## On some subsets of the space of regular compact sets

#### Marta Kosek

Institute of Mathematics Faculty of Mathematics and Computer Science Jagiellonian University



#### Dublin, 8<sup>th</sup> May 2019

Marta Kosek (Jagiellonian University)

Space of regular compact sets

< ロ > < 同 > < 回 > < 回 >

## The Green function

Let  $D \subset \mathbb{C}$  be an unbounded domain. We consider its Green function with the pole at the infinity  $g(\cdot, \infty) : D \longrightarrow \mathbb{R}$ , i.e. the function such that

- $g(\cdot,\infty)$  is harmonic and positive in D;
- $g(z,\infty)$  tends to 0 as  $z o \partial D$ ;
- $g(z,\infty) \log |z|$  tends to a finite number  $\gamma$  as  $z \to \infty$ .

If such  $g(\cdot,\infty)$  exists, it is unique.

Consider a compact set  $E \subset \mathbb{C}$ . Let  $D_{\infty}$  be the unbounded component of  $\mathbb{C} \setminus E$ and  $\widehat{E} := \mathbb{C} \setminus D_{\infty}$ 

If  $E = \widehat{E}$  we say that E is polynomially convex.

If  $g(\cdot,\infty)$  as above exists for  $D_\infty$ , we say that E is regular. We put

$$egin{aligned} \mathbf{g}_{\mathbf{E}}(z) = \left\{ egin{aligned} & \mathbf{g}(z,\infty), & ext{if} \ z \in D_{\infty} \ & 0, & ext{if} \ z \in \widehat{E} \end{aligned} 
ight. \end{aligned}$$

and call this continuous function the Green function of E. Note that by definition  $g_E = g_{\widehat{E}}$ .

## The pluricomplex case

Let E be a compact subset of  $\mathbb{C}^N$ . Its pluricomplex Green function is defined via

$$g_E(z) = \sup\{u(z) : u \in \mathcal{L}, \ u|_E \le 0\},$$

where  $\mathcal{L}$  is the family of all plurisubharmonic functions on  $\mathbb{C}^N$  such that  $\sup\{u(z) - \log^+ |z| : z \in \mathbb{C}^N\} < \infty$ .

*E* is (pluri)regular (or *L*-regular) if  $g_E$  is continuous.

$$\widehat{\boldsymbol{E}} := \{ z \in \mathbb{C}^N | \quad \forall p \in \mathbb{C}[z_1, ..., z_N] : |p(z)| \le ||p||_E \}.$$

*E* is polynomially convex if  $E = \widehat{E}$ . Note that

$$g_E = \log \Phi_E, \qquad \Phi_E(z) = \sup\{|p(z)|^{1/\deg p} \mid p \in \mathbb{C}[z_1, ..., z_N] \setminus \mathbb{C}, ||p||_E \leq 1\}.$$

 $\Phi_E$  – Siciak extremal function

- B

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Space  $\mathcal{R}$  of compact regular polynomially convex sets

 $\mathcal{R}_{\star}$  is the family of all compact (pluri)regular sets in  $\mathbb{C}^{N}$ .  $\mathcal{R} = \{ E \in \mathcal{R}_{\star} : E = \widehat{E} \}.$ 

 $\mathcal{R} \subset \mathcal{R}_{\star} \subset \kappa(\mathbb{C}^N)$  – the family of all nonempty compact subsets of  $\mathbb{C}^N$ .

In  $\kappa(\mathbb{C}^N)$  consider the Hausdorff metric

$$\chi(E,F) = \max\{||\operatorname{dist}(\cdot,E)||_F, ||\operatorname{dist}(\cdot,F)||_E\}.$$

In  $\mathcal{R}_{\star}$  define

$$\Gamma(E,F) = \max\{||g_E||_F, ||g_F||_E\}.$$

 $\Gamma$  is a pseudodistance (semimetric) on  $\mathcal{R}_{\star}$  and a metric on  $\mathcal{R}.$ 

E.g. via Siciak and Lundin formulas

$$\Gamma([-1,1]^N,\Delta_1^N)=\Gamma(\mathbb{B}_1,\mathbb{B}_1\cap\mathbb{R}^N)=\log(1+\sqrt{2}).$$

Marta Kosek (Jagiellonian University)

# Dilations and augmentations

Let *E* be compact and nonempty,  $\varepsilon > 0$ .  $\varepsilon$ -dilation of E:  $E^{\varepsilon} := \{z : \operatorname{dist}(z, E) \leq \varepsilon\}.$  $E \in \kappa(\mathbb{C}^N) \Longrightarrow E^{\varepsilon} \in \mathcal{R}_{\star}.$  $\bigcap E^{\varepsilon} = E \qquad \text{and} \qquad \bigcap \widehat{E^{\varepsilon}} = \widehat{E} \qquad \text{and} \qquad \chi(E^{\varepsilon}, E) = \varepsilon.$  $\varepsilon > 0$  $\varepsilon$ -augmentation of E:  $E_{\varepsilon} := \{ z : g_F(z) < \varepsilon \}.$ Theorem (M. Mazurek, 1981)  $g_{E_{\varepsilon}} = \max(0, g_E - \varepsilon).$  $E \in \mathcal{R}_{+} \Longrightarrow E_{\varepsilon} \in \mathcal{R}_{-}$ 

$$\bigcap_{\varepsilon > 0} E_{\varepsilon} = \widehat{E} \quad \text{and} \quad \Gamma(E_{\varepsilon}, E) = \varepsilon.$$

Marta Kosek (Jagiellonian University)

<=>> = √QQ

#### Theorem (M. Klimek, 1995)

 $(\mathcal{R},\Gamma)$  is a complete metric space, but it is not compact.

#### Corollary (M. Klimek, 1995)

If  $E \in \mathcal{R}$ , then  $\{\{z : g_E < \varepsilon\}\}_{\varepsilon > 0}$  is the basis of neighbourhoods of E.

It follows that if  $(E_n)_{n=1}^{\infty} \subset \mathcal{R}$  is decreasing and  $E = \bigcap_{n=1}^{\infty} E_n \in \mathcal{R}$ , then  $E_n \longrightarrow E$  with respect to both metrics  $(\chi \text{ and } \Gamma)$ .

 $(\mathbb{B}_{1/n})_{n=1}^{\infty}$  is convergent in  $(\kappa(\mathbb{C}^N), \chi)$  to  $\{0\} \notin \mathcal{R}$ .

Theorem (M. Klimek, 2001)

The space  $(\mathcal{R}, \Gamma)$  is separable.

#### Theorem (A. Alghamdi, M. Klimek, 2017)

The space  $(\mathcal{R}, \Gamma)$  is not proper, i.e. closed balls do not have to be compact.

Marta Kosek (Jagiellonian University)

### $\Gamma$ versus polynomiality

Let  $\mathcal{P}_d^{\star}$  be the family of all polynomials  $P : \mathbb{C} \longrightarrow \mathbb{C}$  of degree  $d \ge 2$ (or all regular polynomial mappings  $P : \mathbb{C}^N \longrightarrow \mathbb{C}^N$  of degree  $d \ge 2$ , where regularity means that  $H_d^{-1}(0) = \{0\}$ ).

#### Theorem (A. Alghamdi, M. Klimek, M.K., 2018)

(a) If  $P \in \mathcal{P}_{d}^{\star}$ , then  $A_{P} : \mathcal{R} \ni E \longmapsto P^{-1}(E) \in \mathcal{R}$  is a contractive similitude with the contraction ratio 1/d. (b) The mapping  $\mathcal{P}_{d}^{\star} \times \mathcal{R} \ni (P, K) \longmapsto P^{-1}(K) \in \mathcal{R}$ 

is continuous with respect to the product topology on  $\mathcal{P}_d^\star imes \mathcal{R}$ .

The fixed point of  $A_P$  is the filled-in Julia set of P, i.e.

$$J[P] = \{z : (P^n(z))_{n=1}^{\infty} \text{ is bounded}\} = \lim_{n \to \infty} P^{-n}(E), \quad E \in \mathcal{R}.$$

It has nice properties: in particular its Green function is Hölder continuous.

< ロ > < 同 > < 回 > < 回 >

# Hölder Continuity Property

If  $E \in \mathcal{R}$  and  $g_E$  is Hölder continuous, we say that E has Hölder Continuity Property and write  $E \in \mathcal{R}_{HCP}$ . Note that

$$\begin{array}{l} \mathcal{E} \in \mathcal{R}_{\mathrm{HCP}} \iff \exists \mathcal{U} - \text{ bounded neighbourhood of } \mathcal{E} \\ \exists \mathcal{A}, \alpha > 0 \; \forall z \in \mathcal{U} : \; g_{\mathcal{E}}(z) \leq \mathcal{A}(\mathrm{dist}(z, \mathcal{E}))^{\alpha}. \end{array}$$

Hölder Continuity Property is important in applications, since it implies Markov inequality. We say namely that E is a Markov set if

there exist M, m > 0 such that for each polynomial  $p : \mathbb{C}^N \longrightarrow \mathbb{C}$  and each multiindex  $\alpha \in \mathbb{N}^N$ 

$$\|D^{\alpha}p\|_{E} \leq M(\mathrm{deg}p)^{m|\alpha|}\|p\|_{E}.$$

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

# $\mathcal{R}_{\mathrm{HCP}}$ is not closed

#### Example (W. Pleśniak, 1990)

Let E be a Cantor set constructed as follows. Given a sequence  $\{a_n\}_{n=1}^{\infty}$  of positive numbers such that  $a_{n+1} < a_n/2, a_1 < 1/2$ , we put  $E_1 = I_1^1 \cup I_1^2 = [0, a_1] \cup [1 - a_1, 1]$ . If  $E_n = \bigcup_{i=1}^{2^n} I_i^n$  is constructed, with each  $I_i^n$ being a closed interval of length  $a_n$ , then  $E_{n+1}$  is obtained by deleting an open concentric subinterval of length  $a_n - 2a_{n+1}$  from each  $I_i^n$ . We now put  $E = \bigcap_{n=1}^{\infty} E_n$ We have  $\sum_{n=1}^{\infty} 2^{-n} \log \frac{1}{a_n} < \infty \quad \iff \quad E \in \mathcal{R}.$  $\limsup_{n\to\infty}\frac{1}{n}\log\frac{1}{a_n}=\infty\quad\Longrightarrow\quad E\notin\mathcal{R}_{\mathrm{HCP}}.$ e.g.  $a_n = 2^{-n^2 - 1}$ 

 $(E_n)_{n=1}^{\infty} \subset \mathcal{R}_{\mathrm{HCP}}$  and is convergent with respect to both metrics to E (if  $\sum_{n=1}^{\infty} 2^{-n} \log(1/a_n) < \infty$ ).

Marta Kosek (Jagiellonian University)

# $\mathcal{R}_{\mathrm{HCP}}$ is not closed

Example (M. Klimek, 2001) Let  $(\lambda_n)_{n=1}^{\infty} \subset (4,\infty)$  be such that  $\sum_{n=1}^{\infty} 2^{-n} \log \lambda_n < \infty \quad \text{and} \quad \limsup_{n \to \infty} (\lambda_1 \lambda_2 \dots \lambda_n)^{1/n} = \infty.$ Let  $f_{\lambda_n} : \mathbb{C} \ni z \longmapsto \lambda_n z (1-z) \in \mathbb{C} \quad \text{and} \quad E_n = (f_{\lambda_n} \circ \dots \circ f_{\lambda_1})^{-1} ([0,1]).$ Then  $(E_n)_{n=1}^{\infty}$  is convergent  $(\mathcal{R}, \Gamma)$  to a set  $E \in \mathcal{R} \setminus \mathcal{R}_{HCP}$ , while  $E_n \in \mathcal{R}_{HCP}$ ,  $n \in \mathbb{N}$ . e.g.  $\lambda_n = 2^{n+2}$ . Compare with the conditions from the previous example:

 $\sum_{n=1}^{\infty} 2^{-n} \log \frac{1}{a_n} < \infty \quad \text{and} \quad \limsup_{n \to \infty} \frac{1}{n} \log \frac{1}{a_n} = \infty.$ e.g.  $a_n = 2^{-n^2 - 1}$ .

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

Łojasiewicz-Siciak inequality

Let  $E \in \mathcal{R}$ . Recall:

$$\begin{split} E \in \mathcal{R}_{\mathrm{HCP}} & \Longleftrightarrow \ \exists U - \text{ bounded neighbourhood of } E \\ \exists A, \alpha > 0 \ \forall z \in U : \ g_E(z) \leq A(\mathrm{dist}(z, E))^{\alpha}. \end{split}$$

Belghiti, Gendre introduced:

 $E \in \mathcal{R}_{\pm S} \iff \exists U - bounded neighbourhood of E$  $\exists B, \beta > 0 \ \forall z \in U : g_E(z) \ge B(\operatorname{dist}(z, E))^{\beta}.$ 

(Łojasiewicz-Siciak inequality)

examples: finite unions of pairwise disjoint balls or polydiscs, pluriregular subsets of  $\mathbb{R}^N$ , some polynomially convex holomorphic polyhedra, some planar Cantor type sets...

Marta Kosek (Jagiellonian University)

#### Example (J. Siciak, 2011)

$$K := \Delta(-2,2) \cup \Delta(2,2) \in \mathcal{R} \setminus \mathcal{R}_{+S}.$$

#### Example (R. Pierzchała, 2014)

$$\mathcal{K}_n := \Delta\left(-2, \sqrt{4+n^{-2}}
ight) \cup \Delta\left(2, \sqrt{4+n^{-2}}
ight) \in \mathcal{R}_{ ext{LS}}.$$

 $K_n \longrightarrow K$  with respect to both metrics.

The same example shows that  $\mathcal{R}_{\pm S} \cap \mathcal{R}_{HCP}$  is not closed.

Marta Kosek (Jagiellonian University)

э

(日) (四) (日) (日)

Assume  $\mathcal{A} \subset \mathcal{R}_{\star}$  and we have a pseudodistance d on  $\mathcal{A}$ .

If either d or  $\Gamma$  is a metric on A, then  $\Gamma + d$  is a metric on A.

e.g.  $\Gamma + \chi$  is a metric on  $\mathcal{R}_{\star}$ .

e.g.  $(E,F) \mapsto \Gamma(E,F) + \chi(\partial E,\partial F)$  is a metric on  $\mathcal{R}$ . It might be appropriate for investigation of the classical Julia sets in the complex plane (which are boundaries of the filled-in Julia sets).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ● ◆ ●

## Hölder continuity revisited

Let  $f : \Omega \longrightarrow (W, \| \cdot \|)$  be a mapping from a non-empty open set  $\Omega \subset \mathbb{C}^N$  to a normed space. Fix  $\alpha \in (0, 1]$ . Recall that if

$$\mathrm{HC}_{lpha}(f):=\sup\left\{rac{\|f(x)-f(y)\|}{|x-y|^{lpha}}:x,y\in\Omega,x
eq y
ight\},$$

then  $H_{\alpha}(\Omega, W) := \{f \in W^{\Omega} : \operatorname{HC}_{\alpha}(f) < \infty\}$  is a vector space and  $\operatorname{HC}_{\alpha}$  is a seminorm.

Define  $\mathcal{R}_{\alpha} := \{ E \in \mathcal{R} : g_E \in H_{\alpha}(\mathbb{C}^N, \mathbb{R}) \}$ and  $\Gamma_{\alpha}(E, F) := \Gamma(E, F) + \mathrm{HC}_{\alpha}(g_E - g_F), \quad E, F \in \mathcal{R}_{\alpha}, \quad \alpha \in (0, 1].$ Theorem (M. Klimek, 2018)  $\forall \alpha \in (0, 1] : \quad (\mathcal{R}_{\alpha}, \Gamma_{\alpha}) \text{ is a complete metric space.}$ 

Note that  $\mathcal{R}_{HCP} = \bigcup_{\alpha \in (0,1]} \mathcal{R}_{\alpha}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Thank you for your attention!

Maciej Klimek, Marta Kosek, *On the metric space of pluriregular sets*, Dolomites Research Notes on Approximation, 11 (2018), 51-61.

Marta Kosek (Jagiellonian University)

Space of regular compact sets

Dublin, 8<sup>th</sup> May 2019 15 / 15