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1980 Timoney [35]
Let Ω ⊂ Cn be bounded homogeneous domain,
f : Ω → C be holomorphic.

The following conditions on f are all equivalent:

(1) The function f is a Bloch function.

(2) The radii of the schlicht discs in the range of f are
bounded above.

(3) As a function from the metric space (Ω, ρΩ) to
the metric space (Ω, ∥ · ∥e), the function f is uniformly
continuous, where ρΩ is the Poincaré distance.

(4) The family {(f ◦ ϕ)(z) − f(ϕ(z0));ϕ ∈ Aut(Ω)} is
a normal family for some z0 ∈ Ω.
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(5) sup{∥D(f ◦ ϕ)(z0)∥;ϕ ∈ Aut(Ω)} < ∞.

(6) The family {f ◦ g; g : U → Ω, hol } is a family of
Bloch functions with uniformly bounded Bloch norm.

(7) The family {(f ◦ g)(z)− f(g(0)); g : U → Ω, hol }
is a normal family.

(8) sup{Qh
f(z) : z ∈ Ω} < ∞,

where Qh
f(z) := sup

{ |Df(z)x|
Hz(x, x̄)1/2

: x ∈ Cn \ {0}
}
,

Hz is the Bergman metric at z,
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Bloch space
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Bloch space

U := {ζ ∈ C : |ζ| < 1} : the unit disc in C
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Bloch space

U := {ζ ∈ C : |ζ| < 1} : the unit disc in C
f : U → C : a holomorphic function with f ′(0) = 1.
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Bloch space

U := {ζ ∈ C : |ζ| < 1} : the unit disc in C
f : U → C : a holomorphic function with f ′(0) = 1.

Bloch’s theorem ( 1925 A. Bloch)
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Bloch space

U := {ζ ∈ C : |ζ| < 1} : the unit disc in C
f : U → C : a holomorphic function with f ′(0) = 1.

Bloch’s theorem ( 1925 A. Bloch)
f maps a domain in U biholomorphically onto a disc
D = D(f(z0), r(f)) ⊂ f(U); center f(z0), radius r(f),

(called a schlicht disc)
i.e., ∃φ ∈ H(D) s.t. f(φ(z)) = z for z ∈ D.
r(f) is greater than some positive absolute constant.

9



Bloch space

U := {ζ ∈ C : |ζ| < 1} : the unit disc in C
f : U → C : a holomorphic function with f ′(0) = 1.

Bloch’s theorem ( 1925 A. Bloch)
f maps a domain in U biholomorphically onto a disc
D = D(f(z0), r(f)) ⊂ f(U); center f(z0), radius r(f),

(called a schlicht disc)
i.e., ∃φ ∈ H(D) s.t. f(φ(z)) = z for z ∈ D.
r(f) is greater than some positive absolute constant.

The ‘best possible’ constant B for all such functions,

B := inf{r(f) : f is holomorphic on U and f ′(0) = 1},
is called the Bloch constant.
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1942 Seidel and Walsh [33]
schlicht disc radius r(f) ≤ (1 − |z0|2)|f ′(z0)| ≤ 4r(f)
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1942 Seidel and Walsh [33]
schlicht disc radius r(f) ≤ (1 − |z0|2)|f ′(z0)| ≤ 4r(f)

The expression (1 − |z|2)|f ′(z)| is found to be closely
connected with the schlicht disc radius.
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1942 Seidel and Walsh [33]
schlicht disc radius r(f) ≤ (1 − |z0|2)|f ′(z0)| ≤ 4r(f)

The expression (1 − |z|2)|f ′(z)| is found to be closely
connected with the schlicht disc radius.

The classical Bloch space B

the space of holomorphic functions f : U → C satisfying

∥f∥Bloch := sup
z∈U

(1 − |z|2)|f ′(z)| < ∞

endowed with the norm

∥f∥B := |f(0)| + ∥f∥Bloch < ∞

so that B = (B, ∥ · ∥B) becomes a Banach space.
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The following conditions on f are all equivalent:

(1) The function f is a Bloch function.

14



The following conditions on f are all equivalent:

(1) The function f is a Bloch function.

(2) The radii of the schlicht discs in the range of f are
bounded above.

(3) As a function from the metric space (U, ρU) to
the metric space (C, | · |e), the function f is uniformly
continuous, where ρU is the Poincaré distance.

(4) The family {(f ◦ϕ)(z)− f(ϕ(0));ϕ ∈ Aut(U)} is a
normal family on U.

(5) sup{|(f ◦ ϕ)′(0)|;ϕ ∈ Aut(U)} < ∞.
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1986 Holland and Walsh

Bloch functions on the open unit disc U in C

⇔

sup
z,w∈U,z ̸=w

(1 − |z|2)1/2(1 − |w|2)1/2
|f(z) − f(w)|

|z − w|
< ∞
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1986 Holland and Walsh

Bloch functions on the open unit disc U in C

⇔

sup
z,w∈U,z ̸=w

(1 − |z|2)1/2(1 − |w|2)1/2
|f(z) − f(w)|

|z − w|
< ∞

The concept of a Bloch function on U has been extended
to various complex domains in higher dimensions.
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Especially,

1980 Timoney [35]
for C-valued Bloch functions f : Ω → C on a finite dim
bounded homogeneous domain Ω ⊂ Cn,

(8) sup{Qh
f(z) : z ∈ Ω} < ∞,

where Qh
f(z) := sup

{ |Df(z)x|
Hz(x, x̄)1/2

: x ∈ Cn \ {0}
}
,

Hz is the Bergman metric at z,
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1992 X.Y.Liu [28]
for hol f : Bn → Cn on the Euclidean ball Bn of Cn,

the family {f ◦φ− (f ◦φ)(0) : φ ∈ Aut(Bn)} is normal.
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1992 X.Y.Liu [28]
for hol f : Bn → Cn on the Euclidean ball Bn of Cn,

the family {f ◦φ− (f ◦φ)(0) : φ ∈ Aut(Bn)} is normal.

2014 Blasco, Galindo and Miralles [3]
for hol f : BH → C on the open unit ball BH of a Hilbert
space H,

∥f∥Bloch := sup
z∈BH

(1 − ∥z∥2)∥Df(z)∥ < ∞
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Preliminaries

Def. ( homogeneous )

A domain G is said to be homogeneous

　 if for ∀x, ∀y ∈ G, ∃g ∈ Aut(G) s.t. g(x) = y
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Preliminaries

Def. ( homogeneous )

A domain G is said to be homogeneous

　 if for ∀x, ∀y ∈ G, ∃g ∈ Aut(G) s.t. g(x) = y

1983
W.Kaup [26] showed that the bounded symmetric
domains in complex Banach spaces are exactly the open
unit balls of JB*-triples which are complex Banach spaces
equipped with a Jordan triple structure.
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Preliminaries

Def. ( homogeneous )

A domain G is said to be homogeneous

　 if for ∀x, ∀y ∈ G, ∃g ∈ Aut(G) s.t. g(x) = y

1983
W.Kaup [26] showed that the bounded symmetric
domains in complex Banach spaces are exactly the open
unit balls of JB*-triples which are complex Banach spaces
equipped with a Jordan triple structure.

A complex Banach space X is a JB*-triple
　if, and only if, the open unit ball of X is homogeneous.
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About JB*-triple
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About JB*-triple

A JB*-triple is the cpx Banach space X equipped with
triple product {·, ·, ·} : X3 → X : for a, b, x, y, z ∈ X,
(i) conjugate linear in the middle, linear and symmetric in the others

(ii) {a, b, {x, y, z}}
= {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}}
(iii) a□a : x ∈ X 7→ {a, a, x} ∈ X : hermitian with nonneg spectr

(iv) ∥{a, a, a}∥ = ∥a∥3
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Kobayashi metric κ for BX

κ(z, x) := inf {η > 0 : ∃ϕ ∈ H(U,BX),

ϕ(0) = z,Dϕ(0)η = x}
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Kobayashi metric κ for BX

κ(z, x) := inf {η > 0 : ∃ϕ ∈ H(U,BX),

ϕ(0) = z,Dϕ(0)η = x}

Then κ(0, x) = ∥x∥ for all x ∈ X.

In particular, κ(z, αx) = |α|κ(z, x) for all α ∈ C gives

κ(z, x) ≤
∥x∥

1 − ∥z∥2
(z ∈ BX, x ∈ X). (1)
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Lemma 1

Let dimX < ∞,

Hz(x, x) denote the Bergman metric on BX.

Then ∃C > 0, s.t.

κ(z, x) ≤ Hz(x, x)
1/2 ≤ Cκ(z, x), z ∈ BX, x ∈ X.
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Lemma 1

Let dimX < ∞,

Hz(x, x) denote the Bergman metric on BX.

Then ∃C > 0, s.t.

κ(z, x) ≤ Hz(x, x)
1/2 ≤ Cκ(z, x), z ∈ BX, x ∈ X.

Remark. In infinite dimensional bounded domains,
the Bergman metric is not available.
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We use the Kobayashi metric instead to circumvent this
difficulty.
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We use the Kobayashi metric instead to circumvent this
difficulty.

The Kobayashi distance ρ on BX, which is the integral
form of the infinitesimal Kobayashi metric κ and
generalizes the Poincaré distance ρU on U, can be
described by a Möbius transformation:

ρ(a, b) = tanh−1 ∥g−a(b)∥ for a, b ∈ BX.

In particular, ρ(a, 0) = tanh−1 ∥a∥.
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Definition 2 Let BX be a bounded symmetric domain

realized as the open unit ball of a JB*-triple X. A function

f ∈ H(BX,C) is called a Bloch function if

sup{Qf(z) : z ∈ BX} < ∞,

where

Qf(z) := sup

{|Df(z)x|
κ(z, x)

: x ∈ X \ {0}
}
.

In finite dimensions, this definition coincides with the one
in Timoney [35, Definition 3.3], where Qh

f was defined
in terms of the Bergman metric.
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For each f ∈ H(BX,C), we define the Bloch semi-norm

of f by

∥f∥B(BX),s := sup {∥D(f ◦ g)(0)∥ : g ∈ Aut(BX)} .
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For each f ∈ H(BX,C), we define the Bloch semi-norm

of f by

∥f∥B(BX),s := sup {∥D(f ◦ g)(0)∥ : g ∈ Aut(BX)} .

For finite dimensional domains BX, the Bloch semi-norm
∥·∥B(BX),s defined above is equivalent to the Bloch ‘norm’
defined in Timoney [35, Definition 4.1], by Lemma 1 and
the following lemma.
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For each f ∈ H(BX,C), we define the Bloch semi-norm

of f by

∥f∥B(BX),s := sup {∥D(f ◦ g)(0)∥ : g ∈ Aut(BX)} .

For finite dimensional domains BX, the Bloch semi-norm
∥·∥B(BX),s defined above is equivalent to the Bloch ‘norm’
defined in Timoney [35, Definition 4.1], by Lemma 1 and
the following lemma.

Lemma 3 Given f ∈ H(BX,C), we have

∥f∥B(BX),s = sup{Qf(z) : z ∈ BX}.
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We equip B(BX) with a norm,

called the Bloch norm, defined by

∥f∥B(BX) := |f(0)| + ∥f∥B(BX),s (f ∈ B(BX))

and call B(BX) the Bloch space on BX, which is a Banach
space.
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Definition 4 Let f : BX → C be a holomorphic function.

A disc ∆ = {w ∈ C : |w −w0| < r}, where w0 ∈ C and

r > 0, is called a schlicht disc in the range of f

⇔

there exists a holomorphic map h : U → BX so that f ◦ h

maps U biholomorphically onto ∆.
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Definition 4 Let f : BX → C be a holomorphic function.

A disc ∆ = {w ∈ C : |w −w0| < r}, where w0 ∈ C and

r > 0, is called a schlicht disc in the range of f

⇔

there exists a holomorphic map h : U → BX so that f ◦ h

maps U biholomorphically onto ∆.

For each z0 ∈ BX, we define a family Ff(z0) of functions
on BX by

Ff(z0) = {f ◦ g − (f ◦ g)(z0) : g ∈ Aut(BX)}.

38



We recall that a family F ⊂ H(U,C) is said to be
normal if every sequence in F admits a subsequence
which converges uniformly on compact subsets of U.

39



We recall that a family F ⊂ H(U,C) is said to be
normal if every sequence in F admits a subsequence
which converges uniformly on compact subsets of U.

A classical result states that F is normal if and only if it
is uniformly bounded on compact sets in U (cf. Ahlfors
[1, p. 216]).
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We recall that a family F ⊂ H(U,C) is said to be
normal if every sequence in F admits a subsequence
which converges uniformly on compact subsets of U.

A classical result states that F is normal if and only if it
is uniformly bounded on compact sets in U (cf. Ahlfors
[1, p. 216]).

The next our theorem give some characterisations, which
is a generalization of Timoney [35, Theorem 3.4] to
infinite dimensional bounded symmetric domains.
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Chu, Hamada, Honda, Kohr ( J. Fuct. Anal. (2017))

Theorem 5 Let BX be a bounded symmetric domain
realized as the open unit ball of a JB*-triple X and let
f ∈ H(BX,C). The following conditions are equivalent:

(1) f is a Bloch function.

(2) The radii of the schlicht discs in the range of f are
bounded above.

(3) f is uniformly continuous as a function from the metric
space (BX, ρ) to the metric space (C, | · |e).

(4) The family Ff(z0) is bounded on B(0, r) for 0 < r < 1

and z0 ∈ BX.
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(5) ∥f∥B(BX),s < ∞.

(6) The family {f ◦ h : h ∈ H(U,BX)} consists of Bloch
functions on U with uniformly bounded Bloch semi-
norm.

(7) The family {f ◦ h − (f ◦ h)(0) : h ∈ H(U,BX)} is
normal.

(8) sup{Qf(z) : z ∈ BX} < ∞, where

Qf(z) := sup

{|Df(z)x|
κ(z, x)

: x ∈ X \ {0}
}
.
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Corollary 6 (C-H-H-K (CpxAnal.Oper.Theory (2019))) Let

f be a Bloch function on BX. Then we have

∥f∥B(BX),s = sup
z ̸=w

|f(z) − f(w)|
ρ(z, w)

.
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Corollary 6 (C-H-H-K (CpxAnal.Oper.Theory (2019))) Let

f be a Bloch function on BX. Then we have

∥f∥B(BX),s = sup
z ̸=w

|f(z) − f(w)|
ρ(z, w)

.

Using Corollary 6, we obtain the following generalization
of Blasco, Galindo and Miralles [2, Theorem 3.3] to
infinite dimensional bounded symmetric domains.
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Theorem 7 Let {fn} be a sequence of Bloch functions on

a bounded symmetric domain BX converging uniformly on

compact subsets of BX to some f ∈ H(BX,C).
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Theorem 7 Let {fn} be a sequence of Bloch functions on

a bounded symmetric domain BX converging uniformly on

compact subsets of BX to some f ∈ H(BX,C).

If the sequence {∥fn∥B(BX),s} is bounded,

then f is a Bloch function and

∥f∥B(BX),s ≤ lim inf
n→∞

∥fn∥B(BX),s.

In other words, the Bloch seminorm ∥ · ∥B(BX),s on B(BX)

is lower semi-continuous in the compact open topology.
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Holland-Walsh’s characterization
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Holland-Walsh’s characterization

1986 Holland and Walsh

Bloch functions on the open unit disc U in C
⇔

sup
z,w∈U,z ̸=w

(1 − |z|2)1/2(1 − |w|2)1/2
|f(z) − f(w)|

|z − w|
< ∞
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Holland-Walsh’s characterization

1986 Holland and Walsh

Bloch functions on the open unit disc U in C
⇔

sup
z,w∈U,z ̸=w

(1 − |z|2)1/2(1 − |w|2)1/2
|f(z) − f(w)|

|z − w|
< ∞

Let B be the open unit ball of a complex Banach space.
For f ∈ H(B,C), we define

S(f) := sup
z,w∈B,z ̸=w

(1−∥z∥2)1/2(1−∥w∥2)1/2
|f(z) − f(w)|

∥z − w∥
.
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2005 Ren and Tu
f is a Bloch function on the Euclidean balls in Cn

⇐⇒ S(f) < ∞
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2005 Ren and Tu
f is a Bloch function on the Euclidean balls in Cn

⇐⇒ S(f) < ∞

C-H-H-K ( Cpx Anal.Oper.Theory (2019))

Theorem 8 Let BH be a Hilbert ball and f ∈ H(BH,C).
Then f is a Bloch function ⇐⇒ S(f) < ∞.
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2005 Ren and Tu
f is a Bloch function on the Euclidean balls in Cn

⇐⇒ S(f) < ∞

C-H-H-K ( Cpx Anal.Oper.Theory (2019))

Theorem 8 Let BH be a Hilbert ball and f ∈ H(BH,C).
Then f is a Bloch function ⇐⇒ S(f) < ∞.

Hilbert space case 2014 Blasco, Galindo and Miralles [3]
f : a Bloch function on BH ⇐⇒

∥f∥B(BH),s := sup
z∈BH

(1 − ∥z∥2)∥Df(z)∥ < ∞
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Lemma 9 Let B be the unit ball of a cpx Banach space X

and let f ∈ H(B,C). Then

S(f) < ∞ ⇐⇒ sup
z∈B

(1 − ∥z∥2)∥Df(z)∥ < ∞.
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Lemma 9 Let B be the unit ball of a cpx Banach space X

and let f ∈ H(B,C). Then

S(f) < ∞ ⇐⇒ sup
z∈B

(1 − ∥z∥2)∥Df(z)∥ < ∞.

Bounded Symmetric Domain BX Case
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Lemma 9 Let B be the unit ball of a cpx Banach space X

and let f ∈ H(B,C). Then

S(f) < ∞ ⇐⇒ sup
z∈B

(1 − ∥z∥2)∥Df(z)∥ < ∞.

Bounded Symmetric Domain BX Case

f : Bloch ft on BX ⇒ supz∈BX
(1−∥z∥2)∥Df(z)∥ < ∞.
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Lemma 9 Let B be the unit ball of a cpx Banach space X

and let f ∈ H(B,C). Then

S(f) < ∞ ⇐⇒ sup
z∈B

(1 − ∥z∥2)∥Df(z)∥ < ∞.

Bounded Symmetric Domain BX Case

f : Bloch ft on BX ⇒ supz∈BX
(1−∥z∥2)∥Df(z)∥ < ∞.

The following result follows from this and Lemma 9.

Proposition 10 Let f be a Bloch function on a bounded

symmetric domain BX. =⇒ S(f) < ∞.
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Lemma 9 Let B be the unit ball of a cpx Banach space X

and let f ∈ H(B,C). Then

S(f) < ∞ ⇐⇒ sup
z∈B

(1 − ∥z∥2)∥Df(z)∥ < ∞.

Bounded Symmetric Domain BX Case

f : Bloch ft on BX ⇒ supz∈BX
(1−∥z∥2)∥Df(z)∥ < ∞.

The following result follows from this and Lemma 9.

Proposition 10 Let f be a Bloch function on a bounded

symmetric domain BX. =⇒ S(f) < ∞.

Question. Is the converse of the previous result O.K. ?

58



Question. that is, S(f) < ∞ =⇒ ?

f is a Bloch function on a bdd symmetric domain BX.
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Question. that is, S(f) < ∞ =⇒ ?

f is a Bloch function on a bdd symmetric domain BX.

We recall that the Bergman operator B(z, z)−1/2 for the
bidisc D = U × U ⊂ C2 is given by

B(z, z)−1/2(x) =

(
x1

1 − |z1|2
,

x2

1 − |z2|2

)
for z = (z1, z2) ∈ U × U and x = (x1, x2) ∈ C2.

60



Example 11 (counter-example)

Let D = U × U be the bidisc

and let f : D → C be defined by

f(z1, z2) = (1 − z2) log
1

1 − z1
(z1, z2) ∈ D.

Then we have S(f) < ∞, but f is not a Bloch function.
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Example 11 (counter-example)

Let D = U × U be the bidisc

and let f : D → C be defined by

f(z1, z2) = (1 − z2) log
1

1 − z1
(z1, z2) ∈ D.

Then we have S(f) < ∞, but f is not a Bloch function.

This counter-example for the bidisc suggests that the
criterion of Bloch functions in Theorem 8 for Hilbert
balls is atypical for bounded symmetric domains.
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Thank you for your attention !

We pray

Prof. Richard Timoney rest in peace.
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