The Pedersen Rigidity Problem

Steve Kaliszewski Tron Omland John Quigg*

AGA, Dublin, May 2019

How do we get the action back?

Given an action α of a locally compact group G on a C^* -algebra A, our first reaction is to form the crossed product C^* -algebra $A \rtimes_{\alpha} G$.

Question

How do we recover the action from the crossed-product?

Short answer

We can't.

Example

If G acts on $C_0(G)$ by translation, then $C_0(G) \rtimes G \simeq \mathcal{K}(L^2(G))$. But also

 $(C_0(G) \otimes \mathcal{K}(L^2(G))) \rtimes G \simeq \mathcal{K}(L^2(G)) \otimes \mathcal{K}(L^2(G)) \simeq \mathcal{K}(L^2(G)),$ where G acts trivially on \mathcal{K} .

Now, $C_0(G) \otimes \mathcal{K}$ is not isomorphic to $C_0(G)$, but they are at least Morita equivalent.

Even worse

Example (KOQ)

Examples arising from number theory (and which began with Cuntz) give nonisomorphic commutative C^* -algebras carrying actions of a discrete abelian group G with isomorphic crossed products. Note that by commutativity, A and B are not Morita equivalent.

So, there's no hope of recovering (A, α) just from $A \rtimes G$, even up to Morita equivalence.

The dual action

Standing assumption: *G* is abelian.

Then there is a dual action $\widehat{\alpha}$ of the dual group \widehat{G} on $A \rtimes_{\alpha} G$.

We assume that we know the group G, the crossed product $A \rtimes G$, and the dual action $\widehat{\alpha}$.

We want to know what other information we need to recover the C^* -algebra A and the action $\alpha: G \to \operatorname{Aut} A$, at least in some sense.

Can be generalized

A lot of this can be done with nonabelian groups, but that's a

Takesaki-Takai duality

Theorem (Takesaki-Takai)

$$A \rtimes_{\alpha} G \rtimes_{\widehat{\alpha}} \widehat{G} \simeq A \otimes \mathcal{K}(L^{2}(G)).$$

Moreover, $\widehat{\widehat{\alpha}}$ corresponds to $\alpha \otimes \operatorname{Ad} \rho$.

Here ρ is the (right, but who cares since G is abelian) regular representation of G.

This recovers (A, G, α) from the dual action $(A \rtimes_{\alpha} G, \widehat{\alpha})$ up to Morita equivalence.

To recover more, we need to keep track of more information about the the crossed product.

More data

The crossed product $A \rtimes_{\alpha} G$ is generated by a universal covariant representation

$$(i_A,i_G):(A,G)\to M(A\rtimes G)$$

The extra data we consider involves i_A , i_G .

Landstad duality

Landstad asks for one more piece of information: i_G .

Landstad constructs (what we now call) the generalized fixed-point algebra $\operatorname{Fix}(A \rtimes_{\alpha} G, \widehat{\alpha}, i_G)$, which is a C^* -subalgebra of $M(A \rtimes_{\alpha} G)$.

Theorem (Landstad)

The original action (A, α) is isomorphic to $(Fix(A \bowtie_{\alpha} G, \widehat{\alpha}, i_G), Ad i_G)$.

Indeed, $i_A: A \to M(A \rtimes_{\alpha} G)$ gives the isomorphism.

What's the underlying structure?

Definition

An equivariant action of \widehat{G} is a triple (C, γ, v) , where (C, γ) is an action of \widehat{G} and $v: G \to M(C)$ is a (fine print: strictly continuous) unitary homomorphism such that $\gamma_{\chi}(v_s) = \chi(s)v_s$ for $\chi \in \widehat{G}$ and $s \in G$.

Thus $(A \rtimes_{\alpha} G, \widehat{\alpha}, i_G)$ is an equivariant action.

Landstad duality says that the generalized fixed-point algebra $A := \operatorname{Fix}(C, \gamma, v)$ is a C^* -subalgebra of M(C), Ad v gives an action α of G on A, and $(A \rtimes_{\alpha} G, \widehat{\alpha}, i_G) \simeq (C, \gamma, v)$.

Explore the middle

Question

How much does the generalized fixed-point algebra $Fix(C, \gamma, v)$ depend upon v?

In other words, could we recover v from the action (C, γ) if we also knew the generalized fixed-point algebra $Fix(C, \gamma, v)$?

Pedersen's theorem

Definition

A cocycle for an action (A, G, α) is a (fine print: strictly continuous) unitary map $u: G \to M(A)$ such that $u_{st} = u_s \alpha_s(u_t)$. Then Ad $u \circ \alpha$ is another action on A, said to be exterior equivalent to α .

Theorem (Pedersen)

Two actions α and β of G on A are exterior equivalent if and only if there is an isomorphism $\theta: (A \rtimes_{\alpha} G, \widehat{\alpha}) \stackrel{\simeq}{\longrightarrow} (A \rtimes_{\beta} G, \widehat{\beta})$ such that $\theta \circ i_{A}^{\alpha} = i_{A}^{\beta}$.

Escape from A

Definition

Actions (A, α) and (B, β) of G are outer conjugate if there is an action γ exterior equivalent to β such that $(A, \alpha) \simeq (B, \gamma)$.

Theorem (Pedersen (+ KOQ))

Two actions (A, α) and (B, β) of G are outer conjugate if and only if there is an isomorphism $(A \rtimes_{\alpha} G, \widehat{\alpha}) \simeq (B \rtimes_{\beta} G, \widehat{\beta})$ taking $\operatorname{Fix}(A \rtimes_{\alpha} G, \widehat{\alpha}, i_{G}^{\alpha})$ to $\operatorname{Fix}(B \rtimes_{\beta} G, \widehat{\beta}, i_{G}^{\beta})$.

So, Pedersen says we can recover the action (A, α) of G up to outer conjugacy if we know the dual action (C, γ) of \widehat{G} and the generalized fixed-point algebra $\operatorname{Fix}(C, \gamma, \nu)$, but perhaps not the homomorphism $\nu: G \to M(C)$ itself.

So the dual action really isn't enough?

If we knew anything about outer conjugacy, we should be able to find examples of the following: actions (A, α) and (B, β) of G such that

- ② α and β are not outer conjugate.

Equivalently, by Pedersen's theorem we want there to exist an isomorphism between the dual actions $\widehat{\alpha}$ and $\widehat{\beta}$, but not one that preserves the generalized fixed-point algebras.

But it's too hard...

Somehow irritating, we are frustrated by our inability to find any examples of this phenomenon.

No-go theorems

We know that there are no examples in any of the following cases:

- G is discrete
- A and B are stable
- A and B are commutative
- \bullet α or β is inner
- **5** G is compact, and α and β are faithful and ergodic
- **1** A and B are continuous trace and α and β are locally unitary

Question

Can No-Go Theorem 6 be extended to pointwise unitary actions?

Pedersen Rigidity Problem

Question

If (A, α) and (B, β) are actions of G such that $(A \rtimes_{\alpha} G, \widehat{\alpha}) \simeq (B \rtimes_{\beta} G, \widehat{\beta})$, are α and β outer conjugate?

We call this the "Pedersen Rigidity Problem", because an affirmative answer would mean that Pedersen's condition, namely that the isomorphism preserves the generalized fixed-point algebras, is superfluous. The No-Go Theorems are evidence hinting at an affirmative answer.