Q-measures on the dual unit ball of a JB*-triple

Lina Oliveira

CAMGSD - Center for Mathematical Analysis, Geometry and Dynamical Systems and Department of Mathematics
Instituto Superior Técnico, Universidade de Lisboa

$$
\begin{gathered}
\text { joint with } \\
\text { C. Martin Edwards } \\
\text { The Queen's College, Oxford }
\end{gathered}
$$

Dublin, May 8-10, 2019
$C(\Omega)$
continuous complex functions on a compact Hausdorff space (Ω, τ)
$C(\Omega)^{*}$ - complex regular Borel measures

WHEN IS A SET THE SUPPORT OF A MEASURE?

Jordan *-triple
complex vector space A together with a triple product, i.e., a mapping

$$
\begin{aligned}
\{\ldots\}: & A \times A \times A \rightarrow A \\
& (a, b, c) \mapsto\left\{\begin{array}{lll}
a & b & c
\end{array}\right\}
\end{aligned}
$$

- symmetric and linear in the outer variables
- conjugate linear in the middle variable
- $D(a, b): A \rightarrow A$ linear operator

$$
D(a, b) c=\left\{\begin{array}{lll}
a & b & c
\end{array}\right\}
$$

$$
[D(a, b), D(c, d)]=D\left(\left\{\begin{array}{lll}
a & b & c
\end{array}\right\}, d\right)-D\left(c,\left\{\begin{array}{lll}
b & a & d
\end{array}\right\}\right)
$$

$J B^{*}$-triple is a Jordan *-triple A such that:

- A is a Banach space
- triple product is continuous
- $D(a, a)$ hermitian, with non-negative spectrum and

$$
\|D(a, a)\|=\|a\|^{2}
$$

JBW*-triple if A is the dual of a Banach space

Examples

- $C(\Omega)$ - continuous complex functions on a compact Hausdorff space (Ω, τ),

$$
\{f g h\}=f \bar{g} h
$$

- $B(H, K) \quad H, K$ Hilbert spaces

$$
\left\{\begin{array}{lll}
a & b & c \tag{1}
\end{array}\right\}=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)
$$

- C*-algebra is a JB*-triple triple product (1)
- W^{*}-algebra is JBW*-triple, triple product (1)
- The bidual of a JB^{*}-triple is a JBW^{*}-triple
- $u \in A^{* *} \quad u$ tripotent if $\{u u u\}=u$
- Peirce decomposition

$$
A^{* *}=A_{0}^{* *}(u) \oplus A_{1}^{* *}(u) \oplus A_{2}^{* *}(u)
$$

$$
A_{j}^{* *}(u)=\left\{a \in A^{* *}: D(u, u) a=\frac{1}{2} j a\right\} \quad \text { for } \quad j=0,1,2
$$

- Peirce projections

$$
\begin{aligned}
& P_{2}(u)=Q(u, u)^{2} \quad Q(u, u) a=\{u a u\} \\
& P_{1}(u)=2\left(D(u, u)-Q(u, u)^{2}\right) \quad P_{0}(u)=\mathrm{I}-2 D(u, u)+Q(u, u)^{2}
\end{aligned}
$$

Example

- $B(H) \quad\{\mathbf{u} \mathbf{u} \mathbf{u}\}=\mathbf{u} \Leftrightarrow \mathbf{u} \mathbf{u}^{*} \mathbf{u}=\mathbf{u} \quad \rightarrow \mathbf{u}$ partial isometry
- $A=\mathrm{M}_{3}(\mathbb{C})$

$$
\begin{aligned}
u & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
A & =\left[\begin{array}{lll}
A_{2}(u) & * & * \\
* & & A_{0}(u) \\
* & & * \leftrightarrow A_{1}(u)
\end{array}\right.
\end{aligned}
$$

- $u \in A^{* *} \quad u$ tripotent if $\{u u u\}=u$
- u, v tripotents, $\mathcal{U}\left(A^{* *}\right)$ set of tripotents

$$
\begin{array}{lc}
u \leq v & \text { if } \quad v-u \in A_{0}^{* *}(u) \\
& \text { " } \leq \text { " partial order relation }
\end{array}
$$

- $\underbrace{\mathcal{U}\left(A^{* *}\right) \cup\{\omega\}}_{\tilde{\mathcal{U}}\left(A^{* *}\right)}$ together with \leq is a complete lattice (ω greatest element)
- $u \in \mathcal{U}\left(A^{* *}\right)$ compact- G_{δ} relative to A if

$$
\exists a \in A,\|a\|=1 \quad u=u(a),
$$

where $\quad u(a)=w^{*}-\lim a^{2 n+1}$

- $u \in \tilde{\mathcal{U}}\left(A^{* *}\right)$ compact relative to A if $u=0$
or
there exists decreasing net $\left(u_{j}\right)_{j \in \Lambda}$ in $\mathcal{U}\left(A^{* *}\right)$ of compact- G_{δ} tripotents relative to A such that

$$
u=\wedge\left\{u_{j}: j \in \Lambda\right\}
$$

- $\mathcal{U}_{c}(A)$ compact tripotents relative to A

$$
\tilde{\mathcal{U}}_{c}\left(A^{* *}\right)=\mathcal{U}_{c}(A) \cup\{\omega\}
$$

V complex Banach space
V_{1} unit ball of V
V^{*} dual of V
V_{1}^{*} unit ball of V^{*}
$\mathcal{F}_{n}\left(V_{1}\right)$ norm-closed faces of $V_{1} \quad \mathcal{F}_{w^{*}}\left(V_{1}^{*}\right)$ weak*-closed faces of V_{1}^{*}

$$
\begin{gathered}
C \subseteq V, \quad C \text { convex } \\
E \subseteq C, \quad E \text { convex } \\
E \text { face of } C \quad \text { if for } z_{1}, z_{2} \in C \\
\exists 0<t<1 \quad t z_{1}+(1-t) z_{2} \in E \Rightarrow z_{1}, z_{2} \in E
\end{gathered}
$$

- $S \subseteq V_{1}$

$$
\underbrace{S^{\prime}=\left\{x \in V_{1}^{*}: x(a)=1, \forall a \in S\right\}}_{\text {weak }^{*} \text {-closed face of } V_{1}^{*}}
$$

- $W \subseteq V_{1}^{*}$

$$
W_{1}=\underbrace{\left\{a \in V_{1}: x(a)=1, \forall x \in W\right\}}_{\text {norm-closed face of } V_{1}}
$$

(Edwards, Fernández-Polo, Hoskin, Peralta, Rüttimann)

Theorem

(1) $\tilde{\mathcal{U}}_{c}\left(A^{* *}\right)$ together with inherited partial ordering is a complete atomic lattice
(2) The map

$$
\begin{aligned}
\tilde{\mathcal{U}}\left(A^{* *}\right) & \rightarrow \mathcal{F}_{n}\left(A_{1}^{*}\right) \\
u & \mapsto\{u\},
\end{aligned}
$$

is an order isomorphism.
(3) The map

$$
\begin{aligned}
\tilde{\mathcal{U}}_{c}\left(A^{* *}\right) & \rightarrow \mathcal{F}_{w^{*}}\left(A_{1}^{*}\right) \\
u & \mapsto\{u\}
\end{aligned}
$$

is an order isomorphism.

A JB*-triple, $\quad x \in A^{*}, \quad\|x\|=1$

- $e(x)$ support tripotent of x the unique tripotent such that

$$
\underbrace{\{e(x)\}_{\prime}}_{\uparrow}
$$

the smallest norm-closed face of A_{1}^{*} containing x

- $e_{c}(x)$ compact support tripotent of x the unique tripotent compact relative to A such that

$$
\underbrace{\left\{e_{c}(x)\right\}_{\prime}}_{\uparrow}
$$

the smallest weak*-closed face of A_{1}^{*} containing x

Lemma

Let A be a JB*-triple. Then, for each element win $\tilde{\mathcal{U}}\left(A^{* *}\right)$, there exists uniquely a smallest element w^{c} in $\tilde{\mathcal{U}}_{c}(A)$ such that

$$
w \leq w^{c}
$$

given by

$$
w^{c}=\wedge_{\left\{v \in \tilde{\mathcal{U}}_{c}(A): w \leq v\right\}} v,
$$

for which

$$
\left(\left\{w^{c}\right\}_{\prime}\right)_{\prime}=\left(\{w\}_{1}\right)_{\prime} .
$$

- w in $\tilde{\mathcal{U}}\left(A^{* *}\right)$

$$
w^{\mathrm{c}} \text { of } \tilde{\mathcal{U}}_{c}(A) \quad \text { Q-closure of } w
$$

- v of $\tilde{\mathcal{U}}_{c}(A)$
w in $\tilde{\mathcal{U}}\left(A^{* *}\right)$ is said to be Q-dense in v if

$$
w^{c}=v
$$

Lemma

Let A be a JB*-triple. Then, for each element x in A^{*} of norm one,

$$
e(x)^{c}=e_{c}(x)
$$

x and y of A^{*} are said to be L-orthogonal if

$$
\|x \pm y\|=\|x\|+\|y\|
$$

Lemma

Let A be a $J B^{*}$-triple, $v \in \mathcal{U}_{c}(A), \quad w \in \mathcal{U}\left(A^{* *}\right) \quad$ and $\quad w \leq v$ $\left\{z_{j}: j \in \Lambda_{1}\right\}$ maximal L-orthogonal family of elements of $\{w\}$, $\left\{z_{j}: j \in \Lambda_{2}\right\}$ maximal L-orthogonal family of elements of $\{v-w\}$, $\Lambda=\Lambda_{1} \cup \Lambda_{2}$
Then

$$
w=\vee_{j \in \Lambda_{1}} e\left(z_{j}\right), \quad v-w=\vee_{j \in \Lambda_{2}} e\left(z_{j}\right), \quad v=\vee_{j \in \Lambda} e\left(z_{j}\right)
$$

Moreover, if w is Q -dense in v, then

$$
v=\left(\vee_{j \in \Lambda_{1}} e\left(z_{j}\right)\right)^{c}=\left(\vee_{j \in \Lambda_{1}} e_{c}\left(z_{j}\right)\right)^{c} .
$$

u and v are said to be orthogonal if v lies in $A_{0}^{* *}(u)$
$u \in \tilde{\mathcal{U}}\left(A^{* *}\right)$ is said to be σ-finite if it does not majorize an uncountable orthogonal subset of $\tilde{\mathcal{U}}\left(A^{* *}\right)$.

Theorem

A be a $J B^{*}$-triple, $v \in \tilde{\mathcal{U}}_{c}(A)$
Then, there exists an element x, of norm one, in the unit ball A_{1}^{*} in A^{*} such that

$$
v=e_{c}(x)
$$

if and only if there exists a σ-finite element w of $\tilde{\mathcal{U}}\left(A^{* *}\right)$ that is
Q-dense in v.

- $v \in \mathcal{U}_{\mathrm{C}}(A) \quad v \neq 0$

$$
\mathcal{C}_{v}=\left\{q \in \tilde{\mathcal{U}}_{c}(A): 0 \leq q \leq v\right\}
$$

- $w \in \tilde{\mathcal{U}}\left(A^{* *}\right) \quad$ Q-dense in v
$\left\{z_{j}: j \in \Lambda\right\} \quad$ maximal L-orthogonal family contained in $\{w\}$,

$$
w=\vee_{j \in \Lambda} e\left(z_{j}\right)
$$

For each element j in Λ, let

$$
\mathcal{D}^{(j)}=\left\{q \in \mathcal{C}_{v} \backslash\{v\}: q \wedge e\left(z_{j}\right) \neq 0\right\}
$$

Lemma

Let A be a JB*-triple. Then, $\mathcal{D}^{(j)}$ is an anti-order ideal in \mathcal{C}_{v}, closed under finite orthogonal sums, such that, for all $q \in C_{v} \backslash\{0\}$,

$$
q=\left(\vee_{j \in \Lambda} q^{(j)}\right)^{\mathrm{c}}
$$

where, for j in Λ,

$$
q^{(j)}=q \wedge e_{c}\left(z_{j}\right)
$$

Lemma

For each finite subset S of $\mathcal{D}^{(j)}$

$$
S=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}
$$

the covering number $c(S)$ of S, defined by

$$
c(S)=\inf _{y \in\{v\},} \Sigma_{k=1}^{n} n^{-1} y\left(q_{k}\right)
$$

is less than one.

Theorem

A be a $J B^{*}$-triple, $v \in \mathcal{U}_{\mathrm{c}}(A)$. Then, there exists an element x in A^{*} of norm one such that v is the compact support tripotent $e_{c}(x)$ of x if and only if the family $\left\{\mathcal{D}^{(j)}: j \in \Lambda\right\}$ is countable.
(Ω, τ) - compact Hausdorff space
$C^{\tau}(\Omega)$ - continuous complex functions on (Ω, τ) $C^{\tau}(\Omega)^{* *} \sim C^{\psi}(\hat{\Omega})$
u non-zero tripotent in $C^{\psi}(\hat{\Omega})$ there exists a unique ψ-clopen subset E_{u} of Ω given by

$$
E_{u}=\{t \in \hat{\Omega}:|u(t)|=1\}
$$

such that

$$
u=\chi_{E_{u}} u
$$

in which case

$$
E_{u}=\hat{\Omega} \backslash\{t \in \hat{\Omega}: u(t)=0\}
$$

Theorem

Let (Ω, τ) be a compact Hausdorff space and let $(\hat{\Omega}, \psi)$ be its hyper-Stonean envelope. For each non-zero tripotent u in $C^{\psi}(\hat{\Omega})$, let

$$
u=\chi_{E_{u}} u
$$

and, for u equal to zero, let E_{u} be the empty set. Then, the mapping

$$
u \mapsto E_{u} \cap \Omega
$$

is an order isomorphism from the complete atomic lattice $\tilde{\mathcal{U}}_{c}\left(C^{\tau}(\Omega)\right)$ of tripotents u in $C^{\psi}(\hat{\Omega})$ compact relative to $C^{\tau}(\Omega)$ onto the complete atomic lattice of τ-compact subsets of Ω.

Theorem

Let x be a regular Borel probability measure on the compact Hausdorff space (Ω, τ), with compact support tripotent $e_{c}(x)$, and let

$$
\operatorname{supp}_{(\Omega, \tau)^{x}}=\Omega \backslash(\cup\{U \in \tau: x(\chi U)=0\})
$$

be the support of x. Then,

$$
\operatorname{supp}_{(\Omega, \tau)} x=E_{e_{c}(x)} \cap \Omega
$$

v tripotent in $\tilde{\mathcal{U}}_{c}\left(C^{\tau}(\Omega)\right)$
\mathcal{C}_{v} be the set of ψ-clopen subsets of $\hat{\Omega}$ the intersections with $E_{v} \cap \Omega$ of which are τ-closed, and, for each element j in Λ, let

$$
\mathcal{D}^{(j)}=\left\{E_{q} \in \mathcal{C}_{v} \backslash\left\{E_{v}\right\}: E_{q} \cap E_{e\left(z_{j}\right)} \cap \Omega \neq \emptyset\right\}
$$

Corollary

Let (Ω, τ) be a compact Hausdorff space with hyper-Stonean envelope $(\hat{\Omega}, \psi)$ and let E be a ψ-clopen subset of $\hat{\Omega}$ such that $E \cap \Omega$ is τ-closed. Then, the following conditions are equivalent.
(i) There exists a regular Borel probability measure x on (Ω, τ) with support $E \cap \Omega$.
(ii) The family $\left\{\mathcal{D}^{(j)}: j \in \Lambda\right\}$, consisting of sets of ψ-clopen subsets of $\hat{\Omega}$ the intersections of which with Ω are τ-closed, is countable.

