- Positive polynomials (RR + Jim Cruickshank, John Loane)

Aim: Geometric properties of $\mathcal{P}\left({ }^{m} X\right)$
(RR + Chris Boyd, Bogdan Grecu, Barry Turett)

- Rotundity of $\mathcal{P}\left({ }^{m} X\right)$?
- Smoothness?
- Extreme points
- Schauder bases
- Polynomial Dunford-Pettis property (Ray's first ever paper!)

... standing on the shoulders of giants (3)

Harald Bohr

．．．standing on the shoulders of giants（3）

Harald Bohr

\qquad
－ －のQく

... standing on the shoulders of giants (3)

Harald Bohr

Leopoldo Nachbin

... standing on the shoulders of giants (3)

Harald Bohr

Leopoldo Nachbin

A mapping $f: X \rightarrow Y$ between \mathbb{C}-Banach spaces is holomorphic if it is Fréchet differentiable,

A mapping $f: X \rightarrow Y$ between \mathbb{C}－Banach spaces is holomorphic if it is Fréchet differentiable，equivalently，if it is continuous and the restriction to every complex line is scalarly holomorphic，i．e．，

A mapping $f: X \rightarrow Y$ between \mathbb{C}-Banach spaces is holomorphic if it is Fréchet differentiable, equivalently, if it is continuous and the restriction to every complex line is scalarly holomorphic, i.e.,

$$
z \mapsto \ell(f(a+z v))
$$

is holomorphic on \mathbb{C} for all $a, v \in X, \ell \in Y^{*}$.

A mapping $f: X \rightarrow Y$ between \mathbb{C}-Banach spaces is holomorphic if it is Fréchet differentiable, equivalently, if it is continuous and the restriction to every complex line is scalarly holomorphic, i.e.,

$$
z \mapsto \ell(f(a+z v))
$$

is holomorphic on \mathbb{C} for all $a, v \in X, \ell \in Y^{*}$.
Bohr: Holomorphic functions of infinitely many variables; in modern terms $f: c_{0} \rightarrow \mathbb{C}$.

A mapping $f: X \rightarrow Y$ between \mathbb{C}-Banach spaces is holomorphic if it is Fréchet differentiable, equivalently, if it is continuous and the restriction to every complex line is scalarly holomorphic, i.e.,

$$
z \mapsto \ell(f(a+z v))
$$

is holomorphic on \mathbb{C} for all $a, v \in X, \ell \in Y^{*}$.
Bohr: Holomorphic functions of infinitely many variables; in modern terms $f: c_{0} \rightarrow \mathbb{C}$.

Nachbin: Spaces of holomorphic mappings and functions.

Taking it to the limit

Taylor expansion for holomorphic f ：

$$
f(x)=\sum_{m=0}^{\infty} P_{m}(x) ; \quad P_{m}: X \rightarrow Y m \text {-homogeneous polynomial. }
$$

Taking it to the limit

Taylor expansion for holomorphic f :

$$
f(x)=\sum_{m=0}^{\infty} P_{m}(x) ; \quad P_{m}: X \rightarrow Y m \text {-homogeneous polynomial. }
$$

Radius of uniform convergence: $R=\frac{1}{\lim \sup \sqrt[m]{\left\|P_{m}\right\|}}$;
if $r<R$, the series converges uniformly on $\{x:\|x\| \leq r\}$.

Taylor expansion for holomorphic f :

$$
f(x)=\sum_{m=0}^{\infty} P_{m}(x) ; \quad P_{m}: X \rightarrow Y m \text {-homogeneous polynomial. }
$$

Radius of uniform convergence: $R=\frac{1}{\lim \sup \sqrt[m]{\left\|P_{m}\right\|}}$;
if $r<R$, the series converges uniformly on $\{x:\|x\| \leq r\}$.
Example ($c_{0}=$ Banach space of all null sequences with the sup-norm):

$$
f: c_{0} \rightarrow \mathbb{C}, \quad z=\left(z_{m}\right) \mapsto \sum_{m=1}^{\infty} z_{m}^{m}
$$

Taylor expansion for holomorphic f :

$$
f(x)=\sum_{m=0}^{\infty} P_{m}(x) ; \quad P_{m}: X \rightarrow Y m \text {-homogeneous polynomial. }
$$

Radius of uniform convergence: $R=\frac{1}{\lim \sup \sqrt[m]{\left\|P_{m}\right\|}}$;
if $r<R$, the series converges uniformly on $\{x:\|x\| \leq r\}$.
Example ($c_{0}=$ Banach space of all null sequences with the sup-norm):

$$
f: c_{0} \rightarrow \mathbb{C}, \quad z=\left(z_{m}\right) \mapsto \sum_{m=1}^{\infty} z_{m}^{m}
$$

Series converges for each $z \in c_{0}$, but $R=1$.

Taylor expansion for holomorphic f :

$$
f(x)=\sum_{m=0}^{\infty} P_{m}(x) ; \quad P_{m}: X \rightarrow Y m \text {-homogeneous polynomial. }
$$

Radius of uniform convergence: $R=\frac{1}{\lim \sup \sqrt[m]{\left\|P_{m}\right\|}}$;
if $r<R$, the series converges uniformly on $\{x:\|x\| \leq r\}$.
Example ($c_{0}=$ Banach space of all null sequences with the sup-norm):

$$
f: c_{0} \rightarrow \mathbb{C}, \quad z=\left(z_{m}\right) \mapsto \sum_{m=1}^{\infty} z_{m}^{m}
$$

Series converges for each $z \in c_{0}$, but $R=1$. f is unbounded on the closed unit ball (take $z=(1,1, \ldots, 1,0,0,0, \ldots)$).

Taylor expansion for holomorphic f :

$$
f(x)=\sum_{m=0}^{\infty} P_{m}(x) ; \quad P_{m}: X \rightarrow Y m \text {-homogeneous polynomial. }
$$

Radius of uniform convergence: $R=\frac{1}{\lim \sup \sqrt[m]{\left\|P_{m}\right\|}}$;
if $r<R$, the series converges uniformly on $\{x:\|x\| \leq r\}$.
Example ($c_{0}=$ Banach space of all null sequences with the sup-norm):

$$
f: c_{0} \rightarrow \mathbb{C}, \quad z=\left(z_{m}\right) \mapsto \sum_{m=1}^{\infty} z_{m}^{m}
$$

Series converges for each $z \in c_{0}$, but $R=1$. f is unbounded on the closed unit ball (take $z=(1,1, \ldots, 1,0,0,0, \ldots)$).

Therefore, this function is not of bounded type (= taking bounded sets to bounded sets).

Enter RR：

－In－depth study of holomorphic functions on ℓ^{1} ．

－In－depth study of holomorphic functions on ℓ^{1} ．
－In－depth study of weakly compact holomorphic mappings．

- In-depth study of holomorphic functions on ℓ^{1}.
- In-depth study of weakly compact holomorphic mappings.
- Extensions of holomorphic functions (of bounded type) to the bidual.
- In-depth study of holomorphic functions on ℓ^{1}.
- In-depth study of weakly compact holomorphic mappings.
- Extensions of holomorphic functions (of bounded type) to the bidual.
- Factorisations of holomorphic mappings.
- In-depth study of holomorphic functions on ℓ^{1}.
- In-depth study of weakly compact holomorphic mappings.
- Extensions of holomorphic functions (of bounded type) to the bidual.
- Factorisations of holomorphic mappings.
- Holomorphy vs. real analyticity (RR + Chris Boyd, Nina Snigireva)

Enter RR:
 Holomorphic maps on Banach spaces

- In-depth study of holomorphic functions on ℓ^{1}.
- In-depth study of weakly compact holomorphic mappings.
- Extensions of holomorphic functions (of bounded type) to the bidual.
- Factorisations of holomorphic mappings.
- Holomorphy vs. real analyticity (RR + Chris Boyd, Nina Snigireva)

Citations by Year

I was at the mathematical school，where the master taught his pupils after a method scarcely imaginable to us in Europe．The proposition and demonstration were fairly written on a thin wafer，with ink composed of a cephalic tincture．This the student was to swallow upon a fasting stomach，and for three days following eat nothing but bread and water． As the wafer digested，the tincture mounted to his brain，bearing the proposition along with it．But the success hath not hitherto been answerable，partly by some error in the quantum or composition，and partly by the perverseness of lads，to whom this bolus is so nauseous， that they generally steal aside，and discharge it upwards before it can operate；neither have they been yet persuaded to use so long an abstinence as the prescription requires．

