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Universal Taylor series.
Universal Dirichlet Series.

THEOREM. W. Luh 1970, C.K. Chui and M. N. Parnes 1971

There exists f (z) =
∑∞

n=1 anzn an holomorphic function on D such that if K is a
compact subset of C \ D with connected complement, and g : K → C is a
continuous function on K and holomorphic in its interior, then there exists a
subsequence (SNj ) of (SN =

∑N
n=1 anzn) that converges uniformly to g on K .
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THEOREM. V. Nestoridis, 1996

There exists f (z) =
∑∞

n=1 anzn an holomorphic function on D such that if K is a
compact subset of C \ D with connected complement and g : K → C is a
continuous function on K and holomorphic in its interior, then there exists a
subsequence (SNj ) of (SN(z) =

∑N
n=1 anzn) that converges uniformly to g on K .

DEFINITION

Any holomorphic function on D, f (z) =
∑∞

n=1 anzn satisfying above theorem is
called a UNIVERSAL TAYLOR SERIES.

THEOREM. Mergelyan

Given K a compact subset of C and defined A (K ) as the algebra of all functions
g : K → C that are continuous on K and holomorphic on its interior. It holds that

A (K ) = P(C)
‖.‖K

if and only if C \ K is a connected set.
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Universal Taylor series.
Universal Dirichlet Series.

DEFINITION

C+ = {s ∈ C : Re s > 0}.

For σ > 0 we denote

‖

∞∑
n=1

ann−s‖σ =
∞∑

n=1

|an |n−σ

,

Da (C+) =

 ∞∑
n=1

ann−s :
∞∑

n=1

|ann−s | < ∞, for all s ∈ C+

 .
We endow Da (C+) with the Fréchet topology induced by the semi-norms
‖ · ‖σ, σ > 0.
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Universal Taylor series.
Universal Dirichlet Series.

DEFINITION

We will say that a Dirichlet series D =
∑∞

n=1
an
ns

that is absolutely convergent in C+

is a UNIVERSAL DIRICHLET SERIES

If given a compact subset K of {z ∈ C | Re z 6 0} with connected complement and
given g in A (K ) there is a subsequence (SNj ) of SN =

∑N
n=1

an
ns

such that (SNj )
converges to g uniformly on K .

THEOREM. R. Aron, F. Bayart, P. Gauthier, M.M.and V. Nestoridis, 2017

There exist universal Dirichlet series.

Improving a previous result by F. Bayart, 2005.
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Universal Taylor series.
Universal Dirichlet Series.

THEOREM.

Let K ⊂ {z ∈ C | Re z 6 0} be compact with connected complement, f ∈ Da (C+),
g ∈ A (K ), σ > 0 and ε > 0. Then there exists a Dirichlet polynomial
h =
∑N

n=1 ann−s such that ‖h − g‖C(K ) < ε and ‖h − f‖σ < ε.

Lemma

Let X be a Banach space and let (xn)n>1 be a sequence in X . Assume that∑+∞
n=1 |〈x

∗, xn〉| = +∞ for every nonzero continuous linear functional x∗ ∈ X ∗. Then,
for every N ∈ N, the set

{∑M
n=N anxn; M > N, |an | 6 1

}
is dense in X .
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Universal Taylor series.
Universal Dirichlet Series.

KEY ELEMENT

Let K ⊂ {z ∈ C | Re z 6 0} be compact with connected complement. The key
point is to prove that for every δ > 0, the set M∑

n=N

an

ns+1+δ
; M > N, |an | 6 1


is dense in A (K ).

Let φ be a nonzero continuous linear functional on A (K ). There exists a nonzero
(complex) measure µ with support contained in K such that, for any f ∈ A (K ),

φ(f ) =
∫

K
f (s)dµ.

φ(n−s) =
∫

K
e−s log ndµ = Lµ(log n),

∑
n>1

|φ(n−s−1+δ)| =
∑
n>1

|Lµ(log n)|
n1−δ

??= ∞.
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Universal Dirichlet Series.

THEOREM.

Let K ⊂ {z ∈ C | Re z 6 0} be compact with connected complement, f ∈ Da (C+),
g ∈ A (K ), σ > 0 and ε > 0. Then there exists a Dirichlet polynomial
h =
∑N

n=1 ann−s such that ‖h − g‖C(K ) < ε and ‖h − f‖σ < ε.

COROLLARY.

Let K ⊂ C− be compact with connected complement, for every f ∈ Da (C+), g
entire, σ, ε > 0, and N ∈ N, there exists a Dirichlet polynomial h such that

sup
06l6N

‖h(l) − g(l)‖C(K ) < ε and ‖h − f‖σ < ε.
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Universal Taylor series.
Universal Dirichlet Series.

THEOREM

There exists a Dirichlet series D =
∑∞

n=1 ann−s , absolutely convergent in C+, with
partial sums SN =

∑N
n=1 ann−s , such that, for every entire function g there exists a

sequence (Nk ), so that for every ` in {0,1,2,. . . } the derivatives S (`)
Nk

converge to
g(`) uniformly on each compact subset of {z ∈ C | Re z 6 0}.

Moreover, the set of such Dirichlet series is dense and a Gδ in the space Da (C+)
and it contains a dense vector subspace of it, apart from 0.
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Universal Taylor series.
Universal Dirichlet Series.

Proof of existence of a universal Dirichlet series

Let D =
∑∞

n=1
an
ns obtained in above theorem.

Let K ⊂ {z ∈ C | Re z 6 0} such that C \ K is connected, and let
g ∈ A (K ) = C(K ) ∩ H(int K )

A (K ) = P(C)
‖.‖K
.

Hence given ε = 1/j, there exists a polynomial Pj : C→ C such that

sup
s∈K
|g(s) − Pj(s)| <

1
2j
.

By induction there exists (Nj) ⊂ N an strictly increasing sequence such that

sup
s∈K
|Pj(s) −

Nj∑
n=1

an

ns
| <

1
2j
,

Thus

sup
s∈K
|g(s) −

Nj∑
n=1

an

ns
| <

1
j
,

for all j.
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