Q-measures on the dual unit ball of a JB*-triple

Lina Oliveira

CAMGSD - Center for Mathematical Analysis, Geometry and Dynamical Systems and Department of Mathematics Instituto Superior Técnico, Universidade de Lisboa

joint with

C. Martin Edwards

The Queen's College, Oxford

Dublin, May 8-10, 2019

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

$C(\Omega)$ continuous complex functions on a compact Hausdorff space (Ω, τ)

 $C(\Omega)^*$ - complex regular Borel measures

WHEN IS A SET THE SUPPORT OF A MEASURE?

・ロ> < 回> < 回> < 回> < 回> < 回

Jordan *-triple

complex vector space A together with a triple product, i.e., a mapping

$$\{\dots\}: A \times A \times A \to A$$

 $(a, b, c) \mapsto \{a \ b \ c\}$

- symmetric and linear in the outer variables
- conjugate linear in the middle variable
- $D(a, b) : A \rightarrow A$ linear operator

$$D(a,b)c = \{a \ b \ c\}$$

$$[D(a, b), D(c, d)] = D(\{a \ b \ c\}, d) - D(c, \{b \ a \ d\})$$

JB*-triple is a Jordan *-triple A such that:

- A is a Banach space
- triple product is continuous
- D(a, a) hermitian, with non-negative spectrum and

$$||D(a,a)|| = ||a||^2$$

JBW*-triple if A is the dual of a Banach space

Examples

C(Ω) - continuous complex functions on a compact Hausdorff space (Ω, τ),

$$\{fgh\} = f\bar{g}h$$

• B(H, K) H, K Hilbert spaces

$$\{a \ b \ c\} = \frac{1}{2}(ab^*c + cb^*a) \tag{1}$$

- C*-algebra is a JB*-triple triple product (1)
- W*-algebra is JBW*-triple, triple product (1)
- The bidual of a JB*-triple is a JBW*-triple

- $u \in A^{**}$ u tripotent if $\{u \ u \ u\} = u$
- Peirce decomposition

$$A^{**} = A_0^{**}(u) \oplus A_1^{**}(u) \oplus A_2^{**}(u)$$
$$A_j^{**}(u) = \{a \in A^{**} : D(u, u)a = \frac{1}{2}ja\} \qquad \text{for} \qquad j = 0, 1, 2$$

• Peirce projections

$$P_2(u) = Q(u, u)^2$$
 $Q(u, u)a = \{u \ a \ u\}$

 $P_1(u) = 2(D(u, u) - Q(u, u)^2)$ $P_0(u) = I - 2D(u, u) + Q(u, u)^2$

Example

• B(H) {u u u} = u \Leftrightarrow uu^{*}u = u \rightarrow u partial isometry

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへ⊙

- $u \in A^{**}$ u tripotent if $\{u \ u \ u\} = u$
- u, v tripotents, $U(A^{**})$ set of tripotents

$$u \leq v$$
 if $v - u \in A_0^{**}(u)$

" \leq " partial order relation

• $\underbrace{\mathcal{U}(A^{**}) \cup \{\omega\}}_{\tilde{\mathcal{U}}(A^{**})}$ together with \leq is a complete lattice

(ω greatest element)

・ロト・日本・ヨト・ヨト・日・ つへぐ

• $u \in \mathcal{U}(A^{**})$ compact- G_{δ} relative to A if

$$\exists a \in A, \|a\| = 1 \qquad u = u(a),$$

where $u(a) = w^* - \lim a^{2n+1}$

u ∈ *Ũ*(*A*^{**}) compact relative to *A* if *u* = 0 or there exists decreasing net (*u_i*)_{*i*∈Λ} in *U*(*A*^{**}) of compact-*G*_δ

tripotents relative to A such that

$$u = \wedge \{u_j : j \in \Lambda\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $\mathcal{U}_c(A)$ compact tripotents relative to A

$$\tilde{\mathcal{U}}_{c}(A^{**}) = \mathcal{U}_{c}(A) \cup \{\omega\}$$

- V complex Banach space V^* dual of V
 - V_1 unit ball of V V_1^* unit ball of V^*

 $\mathcal{F}_n(V_1)$ norm-closed faces of V_1 $\mathcal{F}_{w^*}(V_1^*)$ weak*-closed faces of V_1^*

 $C \subseteq V, \quad C \text{ convex}$ $E \subseteq C, \quad E \text{ convex}$ $E \text{ face of } C \quad if \quad \text{for } z_1, z_2 \in C$ $\exists 0 < t < 1 \qquad tz_1 + (1-t)z_2 \in E \Rightarrow z_1, z_2 \in E$

•
$$S \subseteq V_1$$

$$\underbrace{S' = \{x \in V_1^* \colon x(a) = 1, \, \forall a \in S\}}_{\text{weak*-closed face of } V_1^*}$$

• $W \subseteq V_1^*$

$$W_{\prime} = \underbrace{\{a \in V_1 \colon x(a) = 1, \, \forall x \in W\}}_{\text{norm-closed face of } V_1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

(Edwards, Fernández-Polo, Hoskin, Peralta, Rüttimann)

Theorem

- 2 The map

$$ilde{\mathcal{U}}(A^{**}) o {\mathcal{F}}_n(A_1^*) \ u \mapsto \{u\},$$

is an order isomorphism.

3 The map

$$\begin{aligned} \tilde{\mathcal{U}}_c(A^{**}) &\to \mathcal{F}_{w^*}(A_1^*) \\ u &\mapsto \{u\}, \end{aligned}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is an order isomorphism.

- A JB*-triple, $x \in A^*$, ||x|| = 1
 - e(x) support tripotent of x the unique tripotent such that

 $\underbrace{\{e(x)\}}_{\cdot}$

e_c(x) compact support tripotent of x the unique tripotent compact relative to A such that

$$\underbrace{\{e_c(x)\}_{\prime}}_{\uparrow}$$

the smallest weak*-closed face of A_1^* containing x

Lemma

Let A be a JB*-triple. Then, for each element w in $\tilde{\mathcal{U}}(A^{**})$, there exists uniquely a smallest element w^c in $\tilde{\mathcal{U}}_c(A)$ such that

 $w \leq w^{c}$

given by

$$w^{\rm c} = \wedge_{\{v \in \tilde{\mathcal{U}}_c(A) : w \leq v\}} v,$$

for which

$$(\{w^{c}\}_{\prime})_{\prime} = (\{w\}_{\prime})_{\prime}.$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

•
$$w$$
 in $\tilde{\mathcal{U}}(A^{**})$
 w^{c} of $\tilde{\mathcal{U}}_{c}(A)$ Q-closure of w

• v of $\tilde{\mathcal{U}}_c(A)$

w in $\tilde{\mathcal{U}}(A^{**})$ is said to be Q-dense in v if

$$w^{c} = v$$

Lemma

Let A be a JB^* -triple. Then, for each element x in A^* of norm one,

$$e(x)^{\rm c}=e_c(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

x and y of A^* are said to be L-orthogonal if

 $||x \pm y|| = ||x|| + ||y||$

Lemma

Let A be a JB*-triple, $v \in U_c(A)$, $w \in U(A^{**})$ and $w \le v$ $\{z_j : j \in \Lambda_1\}$ maximal L-orthogonal family of elements of $\{w\}$, $\{z_j : j \in \Lambda_2\}$ maximal L-orthogonal family of elements of $\{v - w\}$, $\Lambda = \Lambda_1 \cup \Lambda_2$ Then

$$w = \lor_{j \in \Lambda_1} e(z_j), \quad v - w = \lor_{j \in \Lambda_2} e(z_j), \quad v = \lor_{j \in \Lambda} e(z_j).$$

Moreover, if w is Q-dense in v, then

$$\mathbf{v} = (\vee_{j \in \Lambda_1} e(z_j))^c = (\vee_{j \in \Lambda_1} e_c(z_j))^c.$$

u and *v* are said to be orthogonal if *v* lies in $A_0^{**}(u)$

 $u \in \tilde{\mathcal{U}}(A^{**})$ is said to be σ -finite if it does not majorize an uncountable orthogonal subset of $\tilde{\mathcal{U}}(A^{**})$.

Theorem

A be a JB^* -triple, $v \in \tilde{\mathcal{U}}_c(A)$ Then, there exists an element x, of norm one, in the unit ball A_1^* in A^* such that

$$v = e_c(x)$$

if and only if there exists a σ -finite element w of $\tilde{\mathcal{U}}(A^{**})$ that is Q-dense in v.

•
$$v \in \mathcal{U}_{c}(A)$$
 $v \neq 0$

$$\mathcal{C}_{\mathbf{v}} = \{ q \in \tilde{\mathcal{U}}_{c}(A) : 0 \leq q \leq \mathbf{v} \},$$

 w ∈ Ũ(A**) Q-dense in v {z_j : j ∈ Λ} maximal L-orthogonal family contained in {w},

$$w = \lor_{j \in \Lambda} e(z_j)$$

For each element j in Λ , let

$$\mathcal{D}^{(j)} = \{q \in \mathcal{C}_v \setminus \{v\} : q \land e(z_j) \neq 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

Let A be a JB*-triple. Then, $\mathcal{D}^{(j)}$ is an anti-order ideal in \mathcal{C}_{v} , closed under finite orthogonal sums, such that, for all $q \in \mathcal{C}_{v} \setminus \{0\}$,

$$q = (ee_{j \in \Lambda} q^{(j)})^{\mathrm{c}},$$

where, for j in Λ ,

$$q^{(j)} = q \wedge e_c(z_j).$$

Lemma

For each finite subset S of $\mathcal{D}^{(j)}$

$$S = \{q_1, q_2, \ldots, q_n\}$$

the covering number c(S) of S, defined by

$$c(S) = \inf_{y \in \{v\}_{\prime}} \sum_{k=1}^{n} n^{-1} y(q_k),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

is less than one.

Theorem

A be a JB^* -triple, $v \in U_c(A)$. Then, there exists an element x in A^* of norm one such that v is the compact support tripotent $e_c(x)$ of x if and only if the family $\{\mathcal{D}^{(j)} : j \in \Lambda\}$ is countable.

 (Ω, τ) - compact Hausdorff space $C^{\tau}(\Omega)$ - continuous complex functions on (Ω, τ) $C^{\tau}(\Omega)^{**} \sim C^{\psi}(\hat{\Omega})$

u non-zero tripotent in $C^{\psi}(\hat{\Omega})$ there exists a unique ψ -clopen subset E_u of Ω given by

$$E_u = \{t \in \hat{\Omega} : |u(t)| = 1\}$$

such that

$$u = \chi_{E_u} u$$

in which case

$$E_u = \hat{\Omega} \setminus \{t \in \hat{\Omega} : u(t) = 0\}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem

Let (Ω, τ) be a compact Hausdorff space and let $(\hat{\Omega}, \psi)$ be its hyper-Stonean envelope. For each non-zero tripotent u in $C^{\psi}(\hat{\Omega})$, let

 $u = \chi_{E_u} u$

and, for u equal to zero, let E_u be the empty set. Then, the mapping

$$u\mapsto E_u\cap \Omega$$

is an order isomorphism from the complete atomic lattice $\tilde{\mathcal{U}}_c(C^{\tau}(\Omega))$ of tripotents u in $C^{\psi}(\hat{\Omega})$ compact relative to $C^{\tau}(\Omega)$ onto the complete atomic lattice of τ -compact subsets of Ω .

Theorem

Let x be a regular Borel probability measure on the compact Hausdorff space (Ω, τ) , with compact support tripotent $e_c(x)$, and let

$$\operatorname{supp}_{(\Omega,\tau)} x = \Omega \setminus (\cup \{ U \in \tau : x(\chi_U) = 0 \}),$$

be the support of x. Then,

$$\operatorname{supp}_{(\Omega,\tau)} x = E_{e_c(x)} \cap \Omega.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

v tripotent in $\tilde{\mathcal{U}}_c(C^{\tau}(\Omega))$

 C_v be the set of ψ -clopen subsets of $\hat{\Omega}$ the intersections with $E_v \cap \Omega$ of which are τ -closed, and, for each element j in Λ , let

$$\mathcal{D}^{(j)} = \{ E_q \in \mathcal{C}_v \setminus \{ E_v \} : E_q \cap E_{e(z_j)} \cap \Omega \neq \emptyset \}.$$

Corollary

Let (Ω, τ) be a compact Hausdorff space with hyper-Stonean envelope $(\hat{\Omega}, \psi)$ and let E be a ψ -clopen subset of $\hat{\Omega}$ such that $E \cap \Omega$ is τ -closed. Then, the following conditions are equivalent.

- (i) There exists a regular Borel probability measure x on (Ω, τ) with support E ∩ Ω.
- (ii) The family $\{\mathcal{D}^{(j)} : j \in \Lambda\}$, consisting of sets of ψ -clopen subsets of $\hat{\Omega}$ the intersections of which with Ω are τ -closed, is countable.