Strong Pseudoconvexity in Banach Spaces

Sofia Ortega Castillo

CIMAT Guanajuato, Gto., Mexico

AGA Trinity College Dublin

9th of May 2019

Example

The following are domains of holomorphy:

- Any domain in the complex plane
- Domains of convergence of multivariable power series
- Any convex domain in a Banach space

A counterexample: Hartogs' domain.

< A > < > >

Example

The following are domains of holomorphy:

- Any domain in the complex plane
- Domains of convergence of multivariable power series
- Any convex domain in a Banach space

Example

The following are domains of holomorphy:

- Any domain in the complex plane
- Domains of convergence of multivariable power series
- Any convex domain in a Banach space

Example

The following are domains of holomorphy:

- Any domain in the complex plane
- Domains of convergence of multivariable power series

Any convex domain in a Banach space

Example

The following are domains of holomorphy:

- Any domain in the complex plane
- Domains of convergence of multivariable power series
- Any convex domain in a Banach space

Example

The following are domains of holomorphy:

- Any domain in the complex plane
- Domains of convergence of multivariable power series
- Any convex domain in a Banach space

Example

The following are domains of holomorphy:

- Any domain in the complex plane
- Domains of convergence of multivariable power series
- Any convex domain in a Banach space

Are there commonalities in the complex geometry of domains of holomorphy?

Remark

If $\Omega \subset \mathbb{C}^n$ is a convex domain with C^2 boundary, and if r is a defining function of $b\Omega$, then for all $p \in b\Omega$, $\sum_{j,k=1}^{2n} \frac{\partial^2 r}{\partial x_j \partial x_k}(p) \zeta_j \zeta_k \ge 0, \forall \zeta \in T_p(b\Omega) := \{\xi \in \mathbb{R}^{2n} : \sum_{j=1}^{2n} \frac{\partial r}{\partial x_j}(p) \xi_j = 0\}.$

Proposition (Levi, 1910-1911)

Every domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is Levi pseudoconvex i.e. when *r* is a defining function of $b\Omega$, for all $p \in b\Omega$,

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge 0, \, \forall t \in T_p^{\mathbb{C}}(b\Omega) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}.$$
(1)

S. Ortega Castillo (CIMAT)

Are there commonalities in the complex geometry of domains of holomorphy?

Remark

If $\Omega \subset \mathbb{C}^n$ is a convex domain with C^2 boundary, and if r is a defining function of $b\Omega$, then for all $p \in b\Omega$,

 $\sum_{j,k=1}^{2n} rac{\partial^2 r}{\partial x_j \partial x_k}(p) \zeta_j \zeta_k \geq 0, \, orall \zeta \in T_p(b\Omega) := \{ \xi \in \mathbb{R}^{2n} : \sum_{j=1}^{2n} rac{\partial r}{\partial x_j}(p) \xi_j = 0 \}.$

Proposition (Levi, 1910-1911)

Every domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is Levi pseudoconvex i.e. when *r* is a defining function of $b\Omega$, for all $p \in b\Omega$,

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge 0, \, \forall t \in T_p^{\mathbb{C}}(b\Omega) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}.$$
(1)

Are there commonalities in the complex geometry of domains of holomorphy?

Remark

If $\Omega \subset \mathbb{C}^n$ is a convex domain with C^2 boundary, and if r is a defining function of $b\Omega$, then for all $p \in b\Omega$, $\sum_{j,k=1}^{2n} \frac{\partial^2 r}{\partial x_j \partial x_k}(p) \zeta_j \zeta_k \ge 0, \forall \zeta \in T_p(b\Omega) := \{\xi \in \mathbb{R}^{2n} : \sum_{j=1}^{2n} \frac{\partial r}{\partial x_j}(p) \xi_j = 0\}.$

Proposition (Levi, 1910-1911)

Every domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is Levi pseudoconvex i.e. when *r* is a defining function of $b\Omega$, for all $p \in b\Omega$,

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge 0, \, \forall t \in T_p^{\mathbb{C}}(b\Omega) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}.$$
(1)

Are there commonalities in the complex geometry of domains of holomorphy?

Remark

If $\Omega \subset \mathbb{C}^n$ is a convex domain with C^2 boundary, and if r is a defining function of $b\Omega$, then for all $p \in b\Omega$, $\sum_{j,k=1}^{2n} \frac{\partial^2 r}{\partial x_j \partial x_k}(p) \zeta_j \zeta_k \ge 0, \forall \zeta \in T_p(b\Omega) := \{\xi \in \mathbb{R}^{2n} : \sum_{j=1}^{2n} \frac{\partial r}{\partial x_j}(p) \xi_j = 0\}.$

Proposition (Levi, 1910-1911)

Every domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is Levi pseudoconvex i.e. when *r* is a defining function of $b\Omega$, for all $p \in b\Omega$,

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge 0, \, \forall t \in T_p^{\mathbb{C}}(b\Omega) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}.$$
(1)

Are there commonalities in the complex geometry of domains of holomorphy?

Remark

If $\Omega \subset \mathbb{C}^n$ is a convex domain with C^2 boundary, and if r is a defining function of $b\Omega$, then for all $p \in b\Omega$, $\sum_{j,k=1}^{2n} \frac{\partial^2 r}{\partial x_j \partial x_k}(p) \zeta_j \zeta_k \ge 0, \forall \zeta \in T_p(b\Omega) := \{\xi \in \mathbb{R}^{2n} : \sum_{j=1}^{2n} \frac{\partial r}{\partial x_j}(p) \xi_j = 0\}.$

Proposition (Levi, 1910-1911)

Every domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is Levi pseudoconvex i.e. when *r* is a defining function of $b\Omega$, for all $p \in b\Omega$,

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge 0, \, \forall t \in T_p^{\mathbb{C}}(b\Omega) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}.$$
(1)

Are there commonalities in the complex geometry of domains of holomorphy?

Remark

If $\Omega \subset \mathbb{C}^n$ is a convex domain with C^2 boundary, and if r is a defining function of $b\Omega$, then for all $p \in b\Omega$, $\sum_{j,k=1}^{2n} \frac{\partial^2 r}{\partial x_j \partial x_k}(p) \zeta_j \zeta_k \ge 0, \forall \zeta \in T_p(b\Omega) := \{\xi \in \mathbb{R}^{2n} : \sum_{j=1}^{2n} \frac{\partial r}{\partial x_j}(p) \xi_j = 0\}.$

Proposition (Levi, 1910-1911)

Every domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is Levi pseudoconvex i.e. when *r* is a defining function of $b\Omega$, for all $p \in b\Omega$,

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge 0, \, \forall t \in T_p^{\mathbb{C}}(b\Omega) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}.$$
(1)

A domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is called strictly (Levi) pseudoconvex when moreover we have

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} > 0, \, \forall t \neq 0 \in T_p^{\mathbb{C}}(bU) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \},$$
(2)

for *r* a defining function of $b\Omega$ and all $p \in b\Omega$.

Proposition (*HFIRSCV* of Range, 1986)

A domain $\Omega \subset \mathbb{C}^n$ with C^2 boundary is strongly pseudoconvex iff there exists a defining function of $b\Omega$, $r: U \supset b\Omega \to \mathbb{C}$, such that there exist constants L, M > 0 satisfying that for all $p \in U$ and $t \in \mathbb{C}^n$,

 $|\nabla r(p)| \ge M.$

・ 回 ト ・ ヨ ト ・ ヨ ト

A domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is called strictly (Levi) pseudoconvex when moreover we have

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} > 0, \ \forall t \neq 0 \in T_p^{\mathbb{C}}(bU) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}, \ (2)$$

for *r* a defining function of $b\Omega$ and all $p \in b\Omega$.

Proposition (*HFIRSCV* of Range, 1986)

A domain $\Omega \subset \mathbb{C}^n$ with C^2 boundary is strongly pseudoconvex iff there exists a defining function of $b\Omega$, $r: U \supset b\Omega \to \mathbb{C}$, such that there exist constants L, M > 0 satisfying that for all $p \in U$ and $t \in \mathbb{C}^n$,

 $|\nabla r(p)| \ge M.$

< 回 > < 三 > < 三 >

A domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is called strictly (Levi) pseudoconvex when moreover we have

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} > 0, \ \forall t \neq 0 \in T_p^{\mathbb{C}}(bU) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}, \ (2)$$

for *r* a defining function of $b\Omega$ and all $p \in b\Omega$.

Proposition (*HFIRSCV* of Range, 1986)

A domain $\Omega \subset \mathbb{C}^n$ with C^2 boundary is strongly pseudoconvex iff there exists a defining function of $b\Omega$, $r: U \supset b\Omega \to \mathbb{C}$, such that there exist constants L, M > 0 satisfying that for all $p \in U$ and $t \in \mathbb{C}^n$,

 $2 |\nabla r(p)| \ge M.$

A domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is called strictly (Levi) pseudoconvex when moreover we have

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} > 0, \ \forall t \neq 0 \in T_p^{\mathbb{C}}(bU) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}, \ (2)$$

for *r* a defining function of $b\Omega$ and all $p \in b\Omega$.

Proposition (*HFIRSCV* of Range, 1986)

A domain $\Omega \subset \mathbb{C}^n$ with C^2 boundary is strongly pseudoconvex iff there exists a defining function of $b\Omega$, $r: U \supset b\Omega \to \mathbb{C}$, such that there exist constants L, M > 0 satisfying that for all $p \in U$ and $t \in \mathbb{C}^n$,

S. Ortega Castillo (CIMAT)

A domain of holomorphy $\Omega \subset \mathbb{C}^n$ with C^2 boundary is called strictly (Levi) pseudoconvex when moreover we have

$$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} > 0, \ \forall t \neq 0 \in T_p^{\mathbb{C}}(bU) := \{ \xi \in \mathbb{C}^n : \sum_{j=1}^{n} \frac{\partial r}{\partial z_j}(p) \xi_j = 0 \}, \ (2)$$

for *r* a defining function of $b\Omega$ and all $p \in b\Omega$.

Proposition (*HFIRSCV* of Range, 1986)

A domain $\Omega \subset \mathbb{C}^n$ with C^2 boundary is strongly pseudoconvex iff there exists a defining function of $b\Omega$, $r: U \supset b\Omega \to \mathbb{C}$, such that there exist constants L, M > 0 satisfying that for all $p \in U$ and $t \in \mathbb{C}^n$,

 $(2 |\nabla r(p)| \ge M.$

The mentioned condition on the complex Hessian of a C^2 function $f: U \subset \mathbb{C}^n \to \mathbb{R}$ given by

$$\sum_{i,k=1}^{n} \frac{\partial^2 f}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge L ||t||^2 \text{ for all } p \in U, \ t \in \mathbb{C}^n,$$

is referred to as f being a C^2 strongly plurisubharmonic function, since it is more than plurisubharmonic.

A function $f: U \subset \mathbb{C}^n \to [-\infty, \infty)$ is called plurisubharmonic if f is upper semicontinuous and for each $a \in U$ and $b \in \mathbb{C}^n$ such that $a + \overline{\mathbb{D}} \cdot b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta.$$

Remark

If $f\in C^2(U), f$ is plurisubharmonic iff $\sum_{j,k=1}^nrac{\partial^2 f}{\partial z_i\partial\overline{z_k}}(p)t_j\overline{t_k}\geq 0.$

The mentioned condition on the complex Hessian of a C^2 function $f: U \subset \mathbb{C}^n \to \mathbb{R}$ given by

$$\sum_{j,k=1}^{n} \frac{\partial^2 f}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge L \|t\|^2 \text{ for all } p \in U, \ t \in \mathbb{C}^n,$$

is referred to as f being a C^2 strongly plurisubharmonic function, since it is more than plurisubharmonic.

A function $f: U \subset \mathbb{C}^n \to [-\infty, \infty)$ is called plurisubharmonic if f is upper semicontinuous and for each $a \in U$ and $b \in \mathbb{C}^n$ such that $a + \overline{\mathbb{D}} \cdot b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta.$$

Remark

If $f \in C^2(U)$, f is plurisubharmonic iff $\sum_{j,k=1}^n rac{\partial^2 f}{\partial z_i \partial \overline{z_k}}(p) t_j \overline{t_k} \geq 0$.

The mentioned condition on the complex Hessian of a C^2 function $f: U \subset \mathbb{C}^n \to \mathbb{R}$ given by

$$\sum_{j,k=1}^{n} \frac{\partial^2 f}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge L \|t\|^2 \text{ for all } p \in U, \ t \in \mathbb{C}^n,$$

is referred to as f being a C^2 strongly plurisubharmonic function, since it is more than plurisubharmonic.

A function $f: U \subset \mathbb{C}^n \to [-\infty, \infty)$ is called plurisubharmonic if f is upper semicontinuous and for each $a \in U$ and $b \in \mathbb{C}^n$ such that $a + \overline{\mathbb{D}} \cdot b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta.$$

Remark

If $f \in C^2(U)$, f is plurisubharmonic iff $\sum_{j,k=1}^n rac{\partial^2 f}{\partial z_i \partial \overline{z_k}}(p) t_j \overline{t_k} \geq 0$.

The mentioned condition on the complex Hessian of a C^2 function $f: U \subset \mathbb{C}^n \to \mathbb{R}$ given by

$$\sum_{j,k=1}^{n} \frac{\partial^2 f}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge L \|t\|^2 \text{ for all } p \in U, \ t \in \mathbb{C}^n,$$

is referred to as f being a C^2 strongly plurisubharmonic function, since it is more than plurisubharmonic.

A function $f: U \subset \mathbb{C}^n \to [-\infty, \infty)$ is called plurisubharmonic if f is upper semicontinuous and for each $a \in U$ and $b \in \mathbb{C}^n$ such that $a + \overline{\mathbb{D}} \cdot b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta.$$

Remark

If $f \in C^2(U), f$ is plurisubharmonic iff $\sum_{j,k=1}^n rac{\partial^2 f}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \geq 0.$

The mentioned condition on the complex Hessian of a C^2 function $f: U \subset \mathbb{C}^n \to \mathbb{R}$ given by

$$\sum_{j,k=1}^{n} \frac{\partial^2 f}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge L \|t\|^2 \text{ for all } p \in U, \ t \in \mathbb{C}^n,$$

is referred to as f being a C^2 strongly plurisubharmonic function, since it is more than plurisubharmonic.

A function $f: U \subset \mathbb{C}^n \to [-\infty, \infty)$ is called plurisubharmonic if f is upper semicontinuous and for each $a \in U$ and $b \in \mathbb{C}^n$ such that $a + \overline{\mathbb{D}} \cdot b \subset U$,

$$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta.$$

Remark

If $f \in C^2(U)$, f is plurisubharmonic iff $\sum_{j,k=1}^n \frac{\partial^2 f}{\partial z_j \partial \overline{z_k}}(p) t_j \overline{t_k} \ge 0$.

This has been generalized in the sense of distribution: Given $f \in L^1(U, loc), f$ is called plurisubharmonic in distribution if the distribution it induces is plurisubharmonic, while a distribution $T \in \mathscr{D}'(U)$ is called plurisubharmonic when

 $\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge 0, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n.$

Proposition (Notions of Convexity of Hörmander, 1994)

This has been generalized in the sense of distribution: Given $f \in L^1(U, loc), f$ is called plurisubharmonic in distribution if the distribution it induces is plurisubharmonic, while a distribution $T \in \mathscr{D}'(U)$ is called plurisubharmonic when

 $\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge 0, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n.$

Proposition (Notions of Convexity of Hörmander, 1994)

This has been generalized in the sense of distribution: Given $f \in L^1(U, loc)$, f is called plurisubharmonic in distribution if the distribution it induces is plurisubharmonic, while a distribution $T \in \mathscr{D}'(U)$ is called plurisubharmonic when

 $\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge 0, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n.$

Proposition (Notions of Convexity of Hörmander, 1994)

This has been generalized in the sense of distribution: Given $f \in L^1(U, loc)$, f is called plurisubharmonic in distribution if the distribution it induces is plurisubharmonic, while a distribution $T \in \mathscr{D}'(U)$ is called plurisubharmonic when

$$\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge 0, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n.$$

Proposition (Notions of Convexity of Hörmander, 1994)

This has been generalized in the sense of distribution: Given $f \in L^1(U, loc)$, f is called plurisubharmonic in distribution if the distribution it induces is plurisubharmonic, while a distribution $T \in \mathscr{D}'(U)$ is called plurisubharmonic when

 $\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge 0, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n.$

Proposition (Notions of Convexity of Hörmander, 1994)

This has been generalized in the sense of distribution: Given $f \in L^1(U, loc)$, f is called plurisubharmonic in distribution if the distribution it induces is plurisubharmonic, while a distribution $T \in \mathscr{D}'(U)$ is called plurisubharmonic when

 $\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge 0, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n.$

Proposition (Notions of Convexity of Hörmander, 1994)

This has been generalized in the sense of distribution: Given $f \in L^1(U, loc)$, f is called plurisubharmonic in distribution if the distribution it induces is plurisubharmonic, while a distribution $T \in \mathscr{D}'(U)$ is called plurisubharmonic when

 $\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge 0, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n.$

Proposition (Notions of Convexity of Hörmander, 1994)

Let us say that a distribution $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic when there exists $\psi \in C^{\infty}(U)$ positive such that

 $\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge (\int_U \psi \cdot \phi \ d\lambda) ||t||^2, \text{ for all } \phi \ge 0 \text{ in } \mathcal{D}(U) \text{ and } t \in \mathbb{C}^n,$

and in case ψ is a constant M > 0, call T strongly plurisubharmonic.

Given an upper semicontinuous function $g: U \subset X \to [-\infty, \infty)$, let us call it strictly plurisubharmonic on average when we can find a positive $\varphi \in C^{\infty}(U)$ such that for all $a \in U$ and $b \in X$ of small norm,

$$\varphi(a) \|b\|^2 + g(a) \le \frac{1}{2\pi} \int_0^{2\pi} g(a + e^{i\theta}b) d\theta,$$
 (3)

and in case φ is a constant M > 0, call g strongly plurisubharmonic on average.

Let us say that a distribution $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic when there exists $\psi \in C^{\infty}(U)$ positive such that

$$\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge (\int_U \psi \cdot \phi \ d\lambda) \|t\|^2, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n,$$

and in case ψ is a constant M > 0, call *T* strongly plurisubharmonic.

Given an upper semicontinuous function $g: U \subset X \to [-\infty, \infty)$, let us call it strictly plurisubharmonic on average when we can find a positive $\varphi \in C^{\infty}(U)$ such that for all $a \in U$ and $b \in X$ of small norm,

$$\varphi(a) \|b\|^2 + g(a) \le \frac{1}{2\pi} \int_0^{2\pi} g(a + e^{i\theta}b) d\theta,$$
 (3)

and in case φ is a constant M > 0, call g strongly plurisubharmonic on average.

S. Ortega Castillo (CIMAT)

Let us say that a distribution $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic when there exists $\psi \in C^{\infty}(U)$ positive such that

$$\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge (\int_U \psi \cdot \phi \ d\lambda) \|t\|^2, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n,$$

and in case ψ is a constant M > 0, call *T* strongly plurisubharmonic.

Given an upper semicontinuous function $g: U \subset X \to [-\infty, \infty)$, let us call it strictly plurisubharmonic on average when we can find a positive $\varphi \in C^{\infty}(U)$ such that for all $a \in U$ and $b \in X$ of small norm,

$$\varphi(a)\|b\|^2 + g(a) \le \frac{1}{2\pi} \int_0^{2\pi} g(a + e^{i\theta}b)d\theta,$$
 (3)

and in case φ is a constant M > 0, call g strongly plurisubharmonic on average.

Let us say that a distribution $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic when there exists $\psi \in C^{\infty}(U)$ positive such that

$$\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge (\int_U \psi \cdot \phi \ d\lambda) \|t\|^2, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n,$$

and in case ψ is a constant M > 0, call *T* strongly plurisubharmonic.

Given an upper semicontinuous function $g: U \subset X \to [-\infty, \infty)$, let us call it strictly plurisubharmonic on average when we can find a positive $\varphi \in C^{\infty}(U)$ such that for all $a \in U$ and $b \in X$ of small norm,

$$\varphi(a) \|b\|^2 + g(a) \le \frac{1}{2\pi} \int_0^{2\pi} g(a + e^{i\theta}b) d\theta,$$
 (3)

and in case φ is a constant M > 0, call g strongly plurisubharmonic on average.

Let us say that a distribution $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic when there exists $\psi \in C^{\infty}(U)$ positive such that

$$\sum_{j,k=1}^{n} \frac{\partial^2 T}{\partial z_j \partial \overline{z_k}}(\phi) t_j \overline{t_k} \ge (\int_U \psi \cdot \phi \ d\lambda) \|t\|^2, \text{ for all } \phi \ge 0 \text{ in } \mathscr{D}(U) \text{ and } t \in \mathbb{C}^n,$$

and in case ψ is a constant M > 0, call *T* strongly plurisubharmonic.

Given an upper semicontinuous function $g: U \subset X \to [-\infty, \infty)$, let us call it strictly plurisubharmonic on average when we can find a positive $\varphi \in C^{\infty}(U)$ such that for all $a \in U$ and $b \in X$ of small norm,

$$\varphi(a) \|b\|^2 + g(a) \le \frac{1}{2\pi} \int_0^{2\pi} g(a + e^{i\theta}b) d\theta,$$
 (3)

and in case φ is a constant M > 0, call g strongly plurisubharmonic on average.

イロン イロン イヨン イヨン 二日

Suppose that *U* is a connected domain in \mathbb{C}^n . If $f \neq -\infty$ is strictly plurisubharmonic on average, then *f* is strictly plurisubharmonic in distribution. Conversely, if $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ is strictly plurisubharmonic in average such that $f = g \lambda$ -a.e.

Remark

In finite dimension, strict plurisubharmonicity of a C^2 function $F: U \subset \mathbb{C}^n \to [-\infty,\infty)$ is known to being equivalent to having, for each $a \in U$, a nonempty ball $B(a,r) \subset U$ and a constant $\varepsilon > 0$ such that $F - \varepsilon || \cdot ||^2$ is plurisubharmonic on B(a,r), but this is no longer true in infinite dimension.

Suppose that *U* is a connected domain in \mathbb{C}^n . If $f \neq -\infty$ is strictly plurisubharmonic on average, then *f* is strictly plurisubharmonic in distribution. Conversely, if $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic on average such that $f = g \lambda$ -a.e.

Remark

In finite dimension, strict plurisubharmonicity of a C^2 function $F: U \subset \mathbb{C}^n \to [-\infty,\infty)$ is known to being equivalent to having, for each $a \in U$, a nonempty ball $B(a,r) \subset U$ and a constant $\varepsilon > 0$ such that $F - \varepsilon || \cdot ||^2$ is plurisubharmonic on B(a,r), but this is no longer true in infinite dimension.

Suppose that *U* is a connected domain in \mathbb{C}^n . If $f \neq -\infty$ is strictly plurisubharmonic on average, then *f* is strictly plurisubharmonic in distribution. Conversely, if $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic on average such that $f = g \lambda$ -a.e.

Remark

In finite dimension, strict plurisubharmonicity of a C^2 function $F: U \subset \mathbb{C}^n \to [-\infty, \infty)$ is known to being equivalent to having, for each $a \in U$, a nonempty ball $B(a,r) \subset U$ and a constant $\varepsilon > 0$ such that $F - \varepsilon \| \cdot \|^2$ is plurisubharmonic on B(a,r), but this is no longer true in infinite dimension.

S. Ortega Castillo (CIMAT)

Suppose that *U* is a connected domain in \mathbb{C}^n . If $f \neq -\infty$ is strictly plurisubharmonic on average, then *f* is strictly plurisubharmonic in distribution. Conversely, if $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic on average such that $f = g \lambda$ -a.e.

Remark

In finite dimension, strict plurisubharmonicity of a C^2 function $F: U \subset \mathbb{C}^n \to [-\infty, \infty)$ is known to being equivalent to having, for each $a \in U$, a nonempty ball $B(a, r) \subset U$ and a constant $\varepsilon > 0$ such that $F - \varepsilon \| \cdot \|^2$ is plurisubharmonic on B(a, r), but this is no longer true in infinite dimension.

Suppose that *U* is a connected domain in \mathbb{C}^n . If $f \neq -\infty$ is strictly plurisubharmonic on average, then *f* is strictly plurisubharmonic in distribution. Conversely, if $T \in \mathscr{D}'(U)$ is strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic then there exists $f \in L^1(U, loc)$ strictly plurisubharmonic on average such that *f* induces the distribution *T*. As a corollary, if $f \in L^1(U, loc)$ is strictly plurisubharmonic in distribution then there exists $g \in L^1(U, loc)$ strictly plurisubharmonic on average such that $f = g \lambda$ -a.e.

Remark

In finite dimension, strict plurisubharmonicity of a C^2 function $F: U \subset \mathbb{C}^n \to [-\infty,\infty)$ is known to being equivalent to having, for each $a \in U$, a nonempty ball $B(a,r) \subset U$ and a constant $\varepsilon > 0$ such that $F - \varepsilon \| \cdot \|^2$ is plurisubharmonic on B(a,r), but this is no longer true in infinite dimension.

S. Ortega Castillo (CIMAT)

Consider the space of complex sequences $(z_n) \subset \mathbb{C}^{\mathbb{N}}$ such that

$$||(z_n)|| = \sqrt{\sum_{k=1}^{\infty} |z_k|^2/k^2} < \infty,$$

which is a Hilbert space, call it X.

Consider the function on *X*, $F(z) = \sum_{k=1}^{\infty} |z_k|^2 / k^3$, which has positive definite complex Hessian

$$D'D''F(z)(w,w) = \sum_{k=1}^{\infty} |w_k|^2 / k^3.$$

Consider the space of complex sequences $(z_n) \subset \mathbb{C}^{\mathbb{N}}$ such that

$$||(z_n)|| = \sqrt{\sum_{k=1}^{\infty} |z_k|^2/k^2} < \infty,$$

which is a Hilbert space, call it X.

Consider the function on *X*, $F(z) = \sum_{k=1}^{\infty} |z_k|^2 / k^3$, which has positive definite complex Hessian

$$D'D''F(z)(w,w) = \sum_{k=1}^{\infty} |w_k|^2 / k^3.$$

Consider the space of complex sequences $(z_n) \subset \mathbb{C}^{\mathbb{N}}$ such that

$$||(z_n)|| = \sqrt{\sum_{k=1}^{\infty} |z_k|^2/k^2} < \infty,$$

which is a Hilbert space, call it X.

Consider the function on *X*, $F(z) = \sum_{k=1}^{\infty} |z_k|^2 / k^3$, which has positive definite complex Hessian

$$D'D''F(z)(w,w) = \sum_{k=1}^{\infty} |w_k|^2 / k^3.$$

However, this function $F(z) = \sum_{k=1}^{\infty} |z_k|^2 / k^3$ does not admit $\varepsilon > 0$ such that, for *z* near to z_0 ,

$$F(z) - \varepsilon ||z||^2 = \sum_{k=1}^{\infty} |z_k|^2 / k^3 - \varepsilon \sum_{k=1}^{\infty} |z_k|^2 / k^2 = \sum_{k=1}^{\infty} |z_k|^2 (1/k^3 - \varepsilon/k^2)$$

is plurisubharmonic, since its complex Hessian at z₀,

$$D'D''(F - \varepsilon ||\cdot||^2)(z_0)(w, w) = \sum_{k=1}^{\infty} |w_k|^2 (1/k^3 - \varepsilon/k^2),$$

eventually has eigenvalues which are negative.

A (1) > A (2) > A

However, this function $F(z) = \sum_{k=1}^{\infty} |z_k|^2 / k^3$ does not admit $\varepsilon > 0$ such that, for *z* near to z_0 ,

$$F(z) - \varepsilon ||z||^2 = \sum_{k=1}^{\infty} |z_k|^2 / k^3 - \varepsilon \sum_{k=1}^{\infty} |z_k|^2 / k^2 = \sum_{k=1}^{\infty} |z_k|^2 (1/k^3 - \varepsilon/k^2)$$

is plurisubharmonic, since its complex Hessian at z_0 ,

$$D'D''(F - \varepsilon \| \cdot \|^2)(z_0)(w, w) = \sum_{k=1}^{\infty} |w_k|^2 (1/k^3 - \varepsilon/k^2),$$

eventually has eigenvalues which are negative.

If *U* is an open domain in a Banach space *X*, a function $f \in C^2(U, \mathbb{R})$ is strictly plurisubharmonic iff it is strictly plurisubharmonic on average.

Remark

A function $F: U \subset X \to [-\infty,\infty)$ that locally admits an $\varepsilon > 0$ such that $F - \varepsilon \| \cdot \|^2$ is plurisubharmonic may not be strictly plurisubharmonic on average, since the squared norm is plurisubharmonic but may not be strictly plurisubhamonic on average. This is the case in $X = \ell_{\infty}$.

Remark

If *U* is an open domain in a Banach space *X*, a function $f \in C^2(U, \mathbb{R})$ is strictly plurisubharmonic iff it is strictly plurisubharmonic on average.

Remark

A function $F: U \subset X \to [-\infty,\infty)$ that locally admits an $\varepsilon > 0$ such that $F - \varepsilon || \cdot ||^2$ is plurisubharmonic may not be strictly plurisubharmonic on average, since the squared norm is plurisubharmonic but may not be strictly plurisubhamonic on average. This is the case in $X = \ell_{\infty}$.

Remark

If *U* is an open domain in a Banach space *X*, a function $f \in C^2(U, \mathbb{R})$ is strictly plurisubharmonic iff it is strictly plurisubharmonic on average.

Remark

A function $F: U \subset X \to [-\infty,\infty)$ that locally admits an $\varepsilon > 0$ such that $F - \varepsilon || \cdot ||^2$ is plurisubharmonic may not be strictly plurisubharmonic on average, since the squared norm is plurisubharmonic but may not be strictly plurisubhamonic on average. This is the case in $X = \ell_{\infty}$.

Remark

If *U* is an open domain in a Banach space *X*, a function $f \in C^2(U, \mathbb{R})$ is strictly plurisubharmonic iff it is strictly plurisubharmonic on average.

Remark

A function $F: U \subset X \to [-\infty,\infty)$ that locally admits an $\varepsilon > 0$ such that $F - \varepsilon || \cdot ||^2$ is plurisubharmonic may not be strictly plurisubharmonic on average, since the squared norm is plurisubharmonic but may not be strictly plurisubhamonic on average. This is the case in $X = \ell_{\infty}$.

Remark

Strictly plurisubharmonic functions on average without two degrees of differentiability exist in infinite-dimensional ambient spaces, such as the norm of ℓ_1 : $||(z_n)||_1 = \sum_{n=1}^{\infty} |z_n|$.

S. Ortega Castillo (CIMAT)

Strong Pseudoconvexity

If *U* is an open domain in a Banach space *X*, a function $f \in C^2(U, \mathbb{R})$ is strictly plurisubharmonic iff it is strictly plurisubharmonic on average.

Remark

A function $F: U \subset X \to [-\infty,\infty)$ that locally admits an $\varepsilon > 0$ such that $F - \varepsilon || \cdot ||^2$ is plurisubharmonic may not be strictly plurisubharmonic on average, since the squared norm is plurisubharmonic but may not be strictly plurisubhamonic on average. This is the case in $X = \ell_{\infty}$.

Remark

Example

Spaces whose norm is strictly plurisubharmonic on average include the 2-uniformly PL-convex spaces, where a Banach space *X* is 2-uniformly PL-convex if for some $0 < q < \infty$ there exists $\lambda > 0$ such that,

$$(\frac{1}{2\pi}\int_{0}^{2\pi} \|a+e^{i\theta}b\|^{q}d\theta)^{1/q} \ge (\|a\|^{2}+\lambda\|b\|^{2})^{1/2}$$

for all a and b in X.

Davis, Garling and Tomczak-Jaegermann proved in 1984 that for $p \in [1,2]$, $L_p(\Sigma, \Omega, \mu)$ is 2-uniformly PL-convex.

<回とくほとくほ

Example

Spaces whose norm is strictly plurisubharmonic on average include the 2-uniformly PL-convex spaces, where a Banach space *X* is 2-uniformly PL-convex if for some $0 < q < \infty$ there exists $\lambda > 0$ such that,

$$(rac{1}{2\pi}\int_{0}^{2\pi}\|a+e^{i heta}b\|^{q}d heta)^{1/q} \geq (\|a\|^{2}+\lambda\|b\|^{2})^{1/2}$$

for all *a* and *b* in *X*.

Davis, Garling and Tomczak-Jaegermann proved in 1984 that for $p \in [1,2]$, $L_p(\Sigma, \Omega, \mu)$ is 2-uniformly PL-convex.

イロト イヨト イヨト イヨト

Example

Spaces whose norm is strictly plurisubharmonic on average include the 2-uniformly PL-convex spaces, where a Banach space *X* is 2-uniformly PL-convex if for some $0 < q < \infty$ there exists $\lambda > 0$ such that,

$$(rac{1}{2\pi}\int_{0}^{2\pi}\|a+e^{i heta}b\|^{q}d heta)^{1/q} \geq (\|a\|^{2}+\lambda\|b\|^{2})^{1/2}$$

for all *a* and *b* in *X*.

Davis, Garling and Tomczak-Jaegermann proved in 1984 that for $p \in [1,2]$, $L_p(\Sigma, \Omega, \mu)$ is 2-uniformly PL-convex.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let U be an open domain in \mathbb{C}^n with C^2 boundary. Then U is strongly pseudoconvex if and only if there exist a positive constant L, a neighborhood V of bU and $\rho \in C^2(V)$ a defining function of bU such that,

•
$$\sum_{j,k=1}^{n} \frac{\partial^2 (-\log|\rho|)}{\partial z_i \partial \overline{z_k}} (a) b_j \overline{b_k} \ge \frac{L}{|\rho(a)|} ||b||^2$$
 for all $a \in U \cap V$ and $b \in \mathbb{C}^n$.

• $|\nabla \rho(a)| \ge M$ for all $a \in U \cap V$.

If $U \subset \mathbb{C}^n$ is an open domain with C^1 boundary, let us call U strongly pseudoconvex if there exist a positive constant L, a neighborhood V of bU and $\rho \in C^1(V)$ a defining function of bU such that for $a \in U \cap V$ and $b \in \mathbb{C}^n$ of small norm,

$$\int_{0}^{2\pi} -\log|\rho|(a+e^{i\theta}b)d\theta \ge -\log|\rho|(a)+L||b||^{2}$$

Let *U* be an open domain in \mathbb{C}^n with C^2 boundary. Then *U* is strongly pseudoconvex if and only if there exist a positive constant *L*, a neighborhood *V* of *bU* and $\rho \in C^2(V)$ a defining function of *bU* such that,

• $\sum_{j,k=1}^{n} \frac{\partial^2 (-\log|\rho|)}{\partial z_j \partial \overline{z_k}} (a) b_j \overline{b_k} \ge \frac{L}{|\rho(a)|} ||b||^2$ for all $a \in U \cap V$ and $b \in \mathbb{C}^n$.

• $|\nabla \rho(a)| \ge M$ for all $a \in U \cap V$.

If $U \subset \mathbb{C}^n$ is an open domain with C^1 boundary, let us call U strongly pseudoconvex if there exist a positive constant L, a neighborhood V of bU and $\rho \in C^1(V)$ a defining function of bU such that for $a \in U \cap V$ and $b \in \mathbb{C}^n$ of small norm,

$$\int_{0}^{2\pi} -\log|\rho|(a+e^{i\theta}b)d\theta \ge -\log|\rho|(a)+L||b||^{2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *U* be an open domain in \mathbb{C}^n with C^2 boundary. Then *U* is strongly pseudoconvex if and only if there exist a positive constant *L*, a neighborhood *V* of *bU* and $\rho \in C^2(V)$ a defining function of *bU* such that,

•
$$\sum_{j,k=1}^{n} \frac{\partial^2 (-\log|\rho|)}{\partial z_j \partial \overline{z_k}} (a) b_j \overline{b_k} \ge \frac{L}{|\rho(a)|} \|b\|^2$$
 for all $a \in U \cap V$ and $b \in \mathbb{C}^n$.

• $|\nabla \rho(a)| \ge M$ for all $a \in U \cap V$.

If $U \subset \mathbb{C}^n$ is an open domain with C^1 boundary, let us call U strongly pseudoconvex if there exist a positive constant L, a neighborhood V of bU and $\rho \in C^1(V)$ a defining function of bU such that for $a \in U \cap V$ and $b \in \mathbb{C}^n$ of small norm,

$$\int_{0}^{2\pi} -\log|\rho|(a+e^{i\theta}b)d\theta \ge -\log|\rho|(a)+L||b||^{2}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Let *U* be an open domain in \mathbb{C}^n with C^2 boundary. Then *U* is strongly pseudoconvex if and only if there exist a positive constant *L*, a neighborhood *V* of *bU* and $\rho \in C^2(V)$ a defining function of *bU* such that,

•
$$\sum_{j,k=1}^{n} \frac{\partial^2 (-\log|\rho|)}{\partial z_j \partial \overline{z_k}} (a) b_j \overline{b_k} \geq \frac{L}{|\rho(a)|} \|b\|^2$$
 for all $a \in U \cap V$ and $b \in \mathbb{C}^n$.

•
$$|\nabla \rho(a)| \ge M$$
 for all $a \in U \cap V$.

If $U \subset \mathbb{C}^n$ is an open domain with C^1 boundary, let us call U strongly pseudoconvex if there exist a positive constant L, a neighborhood V of bU and $\rho \in C^1(V)$ a defining function of bU such that for $a \in U \cap V$ and $b \in \mathbb{C}^n$ of small norm,

$$\int_{0}^{2\pi} -\log|\rho|(a+e^{i\theta}b)d\theta \ge -\log|\rho|(a)+L||b||^{2}$$

Let *U* be an open domain in \mathbb{C}^n with C^2 boundary. Then *U* is strongly pseudoconvex if and only if there exist a positive constant *L*, a neighborhood *V* of *bU* and $\rho \in C^2(V)$ a defining function of *bU* such that,

•
$$\sum_{j,k=1}^{n} \frac{\partial^2 (-\log|\rho|)}{\partial z_j \partial \overline{z_k}} (a) b_j \overline{b_k} \geq \frac{L}{|\rho(a)|} \|b\|^2$$
 for all $a \in U \cap V$ and $b \in \mathbb{C}^n$.

•
$$|\nabla \rho(a)| \ge M$$
 for all $a \in U \cap V$.

If $U \subset \mathbb{C}^n$ is an open domain with C^1 boundary, let us call U strongly pseudoconvex if there exist a positive constant L, a neighborhood V of bU and $\rho \in C^1(V)$ a defining function of bU such that for $a \in U \cap V$ and $b \in \mathbb{C}^n$ of small norm,

$$\int_{0}^{2\pi} -\log|\rho|(a+e^{i\theta}b)d\theta \ge -\log|\rho|(a)+L||b||^{2}$$

Let *U* be an open domain in \mathbb{C}^n with C^2 boundary. Then *U* is strongly pseudoconvex if and only if there exist a positive constant *L*, a neighborhood *V* of *bU* and $\rho \in C^2(V)$ a defining function of *bU* such that,

•
$$\sum_{j,k=1}^{n} \frac{\partial^2 (-\log|\rho|)}{\partial z_j \partial \overline{z_k}} (a) b_j \overline{b_k} \geq \frac{L}{|\rho(a)|} \|b\|^2$$
 for all $a \in U \cap V$ and $b \in \mathbb{C}^n$.

•
$$|\nabla \rho(a)| \ge M$$
 for all $a \in U \cap V$.

If $U \subset \mathbb{C}^n$ is an open domain with C^1 boundary, let us call U strongly pseudoconvex if there exist a positive constant L, a neighborhood V of bU and $\rho \in C^1(V)$ a defining function of bU such that for $a \in U \cap V$ and $b \in \mathbb{C}^n$ of small norm,

$$\int_0^{2\pi} -\log|\boldsymbol{\rho}|(a+e^{i\theta}b)d\theta \geq -\log|\boldsymbol{\rho}|(a)+L\|b\|^2$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A domain $\Omega \subset \mathbb{C}^n$ with C^1 boundary is strongly pseudoconvex when there exists a C^1 defining function of $b\Omega$ which is strongly plurisubharmonic on average.

For $p \in (1,2]$, the space $L_p(\Sigma, \Omega, \mu)$ has strongly pseudoconvex unit ball.

Let us call a bounded domain in \mathbb{C}^n strongly pseudoconvex when it is exhausted by strongly pseudoconvex domains Ω_n with C^1 boundary having defining functions r_n of $b\Omega_n$, i.e. $r_n : U \supset b\Omega \to \mathbb{R}$ for which there exist constants L, M > 0 satisfying that for all $p \in U \cap \Omega_n$ and $t \in \mathbb{C}^n$,

 $(2 |\nabla r_n(p)| \ge M > 0.$

The ball of ℓ_1^n is strictly pseudoconvex.

A domain $\Omega \subset \mathbb{C}^n$ with C^1 boundary is strongly pseudoconvex when there exists a C^1 defining function of $b\Omega$ which is strongly plurisubharmonic on average.

For $p \in (1,2]$, the space $L_p(\Sigma, \Omega, \mu)$ has strongly pseudoconvex unit ball.

Let us call a bounded domain in \mathbb{C}^n strongly pseudoconvex when it is exhausted by strongly pseudoconvex domains Ω_n with C^1 boundary having defining functions r_n of $b\Omega_n$, i.e. $r_n : U \supset b\Omega \to \mathbb{R}$ for which there exist constants L, M > 0 satisfying that for all $p \in U \cap \Omega_n$ and $t \in \mathbb{C}^n$,

 $(2 |\nabla r_n(p)| \ge M > 0.$

The ball of ℓ_1^n is strictly pseudoconvex.

A domain $\Omega \subset \mathbb{C}^n$ with C^1 boundary is strongly pseudoconvex when there exists a C^1 defining function of $b\Omega$ which is strongly plurisubharmonic on average.

For $p \in (1,2]$, the space $L_p(\Sigma, \Omega, \mu)$ has strongly pseudoconvex unit ball.

Let us call a bounded domain in \mathbb{C}^n strongly pseudoconvex when it is exhausted by strongly pseudoconvex domains Ω_n with C^1 boundary having defining functions r_n of $b\Omega_n$, i.e. $r_n : U \supset b\Omega \to \mathbb{R}$ for which there exist constants L, M > 0 satisfying that for all $p \in U \cap \Omega_n$ and $t \in \mathbb{C}^n$,

 $(2) |\nabla r_n(p)| \ge M > 0.$

The ball of ℓ_1^n is strictly pseudoconvex.

A domain $\Omega \subset \mathbb{C}^n$ with C^1 boundary is strongly pseudoconvex when there exists a C^1 defining function of $b\Omega$ which is strongly plurisubharmonic on average.

For $p \in (1,2]$, the space $L_p(\Sigma, \Omega, \mu)$ has strongly pseudoconvex unit ball.

Let us call a bounded domain in \mathbb{C}^n strongly pseudoconvex when it is exhausted by strongly pseudoconvex domains Ω_n with C^1 boundary having defining functions r_n of $b\Omega_n$, i.e. $r_n : U \supset b\Omega \to \mathbb{R}$ for which there exist constants L, M > 0 satisfying that for all $p \in U \cap \Omega_n$ and $t \in \mathbb{C}^n$,

 $(2) |\nabla r_n(p)| \ge M > 0.$

The ball of ℓ_1^n is strictly pseudoconvex.

イロト イヨト イヨト イヨト

A domain $\Omega \subset \mathbb{C}^n$ with C^1 boundary is strongly pseudoconvex when there exists a C^1 defining function of $b\Omega$ which is strongly plurisubharmonic on average.

For $p \in (1,2]$, the space $L_p(\Sigma, \Omega, \mu)$ has strongly pseudoconvex unit ball.

Let us call a bounded domain in \mathbb{C}^n strongly pseudoconvex when it is exhausted by strongly pseudoconvex domains Ω_n with C^1 boundary having defining functions r_n of $b\Omega_n$, i.e. $r_n : U \supset b\Omega \to \mathbb{R}$ for which there exist constants L, M > 0 satisfying that for all $p \in U \cap \Omega_n$ and $t \in \mathbb{C}^n$,

 $|\nabla r_n(p)| \ge M > 0.$

The ball of ℓ_1^n is strictly pseudoconvex.

イロト イヨト イヨト イヨト

A domain $\Omega \subset \mathbb{C}^n$ with C^1 boundary is strongly pseudoconvex when there exists a C^1 defining function of $b\Omega$ which is strongly plurisubharmonic on average.

For $p \in (1,2]$, the space $L_p(\Sigma, \Omega, \mu)$ has strongly pseudoconvex unit ball.

Let us call a bounded domain in \mathbb{C}^n strongly pseudoconvex when it is exhausted by strongly pseudoconvex domains Ω_n with C^1 boundary having defining functions r_n of $b\Omega_n$, i.e. $r_n : U \supset b\Omega \to \mathbb{R}$ for which there exist constants L, M > 0 satisfying that for all $p \in U \cap \Omega_n$ and $t \in \mathbb{C}^n$,

 $(2 |\nabla r_n(p)| \ge M > 0.$

The ball of ℓ_1^n is strictly pseudoconvex.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A domain $\Omega \subset \mathbb{C}^n$ with C^1 boundary is strongly pseudoconvex when there exists a C^1 defining function of $b\Omega$ which is strongly plurisubharmonic on average.

For $p \in (1,2]$, the space $L_p(\Sigma, \Omega, \mu)$ has strongly pseudoconvex unit ball.

Let us call a bounded domain in \mathbb{C}^n strongly pseudoconvex when it is exhausted by strongly pseudoconvex domains Ω_n with C^1 boundary having defining functions r_n of $b\Omega_n$, i.e. $r_n : U \supset b\Omega \to \mathbb{R}$ for which there exist constants L, M > 0 satisfying that for all $p \in U \cap \Omega_n$ and $t \in \mathbb{C}^n$,

$$2 |\nabla r_n(p)| \ge M > 0.$$

The ball of ℓ_1^n is strictly pseudoconvex.

・ロト ・ 四ト ・ ヨト ・ ヨト

Table: Plurisubharmonicity notions

Concept	Conditions	Equation	Examples
Plurisubharmonic	upper semicont.	$f(a) \leq \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}b) d\theta$	$\operatorname{Re}(F), \operatorname{Im}(F), (F _p)^m, \log(F _p)$
$f:U\to [-\infty,\infty)$		$a \in U, b$ arbitrary	for F holomorphic and $1 \leq p \leq \infty$
C^2 plurisubharmonic	C^2 smooth	$\sum_{j,k=1}^{n} rac{\partial^2 f}{\partial z_i \partial \bar{z}_k}(a) b_j ar{b}_k \geq 0$	$Re(F), Im(F), (\ F\ _p)^m, \log(\ F\ _p)$
f on U		$a \in U$, b arbitrary	for F holomorphic and 1
Strictly p.s.h. on av.	f upper semicont.	$\varphi(a) \ b\ ^2 + f(a) \le \frac{1}{2\pi} \int_0^{2\pi} f(a + e^{i\theta}) d\theta$	$\ \cdot\ _p$ for $1 \le p \le 2$,
$f:U\to [-\infty,\infty)$		$arphi > 0 \in C^{\infty}(U), a \in U, \ b\ $ small	$\sum_{k=1}^{\infty} z_k ^2 / k^3, \sum_{k=1}^{\infty} z_k ^2 / k^2 < \infty$
C ² strictly p.s.h.	C^2 smooth	$\sum_{j,k=1}^{n} rac{\partial^2 f}{\partial z_i \partial \overline{z_k}}(a) b_j \overline{b}_k \ge oldsymbol{arphi}(a) \ b\ ^2$	$\ \cdot\ _p$ for $p=2$ outside $\{0\}$,
f on U		$arphi > 0 \in \widetilde{\mathcal{C}^{\infty}}(U), a \in U, b$ any	$\sum_{k=1}^{\infty} z_k ^2 / k^3$, $\sum_{k=1}^{\infty} z_k ^2 / k^2 < \infty$
Strongly p.s.h. on av.	upper semicont.	$L\ b\ ^{2} + f(a) \le \frac{1}{2\pi} \int_{0}^{2\pi} f(a + e^{i\theta}) d\theta$	$\ \cdot\ _p$ for $1 \le p \le 2$
C ² strongly p.s.h.	C^2 smooth	$\sum_{j,k=1}^{n} rac{\partial^2 f}{\partial z_j \partial \bar{z}_k}(a) b_j \bar{b}_k \ge L \ b\ ^2$	$\ \cdot\ _p$ for $p=2$ outside $\{0\}$

・ロト ・ 日 ト ・ ヨ ト ・

Table: Pseudoconvexity in \mathbb{C}^n

Concept	Conditions	Equation	Examples
Ψ-convex domain	inc. union of C^2	$\sum_{j,k=1}^{n} \frac{\partial^2 r_n}{\partial z_i \partial \bar{z}_k}(p) \zeta_j \bar{\zeta}_k \ge 0$	convex domains &
	Ψ-convex domains	$\zeta \in T_p^{\mathbb{C}}(b\Omega_n), p \in b\Omega_n$	domains of convergence
$C^2 \Psi$ -convex	C^2 smooth	$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_i \partial \bar{z}_k}(p) \zeta_j \bar{\zeta}_k \ge 0$	$B_{\ell_p^n}, 1$
domain	boundary def. by r	$\zeta \in T_p^{\widetilde{\mathbb{C}}}(b\Omega), p \in b\Omega$	$< 1\}; \{z \in \mathbb{C} : Im_z < (Re_z)^2\}$
Strongly Ψ-convex	inc. union of C^2 str. Ψ -	$\sum_{j,k=1}^{n} \frac{\partial^2 r_n}{\partial z_j \partial \bar{z}_k}(p) \zeta_j \bar{\zeta}_k > L \ \zeta\ ^2$	$B_{\ell_p^n}, \ 1 \le p \le 2$
	convex w. same bounds $\!\!\!^+$	$\& \nabla r_n(p) \ge M; p \in U \supset b\Omega$	
C^2 strictly Ψ -convex	C^2 smooth	$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_i \partial \bar{z}_k}(p) \zeta_j \bar{\zeta}_k > 0$	$B^n_{\ell_p}, p=2$
	boundary def. by r	$\zeta \in T_p^{\mathbb{C}'}(b\Omega), p \in b\Omega$	
C^2 strongly Ψ -convex	C^2 smooth	$\sum_{j,k=1}^{n} \frac{\partial^2 r}{\partial z_j \partial \bar{z}_k}(p) \zeta_j \bar{\zeta}_k > L \ \zeta\ ^2$	$B_{\ell_p^n},p=2$
	boundary def. by r	$\& \nabla r(p) \ge M; p \in U \supset b\Omega$	

- M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer Verlag, Berlin (1986).
- W. J. Davis, D. J. H. Garling, N. Tomczak-Jaegermann, *The Complex Convexity of Quasi-normed Linear Spaces*, Journal of Functional Analysis 55 (1984), pp. 110-150.
- L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd edition, North Holland, Amsterdam, 1990.
- L. Hörmander, *Notions of Convexity*, Birkhaüser Basel, Boston, 1994.

THANK YOU!

A (10) F (10)