Universal Dirichlet series

Manuel Maestre

Joint work with

R.M. Aron, F. Bayart, P. Gauthier and V. Nestoridis

AGA, Dublin May 9th, 2019

THEOREM. W. Luh 1970, C.K. Chui and M. N. Parnes 1971

There exists $f(z) = \sum_{n=1}^{\infty} a_n z^n$ an holomorphic function on \mathbb{D} such that if K is a compact subset of $\mathbb{C} \setminus \overline{\mathbb{D}}$ with connected complement, and $g : K \to \mathbb{C}$ is a continuous function on K and holomorphic in its interior, then there exists a subsequence (S_{N_i}) of $(S_N = \sum_{n=1}^N a_n z^n)$ that converges uniformly to g on K.

THEOREM. V. Nestoridis, 1996

There exists $f(z) = \sum_{n=1}^{\infty} a_n z^n$ an holomorphic function on \mathbb{D} such that if K is a compact subset of $\mathbb{C} \setminus \mathbb{D}$ with connected complement and $g : K \to \mathbb{C}$ is a continuous function on K and holomorphic in its interior, then there exists a subsequence (S_{N_i}) of $(S_N(z) = \sum_{n=1}^N a_n z^n)$ that converges uniformly to g on K.

THEOREM. V. Nestoridis, 1996

There exists $f(z) = \sum_{n=1}^{\infty} a_n z^n$ an holomorphic function on \mathbb{D} such that if K is a compact subset of $\mathbb{C} \setminus \mathbb{D}$ with connected complement and $g : K \to \mathbb{C}$ is a continuous function on K and holomorphic in its interior, then there exists a subsequence (S_{N_i}) of $(S_N(z) = \sum_{n=1}^N a_n z^n)$ that converges uniformly to g on K.

DEFINITION

Any holomorphic function on \mathbb{D} , $f(z) = \sum_{n=1}^{\infty} a_n z^n$ satisfying above theorem is called a UNIVERSAL TAYLOR SERIES.

THEOREM. V. Nestoridis, 1996

There exists $f(z) = \sum_{n=1}^{\infty} a_n z^n$ an holomorphic function on \mathbb{D} such that if K is a compact subset of $\mathbb{C} \setminus \mathbb{D}$ with connected complement and $g : K \to \mathbb{C}$ is a continuous function on K and holomorphic in its interior, then there exists a subsequence (S_{N_j}) of $(S_N(z) = \sum_{n=1}^N a_n z^n)$ that converges uniformly to g on K.

DEFINITION

Any holomorphic function on \mathbb{D} , $f(z) = \sum_{n=1}^{\infty} a_n z^n$ satisfying above theorem is called a UNIVERSAL TAYLOR SERIES.

THEOREM. Mergelyan

Given *K* a compact subset of \mathbb{C} and defined A(K) as the algebra of all functions $g: K \to \mathbb{C}$ that are continuous on *K* and holomorphic on its interior. It holds that

$$\mathsf{A}(K)=\overline{\mathcal{P}(\mathbb{C})}^{\|.\|_{K}}$$

if and only if $\mathbb{C} \setminus K$ is a connected set.

DEFINITION

DEFINITION

 $\mathbb{C}_+ = \{ s \in \mathbb{C} : \operatorname{Re} s > 0 \}.$

DEFINITION

 $\mathbb{C}_+ = \{ s \in \mathbb{C} : \operatorname{Re} s > 0 \}.$

DEFINITION

,

$$\mathbb{C}_+ = \{ s \in \mathbb{C} : \operatorname{Re} s > 0 \}.$$

For $\sigma > 0$ we denote

$$\|\sum_{n=1}^{\infty}a_nn^{-s}\|_{\sigma}=\sum_{n=1}^{\infty}|a_n|n^{-\sigma}$$

DEFINITION

,

$$\mathbb{C}_+ = \{ s \in \mathbb{C} : \operatorname{Re} s > 0 \}.$$

For $\sigma > 0$ we denote

$$\|\sum_{n=1}^{\infty}a_nn^{-s}\|_{\sigma}=\sum_{n=1}^{\infty}|a_n|n^{-\sigma}$$

1

$$\mathcal{D}_{a}(\mathbb{C}_{+}) = \left\{ \sum_{n=1}^{\infty} a_{n} n^{-s} : \sum_{n=1}^{\infty} |a_{n} n^{-s}| < \infty, \text{ for all } s \in \mathbb{C}_{+} \right\}$$

,

$$\mathbb{C}_+ = \{ s \in \mathbb{C} : \operatorname{Re} s > 0 \}.$$

For $\sigma > 0$ we denote

$$\|\sum_{n=1}^{\infty}a_nn^{-s}\|_{\sigma}=\sum_{n=1}^{\infty}|a_n|n^{-\sigma}$$

$$\mathcal{D}_{a}(\mathbb{C}_{+}) = \left\{ \sum_{n=1}^{\infty} a_{n} n^{-s} : \sum_{n=1}^{\infty} |a_{n} n^{-s}| < \infty, \text{ for all } s \in \mathbb{C}_{+} \right\}.$$

We endow $\mathcal{D}_a(\mathbb{C}_*)$ with the Fréchet topology induced by the semi-norms $\|\cdot\|_\sigma,\sigma>0.$

DEFINITION

We will say that a Dirichlet series $D = \sum_{n=1}^{\infty} \frac{a_n}{n_s}$ that is absolutely convergent in \mathbb{C}_+ is a UNIVERSAL DIRICHLET SERIES

We will say that a Dirichlet series $D = \sum_{n=1}^{\infty} \frac{a_n}{n_s}$ that is absolutely convergent in \mathbb{C}_+ is a UNIVERSAL DIRICHLET SERIES If given a compact subset K of $\{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ with connected complement and given g in A(K) there is a subsequence (S_{N_j}) of $S_N = \sum_{n=1}^{N} \frac{a_n}{n_s}$ such that (S_{N_j}) converges to g uniformly on K.

We will say that a Dirichlet series $D = \sum_{n=1}^{\infty} \frac{a_n}{n_s}$ that is absolutely convergent in \mathbb{C}_+ is a UNIVERSAL DIRICHLET SERIES If given a compact subset *K* of $\{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ with connected complement and given *g* in *A*(*K*) there is a subsequence (S_{N_j}) of $S_N = \sum_{n=1}^{N} \frac{a_n}{n_s}$ such that (S_{N_j}) converges to *g* uniformly on *K*.

THEOREM. R. Aron, F. Bayart, P. Gauthier, M.M.and V. Nestoridis, 2017

There exist universal Dirichlet series.

We will say that a Dirichlet series $D = \sum_{n=1}^{\infty} \frac{a_n}{n_s}$ that is absolutely convergent in \mathbb{C}_+ is a UNIVERSAL DIRICHLET SERIES If given a compact subset *K* of $\{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ with connected complement and given *g* in *A*(*K*) there is a subsequence (S_{N_j}) of $S_N = \sum_{n=1}^{N} \frac{a_n}{n_s}$ such that (S_{N_j}) converges to *g* uniformly on *K*.

THEOREM. R. Aron, F. Bayart, P. Gauthier, M.M.and V. Nestoridis, 2017

There exist universal Dirichlet series.

Improving a previous result by F. Bayart, 2005.

THEOREM.

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement, $f \in \mathcal{D}_a(\mathbb{C}_+)$, $g \in A(K), \sigma > 0$ and $\varepsilon > 0$. Then there exists a Dirichlet polynomial $h = \sum_{n=1}^{N} a_n n^{-s}$ such that $||h - g||_{\mathcal{C}(K)} < \varepsilon$ and $||h - f||_{\sigma} < \varepsilon$.

THEOREM.

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement, $f \in \mathcal{D}_a(\mathbb{C}_+)$, $g \in A(K), \sigma > 0$ and $\varepsilon > 0$. Then there exists a Dirichlet polynomial $h = \sum_{n=1}^{N} a_n n^{-s}$ such that $||h - g||_{C(K)} < \varepsilon$ and $||h - f||_{\sigma} < \varepsilon$.

Lemma

Let X be a Banach space and let $(x_n)_{n\geq 1}$ be a sequence in X. Assume that $\sum_{n=1}^{+\infty} |\langle x^*, x_n \rangle| = +\infty$ for every nonzero continuous linear functional $x^* \in X^*$. Then, for every $N \in \mathbb{N}$, the set $\left\{ \sum_{n=N}^{M} a_n x_n; M \ge N, |a_n| \le 1 \right\}$ is dense in X.

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement. The key point is to prove that for every $\delta > 0$, the set

$$\left\{\sum_{n=N}^{M} \frac{a_n}{n^{s+1+\delta}}; \ M \ge N, |a_n| \le 1\right\}$$

is dense in A(K).

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement. The key point is to prove that for every $\delta > 0$, the set

$$\left\{\sum_{n=N}^{M}\frac{a_n}{n^{s+1+\delta}};\;M\geq N, |a_n|\leq 1\right\}$$

is dense in A(K).

Let ϕ be a nonzero continuous linear functional on A(K). There exists a nonzero (complex) measure μ with support contained in K such that, for any $f \in A(K)$,

$$\phi(f) = \int_K f(s) d\mu.$$

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement. The key point is to prove that for every $\delta > 0$, the set

$$\left\{\sum_{n=N}^{M}\frac{a_n}{n^{s+1+\delta}};\;M\geq N, |a_n|\leq 1\right\}$$

is dense in A(K).

Let ϕ be a nonzero continuous linear functional on A(K). There exists a nonzero (complex) measure μ with support contained in K such that, for any $f \in A(K)$,

$$\phi(f) = \int_K f(s) d\mu.$$

$$\phi(n^{-s}) = \int_{\mathcal{K}} e^{-s \log n} d\mu = \mathcal{L}_{\mu}(\log n),$$

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement. The key point is to prove that for every $\delta > 0$, the set

$$\left\{\sum_{n=N}^{M}\frac{a_n}{n^{s+1+\delta}};\;M\geq N, |a_n|\leq 1\right\}$$

is dense in A(K).

Let ϕ be a nonzero continuous linear functional on A(K). There exists a nonzero (complex) measure μ with support contained in K such that, for any $f \in A(K)$,

$$\phi(f) = \int_{\mathcal{K}} f(s) d\mu.$$

$$\phi(n^{-s}) = \int_{\mathcal{K}} e^{-s \log n} d\mu = \mathcal{L}_{\mu}(\log n)$$

$$\sum_{s \ge 1} |\phi(n^{-s-1+\delta})| = \sum_{n \ge 1} \frac{|\mathcal{L}_{\mu}(\log n)|}{n^{1-\delta}}$$

n>

n

KEY ELEMENT

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement. The key point is to prove that for every $\delta > 0$, the set

$$\left\{\sum_{n=N}^{M}\frac{a_n}{n^{s+1+\delta}};\;M\geq N, |a_n|\leq 1\right\}$$

is dense in A(K).

Let ϕ be a nonzero continuous linear functional on A(K). There exists a nonzero (complex) measure μ with support contained in K such that, for any $f \in A(K)$,

$$\phi(f) = \int_{K} f(s) d\mu.$$

$$\phi(n^{-s}) = \int_{K} e^{-s \log n} d\mu = \mathcal{L}_{\mu}(\log n),$$

$$\sum_{a \ge 1} |\phi(n^{-s-1+\delta})| = \sum_{n \ge 1} \frac{|\mathcal{L}_{\mu}(\log n)|}{n^{1-\delta}} \stackrel{??}{=} \infty.$$

THEOREM.

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement, $f \in \mathcal{D}_a(\mathbb{C}_+)$, $g \in A(K)$, $\sigma > 0$ and $\varepsilon > 0$. Then there exists a Dirichlet polynomial $h = \sum_{n=1}^{N} a_n n^{-s}$ such that $||h - g||_{\mathcal{C}(K)} < \varepsilon$ and $||h - f||_{\sigma} < \varepsilon$.

THEOREM.

Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ be compact with connected complement, $f \in \mathcal{D}_a(\mathbb{C}_+)$, $g \in A(K), \sigma > 0$ and $\varepsilon > 0$. Then there exists a Dirichlet polynomial $h = \sum_{n=1}^{N} a_n n^{-s}$ such that $||h - g||_{C(K)} < \varepsilon$ and $||h - f||_{\sigma} < \varepsilon$.

COROLLARY.

Let $K \subset \overline{\mathbb{C}_-}$ be compact with connected complement, for every $f \in D_a(\mathbb{C}_+)$, g entire, $\sigma, \varepsilon > 0$, and $N \in \mathbb{N}$, there exists a Dirichlet polynomial h such that

$$\sup_{0 \le l \le N} \|h^{(l)} - g^{(l)}\|_{\mathcal{C}(\mathcal{K})} < \varepsilon \text{ and } \|h - f\|_{\sigma} < \varepsilon.$$

THEOREM

There exists a Dirichlet series $D = \sum_{n=1}^{\infty} a_n n^{-s}$, absolutely convergent in \mathbb{C}_+ , with partial sums $S_N = \sum_{n=1}^N a_n n^{-s}$, such that, for every entire function g there exists a sequence (N_k) , so that for every ℓ in $\{0, 1, 2, ...\}$ the derivatives $S_{N_k}^{(\ell)}$ converge to $g^{(\ell)}$ uniformly on each compact subset of $\{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$.

THEOREM

There exists a Dirichlet series $D = \sum_{n=1}^{\infty} a_n n^{-s}$, absolutely convergent in \mathbb{C}_+ , with partial sums $S_N = \sum_{n=1}^{N} a_n n^{-s}$, such that, for every entire function g there exists a sequence (N_k) , so that for every ℓ in $\{0, 1, 2, ...\}$ the derivatives $S_{N_k}^{(\ell)}$ converge to $g^{(\ell)}$ uniformly on each compact subset of $\{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$. Moreover, the set of such Dirichlet series is dense and a G_{δ} in the space $\mathcal{D}_a(\mathbb{C}_+)$ and it contains a dense vector subspace of it, apart from 0.

Proof of existence of a universal Dirichlet series

Let $D = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ obtained in above theorem.

Let $D = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ obtained in above theorem. Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ such that $\mathbb{C} \setminus K$ is connected, and let $g \in A(K) = C(K) \cap H(\text{int } K)$

Let $D = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ obtained in above theorem. Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ such that $\mathbb{C} \setminus K$ is connected, and let $g \in A(K) = C(K) \cap H(\text{int } K)$

$$A(K) = \overline{\mathcal{P}(\mathbb{C})}^{\|.\|_{K}}$$

Let $D = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ obtained in above theorem. Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ such that $\mathbb{C} \setminus K$ is connected, and let $g \in A(K) = C(K) \cap H(\text{int } K)$

$$A(K) = \overline{\mathcal{P}(\mathbb{C})}^{\|.\|_{K}}$$

Hence given $\varepsilon = 1/j$, there exists a polynomial $P_j : \mathbb{C} \to \mathbb{C}$ such that

$$\sup_{s\in K} |g(s)-P_j(s)|<\frac{1}{2j}.$$

Let $D = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ obtained in above theorem. Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ such that $\mathbb{C} \setminus K$ is connected, and let $g \in A(K) = C(K) \cap H(int K)$

$$A(K) = \overline{\mathcal{P}(\mathbb{C})}^{\|.\|_{K}}$$

Hence given $\varepsilon = 1/j$, there exists a polynomial $P_j : \mathbb{C} \to \mathbb{C}$ such that

$$\sup_{s\in K} |g(s)-P_j(s)|<\frac{1}{2j}.$$

By induction there exists $(N_j) \subset \mathbb{N}$ an strictly increasing sequence such that

$$\sup_{s\in\mathcal{K}}|P_j(s)-\sum_{n=1}^{N_j}\frac{a_n}{n^s}|<\frac{1}{2j},$$

Let $D = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ obtained in above theorem. Let $K \subset \{z \in \mathbb{C} \mid \text{Re } z \leq 0\}$ such that $\mathbb{C} \setminus K$ is connected, and let $g \in A(K) = C(K) \cap H(int K)$

$$A(K) = \overline{\mathcal{P}(\mathbb{C})}^{\|.\|_{K}}$$

Hence given $\varepsilon = 1/j$, there exists a polynomial $P_j : \mathbb{C} \to \mathbb{C}$ such that

$$\sup_{s\in K}|g(s)-P_j(s)|<\frac{1}{2j}.$$

By induction there exists $(N_j) \subset \mathbb{N}$ an strictly increasing sequence such that

$$\sup_{s\in\mathcal{K}}|P_j(s)-\sum_{n=1}^{N_j}\frac{a_n}{n^s}|<\frac{1}{2j}$$

Thus

$$\sup_{s\in K}|g(s)-\sum_{n=1}^{N_j}\frac{a_n}{n^s}|<\frac{1}{j},$$

for all *j*.

- Richard M. Aron, Frédéric Bayart, Paul Gauthier, Manuel Maestre and Vassili Nestoridis, Dirichlet approximation and universal Dirichlet series, PAMS, 145 N.10 (2017), 4449-4464.
- Frédéric Bayart, Topological and algebraic geometry of divergence and universality, *Studia Math.*, **167, no. 2** (2005), 161–181.
- Frédéric Bayart, Karl Grosse-Erdmann, Vassili Nestoridis and C. Papadimitropoulos, Abstract theory of universal series and applications, Proc. London Math. Soc., 96 (3) (2008), 417–463.
 - Andreas Defant, Domingo García, Manuel Maestre and Pablo Sevilla-Peris, Dirichlet Series and Holomorphic Functions in High Dimensions, to appear in New Mathematical Monographs, Cambridge University Press 2019.