Banach Lattices in Infinite Dimensional Complex Analysis

Ray Ryan
NUI Galway

AGA

In memory of Richard Timoney
8-10th May 2019, Trinity College Dublin

1. Holomorphy - some history

- Hilbert (1909): Holomorphic functions on $\mathbb{C}^{\mathbb{N}}$ defined locally by monomial expansions:

$$
f(z)=\sum_{\alpha} c_{\alpha}(z-a)^{\alpha}
$$

$\alpha=\left(\alpha_{j}\right):$ a multi-index.
The monomial $z^{\alpha}=\prod_{j} z_{j}^{\alpha_{j}}$ has degree $|\alpha|=\sum_{j} \alpha_{j}$

- Fréchet, Gâteaux, Michael, Taylor,.... : local representation by power series of homogeneous polynomials:

$$
f(z)=\sum_{n} P_{n}(z-a)
$$

$P_{n}(z)=\sum_{|\alpha|=n} z^{\alpha}:($ bounded $) n$-homogeneous polynomials.
Equivalent to Fréchet differentiability.

- Grothendieck, Nachbin, Gupta (1950's and 60's): Duality in terms of nuclear functions/tensor products:

$$
\mathcal{P}\left({ }^{n} E^{\prime}\right)=\left(\mathcal{P}_{N}\left({ }^{n} E\right)\right)^{\prime} \quad \text { (subject to AP) }
$$

- Boland, Dineen (1970's): Holomorphic functions on nuclear locally convex spaces. For suitable nuclear spaces with basis, the monomials are a basis for the space of holomorphic functions.
- Matos, Nachbin (1980's and 90's): Monomial expansions for holomorphic functions on a Banach space with unconditional basis.
- Defant, Díaz, García, Kalton, Maestre (2001 and 2005) proved Dineen's conjecture: if E is a Banach space and $n \geqslant 2$, then $\mathcal{P}\left({ }^{n} E\right)$ has an unconditional basis if and only if E is finite dimensional.

2. Grothendieck and Fremlin

Grothendieck's projective tensor product linearizes bounded bilinear forms:

$$
\mathcal{B}(\mathrm{E}, \mathrm{~F}) \cong\left(\mathrm{E} \widehat{\otimes}_{\pi} \mathrm{F}\right)^{\prime}
$$

RR extended this to polynomials:

$$
\mathcal{P}\left({ }^{n} E\right) \cong\left(\widehat{\bigotimes}_{n, \pi, s} E\right)^{\prime}
$$

A bilinear form B on a product $\mathrm{E} \times \mathrm{F}$ of (real) Banach lattices is positive if $B(x, y) \geqslant 0$ for all positive x, y and regular if it the difference of two positive bilinear forms.

Fremlin constructed a tensor product $\mathcal{B}_{\mathrm{r}}(\mathrm{E}, \mathrm{F})$ that linearizes regular bilinear forms:

$$
\mathcal{B}_{\mathrm{r}}(\mathrm{E}, \mathrm{~F}) \cong\left(\mathrm{E} \widehat{\otimes}_{|\pi|} \mathrm{F}\right)^{\prime}
$$

John Loane (2007) extended this to polynomials:

$$
\left.\mathcal{P}_{\mathrm{r}}\left({ }^{n} E\right) \cong \widehat{\bigotimes}_{n,|\pi|, s} E\right)^{\prime}
$$

3. The Matos-Nachbin approach

E: a Banach space with unconditional Schauder basis $\left(\boldsymbol{e}_{\boldsymbol{j}}\right)$.
Every $\mathrm{P} \in \mathcal{P}\left({ }^{n} E\right)$ has a monomial expansion:

$$
\mathrm{P}(z)=\mathrm{A}(z, \ldots, z)=\sum_{|\alpha|=n} \mathrm{c}_{\alpha} z^{\alpha}
$$

But this expansion is only conditionally convergent in general.
$\mathcal{P}_{v}\left({ }^{n} E\right)$: the subspace of polynomials for which the monomial expansion is unconditionally convergent at every point.

If $P \in \mathcal{P}_{v}\left({ }^{n} E\right)$, then

$$
\tilde{\mathrm{P}}(z):=\sum_{|\alpha|=\mathrm{n}}\left|c_{\alpha}\right| z^{\alpha}
$$

also belongs to $\mathcal{P}_{\vee}\left({ }^{n} E\right)$. A norm is defined on $\mathcal{P}_{\vee}\left({ }^{n} E\right)$ by

$$
v(\mathrm{P}):=\|\tilde{\mathrm{P}}\|=\sup \left\{\left|\sum\right| \mathrm{c}_{\alpha}\left|z^{\alpha}\right|:\|z\| \leqslant 1\right\}
$$

$\mathcal{P}_{\vee}\left({ }^{n} E\right)$ is a Banach space with this norm.

$$
\mathcal{P}_{N}\left({ }^{n} E\right) \subset \mathcal{P}_{v}\left({ }^{n} E\right) \subset \mathcal{P}\left({ }^{n} E\right)
$$

Grecu-RR (2004):

$$
\mathcal{P}_{v}\left({ }^{n} E\right)=\mathcal{P}_{r}\left({ }^{n} E\right)
$$

with equality of norms.

. 4. Fremlin's Theorem

Fremlin (1972): Let K be a compact, Hausdorff space. Every positive bilinear form B on $C(K) \times C(K)$ is integral:

$$
B(x, y)=\int_{K \times K} x(s) y(t) d \mu(s, t)
$$

where μ is a regular Borel measure on $\mathrm{K} \times \mathrm{K}$.

1. Connects nuclearity and regularity.
2. $\mathrm{C}(\mathrm{K})$ spaces are building blocks for Banach lattices.

5. Orthogonally Additivity

A function $f: E \rightarrow \mathbb{R}$ is orthogonally additive if

$$
f(x+y)=f(x)+f(y)
$$

whenever x, y are disjoint.
Sundaresan (1991): Let $1 \leqslant p<\infty$.
(a) If $1 \leqslant n \leqslant p$, then an n-homogeneous polynomial P on $L_{p}[0,1]$ is orthogonally additive if and only if there is a (unique) $\xi \in L_{r}[0,1]$, where $r=p /(p-n)$ ($r=\infty$ if $n=p$), such that

$$
P(x)=\int x^{n} \xi d \mu
$$

where μ is Lebesgue measure.
(b) If $n>p$, then there are no non-zero orthogonally additive n -homogeneous polynomials on $\mathrm{L}_{\mathrm{p}}[0,1]$.

Bu-Buskes (2012):
The vector space of orthogonally additive n-homogeneous polynomials on E can be identified with
(a) the dual Banach space

$$
\left[\left(\bigotimes_{n, s, \pi} E\right) / J\right]^{\prime}
$$

where J is the closed subspace generated by $\left\{x_{1} \otimes \cdots \otimes x_{n}: x_{i} \perp x_{j}\right.$ for some $\left.i, j\right\}$
or
(b) the dual Banach lattice $\left[\left(\bigotimes_{n, s,|\pi|} E\right) / I\right]^{\prime}$,
where I is the closed ideal generated by $\left\{x_{1} \otimes \cdots \otimes x_{n}: x_{i} \perp x_{j}\right.$ for some $\left.i, j\right\}$

Geometry of the space of orthogonally additive polynomials

(a) Carando-Lassalle-Zalduendo (2006):

The extreme points of the closed unit ball of the space $\left(\mathcal{P}_{\mathbf{o}}\left({ }^{n} \mathrm{C}(\mathrm{K})\right),\|\cdot\|_{r}\right)$ are the n-homogeneous polynomials $\pm \delta_{t}^{n}$, where $t \in K$ and

$$
\delta_{t}^{n}(x)=x(t)^{n} .
$$

(b) Boyd-RR-Snigireva (2018):
(i) n odd: the extreme points of the closed unit ball of $\left(\mathcal{P}_{0}\left({ }^{n} C(K)\right),\|\cdot\|_{\infty}\right)$ are the polynomials $P= \pm \delta_{t}^{n}$.
(ii) n even: the extreme points of the closed unit ball of ($\left.\mathcal{P}_{0}\left({ }^{n} \mathrm{C}(\mathrm{K})\right),\|\cdot\|_{\infty}\right)$ are of two types:

- $P= \pm \delta_{t}^{n}$ for some $t \in K$;
- $P=\delta_{s}^{n}-\delta_{t}^{n}$, where s, t are distinct points in K, and

$$
\left(\delta_{s}^{n}-\delta_{t}^{n}\right)(x)=x(s)^{n}-x(t)^{n} .
$$

