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Domains of holomorphy

A domain Ω in a Banach space X is called a domain of holomorphy if
its boundary consists of singular points for H (Ω).

Example
The following are domains of holomorphy:

Any domain in the complex plane
Domains of convergence of multivariable power series
Any convex domain in a Banach space

A counterexample: Hartogs’ domain.
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Domains of holomorphy

Are there commonalities in the complex geometry of domains of
holomorphy?

Remark
If Ω⊂ Cn is a convex domain with C2 boundary, and if r is a defining
function of bΩ, then for all p ∈ bΩ,
∑

2n
j,k=1

∂ 2r
∂xj∂xk

(p)ζjζk ≥ 0, ∀ζ ∈ Tp(bΩ) := {ξ ∈ R2n : ∑
2n
j=1

∂ r
∂xj

(p)ξj = 0}.

Proposition (Levi, 1910-1911)
Every domain of holomorphy Ω⊂ Cn with C2 boundary is Levi
pseudoconvex i.e. when r is a defining function of bΩ, for all p ∈ bΩ,

n

∑
j,k=1

∂ 2r
∂ zj∂ zk

(p)tjtk ≥ 0, ∀t ∈ TC
p (bΩ) := {ξ ∈ Cn :

n

∑
j=1

∂ r
∂ zj

(p)ξj = 0}. (1)
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Strong pseudoconvexity

A domain of holomorphy Ω⊂ Cn with C2 boundary is called strictly
(Levi) pseudoconvex when moreover we have

n

∑
j,k=1

∂ 2r
∂ zj∂ zk

(p)tjtk > 0, ∀t 6= 0 ∈ TC
p (bU) := {ξ ∈Cn :

n

∑
j=1

∂ r
∂ zj

(p)ξj = 0}, (2)

for r a defining function of bΩ and all p ∈ bΩ.

Proposition (HFIRSCV of Range, 1986)
A domain Ω⊂ Cn with C2 boundary is strongly pseudoconvex iff there
exists a defining function of bΩ, r : U ⊃ bΩ→ C, such that there exist
constants L,M > 0 satisfying that for all p ∈ U and t ∈ Cn,

1 ∑
n
j,k=1

∂ 2r
∂ zj∂ zk

(p)tjtk ≥ L‖t‖2,

2 |∇r(p)| ≥M.
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Plurisubharmonicity

The mentioned condition on the complex Hessian of a C2 function
f : U ⊂ Cn→ R given by

n

∑
j,k=1

∂ 2f
∂ zj∂ zk

(p)tjtk ≥ L‖t‖2 for all p ∈ U, t ∈ Cn,

is referred to as f being a C2 strongly plurisubharmonic function, since
it is more than plurisubharmonic.

A function f : U ⊂ Cn→ [−∞,∞) is called plurisubharmonic if f is upper
semicontinuous and for each a ∈ U and b ∈ Cn such that a+D ·b⊂ U,

f (a)≤ 1
2π

∫ 2π

0
f (a+ eiθ b)dθ .

Remark

If f ∈ C2(U), f is plurisubharmonic iff ∑
n
j,k=1

∂ 2f
∂ zj∂ zk

(p)tjtk ≥ 0.
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Plurisubharmonicity

This has been generalized in the sense of distribution: Given
f ∈ L1(U, loc), f is called plurisubharmonic in distribution if the
distribution it induces is plurisubharmonic, while a distribution
T ∈D ′(U) is called plurisubharmonic when

n

∑
j,k=1

∂ 2T
∂ zj∂ zk

(φ)tjtk ≥ 0, for all φ ≥ 0 in D(U) and t ∈ Cn.

Proposition (Notions of Convexity of Hörmander, 1994)
Suppose that U is a connected domain in Cn. If f 6=−∞ is
plurisubharmonic, then f ∈ L1(U, loc) and f is plurisubharmonic in
distribution. Conversely, if T ∈D ′(U) is plurisubharmonic then there
exists f ∈ L1(U, loc) plurisubharmonic such that f induces the
distribution T. As a corollary, if f ∈ L1(U, loc) is plurisubharmonic in
distribution then there exists g ∈ L1(U, loc) plurisubharmonic such that
f = g λ -a.e.
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n

∑
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∂ 2T
∂ zj∂ zk
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Strict plurisubharmonicity

Let us say that a distribution T ∈D ′(U) is strictly plurisubharmonic
when there exists ψ ∈ C∞(U) positive such that

n

∑
j,k=1

∂ 2T
∂ zj∂ zk

(φ)tjtk ≥ (
∫

U
ψ ·φ dλ )‖t‖2, for all φ ≥ 0 in D(U) and t ∈ Cn,

and in case ψ is a constant M > 0, call T strongly plurisubharmonic.

Given an upper semicontinuous function g : U ⊂ X→ [−∞,∞), let us call
it strictly plurisubharmonic on average when we can find a positive
ϕ ∈ C∞(U) such that for all a ∈ U and b ∈ X of small norm,

ϕ(a)‖b‖2 +g(a)≤ 1
2π

∫ 2π

0
g(a+ eiθ b)dθ , (3)

and in case ϕ is a constant M > 0, call g strongly plurisubharmonic on
average.
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Strict plurisubharmonicity

Proposition
Suppose that U is a connected domain in Cn. If f 6=−∞ is strictly
plurisubharmonic on average, then f is strictly plurisubharmonic in
distribution. Conversely, if T ∈D ′(U) is strictly plurisubharmonic then
there exists f ∈ L1(U, loc) strictly plurisubharmonic on average such
that f induces the distribution T. As a corollary, if f ∈ L1(U, loc) is
strictly plurisubharmonic in distribution then there exists g ∈ L1(U, loc)
strictly plurisubharmonic on average such that f = g λ -a.e.

Remark
In finite dimension, strict plurisubharmonicity of a C2 function
F : U ⊂ Cn→ [−∞,∞) is known to being equivalent to having, for each
a ∈ U, a nonempty ball B(a,r)⊂ U and a constant ε > 0 such that
F− ε‖ · ‖2 is plurisubharmonic on B(a,r), but this is no longer true in
infinite dimension.
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Strict plurisubharmonicity

Example (O.-C. and Santillán Zerón, 2018)
Consider the space of complex sequences (zn)⊂ CN such that

‖(zn)‖=

√
∞

∑
k=1
|zk|2/k2 < ∞,

which is a Hilbert space, call it X.

Consider the function on X, F(z) = ∑
∞
k=1 |zk|2/k3, which has positive

definite complex Hessian

D′D′′F(z)(w,w) =
∞

∑
k=1
|wk|2/k3.

S. Ortega Castillo (CIMAT) Strong Pseudoconvexity 09/05/2019 9 / 17



Strict plurisubharmonicity

Example (O.-C. and Santillán Zerón, 2018)
Consider the space of complex sequences (zn)⊂ CN such that

‖(zn)‖=

√
∞

∑
k=1
|zk|2/k2 < ∞,

which is a Hilbert space, call it X.

Consider the function on X, F(z) = ∑
∞
k=1 |zk|2/k3, which has positive

definite complex Hessian

D′D′′F(z)(w,w) =
∞

∑
k=1
|wk|2/k3.

S. Ortega Castillo (CIMAT) Strong Pseudoconvexity 09/05/2019 9 / 17



Strict plurisubharmonicity

Example (O.-C. and Santillán Zerón, 2018)
Consider the space of complex sequences (zn)⊂ CN such that

‖(zn)‖=

√
∞

∑
k=1
|zk|2/k2 < ∞,

which is a Hilbert space, call it X.

Consider the function on X, F(z) = ∑
∞
k=1 |zk|2/k3, which has positive

definite complex Hessian

D′D′′F(z)(w,w) =
∞

∑
k=1
|wk|2/k3.

S. Ortega Castillo (CIMAT) Strong Pseudoconvexity 09/05/2019 9 / 17



Strict plurisubharmonicity

Example (O.-C. and Santillán Zerón, 2018)
However, this function F(z) = ∑

∞
k=1 |zk|2/k3 does not admit ε > 0 such

that, for z near to z0,

F(z)− ε‖z‖2 =
∞

∑
k=1
|zk|2/k3− ε

∞

∑
k=1
|zk|2/k2 =

∞

∑
k=1
|zk|2(1/k3− ε/k2)

is plurisubharmonic, since its complex Hessian at z0,

D′D′′(F− ε‖ · ‖2)(z0)(w,w) =
∞

∑
k=1
|wk|2(1/k3− ε/k2),

eventually has eigenvalues which are negative.
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Strict plurisubharmonicity

Proposition
If U is an open domain in a Banach space X, a function f ∈ C2(U,R) is
strictly plurisubharmonic iff it is strictly plurisubharmonic on average.

Remark
A function F : U ⊂ X→ [−∞,∞) that locally admits an ε > 0 such that
F− ε‖ · ‖2 is plurisubharmonic may not be strictly plurisubharmonic on
average, since the squared norm is plurisubharmonic but may not be
strictly plurisubhamonic on average. This is the case in X = `∞.

Remark
Strictly plurisubharmonic functions on average without two degrees of
differentiability exist in infinite-dimensional ambient spaces, such as
the norm of `1: ‖(zn)‖1 = ∑

∞
n=1 |zn|.
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Strict plurisubharmonicity

Example
Spaces whose norm is strictly plurisubharmonic on average include
the 2-uniformly PL-convex spaces, where a Banach space X is
2-uniformly PL-convex if for some 0 < q < ∞ there exists λ > 0 such
that,

(
1

2π

∫ 2π

0
‖a+ eiθ b‖qdθ)1/q ≥ (‖a‖2 +λ‖b‖2)1/2

for all a and b in X.

Davis, Garling and Tomczak-Jaegermann proved in 1984 that for
p ∈ [1,2], Lp(Σ,Ω,µ) is 2-uniformly PL-convex.
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Strong pseudoconvexity

Theorem
Let U be an open domain in Cn with C2 boundary. Then U is strongly
pseudoconvex if and only if there exist a positive constant L, a
neighborhood V of bU and ρ ∈ C2(V) a defining function of bU such
that,

∑
n
j,k=1

∂ 2(− log |ρ|)
∂ zj∂ zk

(a)bjbk ≥ L
|ρ(a)|‖b‖

2 for all a ∈ U∩V and b ∈ Cn.

|∇ρ(a)| ≥M for all a ∈ U∩V.

If U ⊂ Cn is an open domain with C1 boundary, let us call U strongly
pseudoconvex if there exist a positive constant L, a neighborhood V of
bU and ρ ∈ C1(V) a defining function of bU such that for a ∈ U∩V and
b ∈ Cn of small norm,∫ 2π

0
− log |ρ|(a+ eiθ b)dθ ≥− log |ρ|(a)+L‖b‖2
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2 for all a ∈ U∩V and b ∈ Cn.

|∇ρ(a)| ≥M for all a ∈ U∩V.

If U ⊂ Cn is an open domain with C1 boundary, let us call U strongly
pseudoconvex if there exist a positive constant L, a neighborhood V of
bU and ρ ∈ C1(V) a defining function of bU such that for a ∈ U∩V and
b ∈ Cn of small norm,∫ 2π

0
− log |ρ|(a+ eiθ b)dθ ≥− log |ρ|(a)+L‖b‖2

S. Ortega Castillo (CIMAT) Strong Pseudoconvexity 09/05/2019 13 / 17



Strong pseudoconvexity

Proposition
A domain Ω⊂ Cn with C1 boundary is strongly pseudoconvex when
there exists a C1 defining function of bΩ which is strongly
plurisubharmonic on average.

For p ∈ (1,2], the space Lp(Σ,Ω,µ) has strongly pseudoconvex unit ball.

Let us call a bounded domain in Cn strongly pseudoconvex when it is
exhausted by strongly pseudoconvex domains Ωn with C1 boundary
having defining functions rn of bΩn, i.e. rn : U ⊃ bΩ→ R for which there
exist constants L,M > 0 satisfying that for all p ∈ U∩Ωn and t ∈ Cn,

1 ∑
n
j,k=1

∂ 2(− log |rn|)
∂ zj∂ zk

(p)tjtk ≥ L‖t‖2 > 0,

2 |∇rn(p)| ≥M > 0.

The ball of `n
1 is strictly pseudoconvex.
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Summary

Table: Plurisubharmonicity notions

Concept Conditions Equation Examples

Plurisubharmonic upper semicont. f (a)≤ 1
2π

∫ 2π

0 f (a+ eiθ b)dθ Re(F), Im(F), (‖F‖p)
m, log(‖F‖p)

f : U→ [−∞,∞) a ∈ U, b arbitrary for F holomorphic and 1≤ p≤ ∞

C2 plurisubharmonic C2 smooth ∑
n
j,k=1

∂ 2f
∂ zj∂ z̄k

(a)bjb̄k ≥ 0 Re(F), Im(F), (‖F‖p)
m, log(‖F‖p)

f on U a ∈ U, b arbitrary for F holomorphic and 1 < p < ∞

Strictly p.s.h. on av. f upper semicont. ϕ(a)‖b‖2 + f (a)≤ 1
2π

∫ 2π

0 f (a+ eiθ )dθ ‖ · ‖p for 1≤ p≤ 2,
f : U→ [−∞,∞) ϕ > 0 ∈ C∞(U), a ∈ U, ‖b‖ small ∑

∞
k=1 |zk|2/k3, ∑

∞
k=1 |zk|2/k2 < ∞

C2 strictly p.s.h. C2 smooth ∑
n
j,k=1

∂ 2f
∂ zj∂ z̄k

(a)bjb̄k ≥ ϕ(a)‖b‖2 ‖ · ‖p for p = 2 outside {0},
f on U ϕ > 0 ∈ C∞(U), a ∈ U, b any ∑

∞
k=1 |zk|2/k3, ∑

∞
k=1 |zk|2/k2 < ∞

Strongly p.s.h. on av. upper semicont. L‖b‖2 + f (a)≤ 1
2π

∫ 2π

0 f (a+ eiθ )dθ ‖ · ‖p for 1≤ p≤ 2
C2 strongly p.s.h. C2 smooth ∑

n
j,k=1

∂ 2f
∂ zj∂ z̄k

(a)bjb̄k ≥ L‖b‖2 ‖ · ‖p for p = 2 outside {0}
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Summary

Table: Pseudoconvexity in Cn

Concept Conditions Equation Examples

Ψ-convex domain inc. union of C2
∑

n
j,k=1

∂ 2rn
∂ zj∂ z̄k

(p)ζjζ̄k ≥ 0 convex domains &
Ψ-convex domains ζ ∈ TC

p (bΩn),p ∈ bΩn domains of convergence
C2 Ψ-convex C2 smooth ∑

n
j,k=1

∂ 2r
∂ zj∂ z̄k

(p)ζjζ̄k ≥ 0 B`n
p
, 1 < p < ∞; {z ∈ C2 : |z1z2|

domain boundary def. by r ζ ∈ TC
p (bΩ), p ∈ bΩ < 1}; {z ∈ C : Imz < (Rez)2}

Strongly Ψ-convex inc. union of C2 str. Ψ- ∑
n
j,k=1

∂ 2rn
∂ zj∂ z̄k

(p)ζjζ̄k > L‖ζ‖2 B`n
p
, 1≤ p≤ 2

convex w. same bounds+ & |∇rn(p)| ≥M; p ∈ U ⊃ bΩ

C2 strictly Ψ-convex C2 smooth ∑
n
j,k=1

∂ 2r
∂ zj∂ z̄k

(p)ζjζ̄k > 0 Bn
`p

, p = 2
boundary def. by r ζ ∈ TC

p (bΩ), p ∈ bΩ

C2 strongly Ψ-convex C2 smooth ∑
n
j,k=1

∂ 2r
∂ zj∂ z̄k

(p)ζjζ̄k > L‖ζ‖2 B`n
p
, p = 2

boundary def. by r & |∇r(p)| ≥M; p ∈ U ⊃ bΩ
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