Bloch functions of a bounded symmetric domain

Tatsuhiro Honda

Senshu University, Japan,

Joint work with

Cho-Ho Chu, Hidetaka Hamada, Gabriela Kohr

4 Sep. 2014

at Queen Mary College, Lodon,

1980 Timoney [35]

Let $\Omega \subset \mathbb{C}^n$ be bounded homogeneous domain, $f: \Omega \to \mathbb{C}$ be holomorphic.

The following conditions on f are all equivalent:

(1) The function f is a Bloch function.

(2) The radii of the schlicht discs in the range of f are bounded above.

(3) As a function from the metric space (Ω, ρ_{Ω}) to the metric space $(\Omega, \|\cdot\|_e)$, the function f is uniformly continuous, where ρ_{Ω} is the Poincaré distance.

(4) The family $\{(f \circ \phi)(z) - f(\phi(z_0)); \phi \in Aut(\Omega)\}$ is a normal family for some $z_0 \in \Omega$.

(5) $\sup\{\|D(f\circ\phi)(z_0)\|;\phi\in\operatorname{Aut}(\Omega)\}<\infty.$

(6) The family $\{f \circ g; g : U \to \Omega, \text{ hol }\}$ is a family of Bloch functions with uniformly bounded Bloch norm.

(7) The family $\{(f \circ g)(z) - f(g(0)); g : U \to \Omega, \text{ hol }\}$ is a normal family.

(8) $\sup\{Q_f^h(z):z\in\Omega\}<\infty,$ where $Q_f^h(z):=\sup\left\{rac{|Df(z)x|}{H_z(x,ar{x})^{1/2}}:x\in\mathbb{C}^n\setminus\{0\}
ight\},$

 H_z is the Bergman metric at z,

$\mathbb{U}:=\{\zeta\in\mathbb{C}:|\zeta|<1\}:$ the unit disc in \mathbb{C}

 $\mathbb{U} := \{\zeta \in \mathbb{C} : |\zeta| < 1\}$: the unit disc in \mathbb{C} $f : \mathbb{U} \to \mathbb{C}$: a holomorphic function with f'(0) = 1.

Bloch space

 $\mathbb{U} := \{\zeta \in \mathbb{C} : |\zeta| < 1\}$: the unit disc in \mathbb{C} $f : \mathbb{U} \to \mathbb{C}$: a holomorphic function with f'(0) = 1.

Bloch's theorem (1925 A. Bloch)

Bloch space

 $\mathbb{U} := \{\zeta \in \mathbb{C} : |\zeta| < 1\}$: the unit disc in \mathbb{C} $f : \mathbb{U} \to \mathbb{C}$: a holomorphic function with f'(0) = 1.

Bloch's theorem (1925 A. Bloch)

f maps a domain in \mathbb{U} biholomorphically onto a disc $D = D(f(z_0), r(f)) \subset f(\mathbb{U});$ center $f(z_0)$, radius r(f), (called a *schlicht disc*)

i.e.,
$$\exists \varphi \in H(D)$$
 s.t. $f(\varphi(z)) = z$ for $z \in D$.

r(f) is greater than some positive absolute constant.

Bloch space

 $\mathbb{U} := \{\zeta \in \mathbb{C} : |\zeta| < 1\}$: the unit disc in \mathbb{C} $f : \mathbb{U} \to \mathbb{C}$: a holomorphic function with f'(0) = 1.

Bloch's theorem (1925 A. Bloch)

f maps a domain in \mathbb{U} biholomorphically onto a disc $D = D(f(z_0), r(f)) \subset f(\mathbb{U});$ center $f(z_0)$, radius r(f), (called a *schlicht disc*)

i.e.,
$$\exists \varphi \in H(D)$$
 s.t. $f(\varphi(z)) = z$ for $z \in D$.

r(f) is greater than some positive absolute constant.

The 'best possible' constant B for all such functions, $B := \inf\{r(f) : f \text{ is holomorphic on } U \text{ and } f'(0) = 1\},$ is called the Bloch constant.

1942 Seidel and Walsh [33]

schlicht disc radius $r(f) \leq (1-|z_0|^2)|f'(z_0)| \leq 4r(f)$

1942 Seidel and Walsh [33]

schlicht disc radius $r(f) \leq (1-|z_0|^2)|f'(z_0)| \leq 4r(f)$

The expression $(1 - |z|^2)|f'(z)|$ is found to be closely connected with the schlicht disc radius.

1942 Seidel and Walsh [33]

schlicht disc radius $r(f) \leq (1-|z_0|^2)|f'(z_0)| \leq 4r(f)$

The expression $(1 - |z|^2)|f'(z)|$ is found to be closely connected with the schlicht disc radius.

The classical Bloch space $\boldsymbol{\mathcal{B}}$

the space of holomorphic functions $f:\mathbb{U}
ightarrow\mathbb{C}$ satisfying

$$\|f\|_{Bloch}:=\sup_{z\in\mathbb{U}}(1-|z|^2)|f'(z)|<\infty$$

endowed with the norm

$$\|f\|_{\mathcal{B}}:=|f(0)|+\|f\|_{Bloch}<\infty$$

so that $\mathcal{B} = (\mathcal{B}, \| \cdot \|_{\mathcal{B}})$ becomes a Banach space.

The following conditions on f are all equivalent: (1) The function f is a Bloch function. The following conditions on f are all equivalent:

(1) The function f is a Bloch function.

(2) The radii of the schlicht discs in the range of f are bounded above.

(3) As a function from the metric space $(\mathbb{U}, \rho_{\mathbb{U}})$ to the metric space $(\mathbb{C}, |\cdot|_e)$, the function f is uniformly continuous, where $\rho_{\mathbb{U}}$ is the Poincaré distance.

(4) The family $\{(f \circ \phi)(z) - f(\phi(0)); \phi \in Aut(\mathbb{U})\}$ is a normal family on \mathbb{U} .

(5) $\sup\{|(f \circ \phi)'(0)|; \phi \in \operatorname{Aut}(\mathbb{U})\} < \infty.$

1986 Holland and Walsh

 \Leftrightarrow

Bloch functions on the open unit disc ${\mathbb U}$ in ${\mathbb C}$

$$\sup_{z,w\in\mathbb{U},z
eq w}(1-|z|^2)^{1/2}(1-|w|^2)^{1/2}rac{|f(z)-f(w)|}{|z-w|}<\infty$$

1986 Holland and Walsh

 \Leftrightarrow

Bloch functions on the open unit disc ${\mathbb U}$ in ${\mathbb C}$

$$\sup_{z,w\in\mathbb{U},z
eq w}(1-|z|^2)^{1/2}(1-|w|^2)^{1/2}rac{|f(z)-f(w)|}{|z-w|}<\infty$$

The concept of a Bloch function on \mathbb{U} has been extended to various complex domains in higher dimensions.

Especially,

1980 Timoney [35]

for \mathbb{C} -valued Bloch functions $f : \Omega \to \mathbb{C}$ on a finite dim bounded homogeneous domain $\Omega \subset \mathbb{C}^n$,

(8)
$$\sup\{Q_f^h(z):z\in\Omega\}<\infty,$$

where
$$Q_f^h(z):= \sup\left\{rac{|Df(z)x|}{H_z(x,ar{x})^{1/2}}: x\in\mathbb{C}^n\setminus\{0\}
ight\},$$

 H_z is the Bergman metric at z,

1992 X.Y.Liu [28] for hol $f : \mathbb{B}^n \to \mathbb{C}^n$ on the Euclidean ball \mathbb{B}^n of \mathbb{C}^n , the family $\{f \circ \varphi - (f \circ \varphi)(0) : \varphi \in \operatorname{Aut}(\mathbb{B}^n)\}$ is normal. **1992** X.Y.Liu [28] for hol $f : \mathbb{B}^n \to \mathbb{C}^n$ on the Euclidean ball \mathbb{B}^n of \mathbb{C}^n , the family $\{f \circ \varphi - (f \circ \varphi)(0) : \varphi \in \operatorname{Aut}(\mathbb{B}^n)\}$ is normal.

2014 Blasco, Galindo and Miralles [3] for hol $f : \mathbb{B}_H \to \mathbb{C}$ on the open unit ball \mathbb{B}_H of a Hilbert space H,

$$\|f\|_{Bloch} := \sup_{z\in \mathbb{B}_{H}} (1-\|z\|^{2}) \|Df(z)\| < \infty$$

Preliminaries

Def. (homogeneous)

A domain G is said to be homogeneous if for $\forall x, \forall y \in G, \exists g \in Aut(G) \text{ s.t. } g(x) = y$

Preliminaries

Def. (homogeneous)

A domain G is said to be *homogeneous* if for $\forall x$, $\forall y \in G$, $\exists g \in Aut(G)$ s.t. g(x) = y

1983

W.Kaup [26] showed that the bounded symmetric domains in complex Banach spaces are exactly the open unit balls of JB*-triples which are complex Banach spaces equipped with a Jordan triple structure.

Preliminaries

Def. (homogeneous)

A domain G is said to be *homogeneous* if for $\forall x$, $\forall y \in G$, $\exists g \in Aut(G)$ s.t. g(x) = y

1983

W.Kaup [26] showed that the bounded symmetric domains in complex Banach spaces are exactly the open unit balls of JB*-triples which are complex Banach spaces equipped with a Jordan triple structure.

A complex Banach space X is a JB*-triple if, and only if, the open unit ball of X is homogeneous.

About JB*-triple

About JB*-triple

A JB*-triple is the cpx Banach space X equipped with triple product $\{\cdot, \cdot, \cdot\} : X^3 \to X$: for $a, b, x, y, z \in X$, (i) conjugate linear in the middle, linear and symmetric in the others (ii) $\{a, b, \{x, y, z\}\}$ = $\{\{a, b, x\}, y, z\} - \{x, \{b, a, y\}, z\} + \{x, y, \{a, b, z\}\}$ (iii) $a \Box a : x \in X \mapsto \{a, a, x\} \in X$: hermitian with nonneg spectr (iv) $\|\{a, a, a\}\| = \|a\|^3$ Kobayashi metric κ for \mathbb{B}_X

$$egin{aligned} \kappa(z,x) &:= & \inf \left\{ \eta > 0 : \exists \phi \in H(\mathbb{U},\mathbb{B}_X), \ & \phi(0) = z, D\phi(0)\eta = x
ight\} \end{aligned}$$

Kobayashi metric κ for \mathbb{B}_X

$$egin{aligned} \kappa(z,x) &:= & \inf \left\{ \eta > 0 : \exists \phi \in H(\mathbb{U},\mathbb{B}_X), \ & \phi(0) = z, D\phi(0)\eta = x
ight\} \end{aligned}$$

Then $\kappa(0, x) = ||x||$ for all $x \in X$.

In particular, $\kappa(z, \alpha x) = |lpha| \kappa(z, x)$ for all $lpha \in \mathbb{C}$ gives

$$\kappa(z,x) \leq rac{\|x\|}{1-\|z\|^2} \quad (z \in \mathbb{B}_X, x \in X).$$
 (1)

Lemma 1

Let $\dim X < \infty$,

 $H_z(x,\overline{x})$ denote the Bergman metric on \mathbb{B}_X .

Then $\exists C > 0$, s.t.

 $\kappa(z,x) \leq H_z(x,\overline{x})^{1/2} \leq C\kappa(z,x), \hspace{1em} z \in \mathbb{B}_X, x \in X.$

Lemma 1

Let $\dim X < \infty$,

 $H_z(x,\overline{x})$ denote the Bergman metric on \mathbb{B}_X .

Then $\exists C > 0$, s.t.

 $\kappa(z,x) \leq H_z(x,\overline{x})^{1/2} \leq C\kappa(z,x), \hspace{1em} z \in \mathbb{B}_X, x \in X.$

Remark. In infinite dimensional bounded domains, the Bergman metric is not available.

We use the Kobayashi metric instead to circumvent this difficulty.

We use the Kobayashi metric instead to circumvent this difficulty.

The Kobayashi distance ρ on \mathbb{B}_X , which is the integral form of the infinitesimal Kobayashi metric κ and generalizes the Poincaré distance $\rho_{\mathbb{U}}$ on \mathbb{U} , can be described by a Möbius transformation:

$$ho(a,b)= anh^{-1}\left\|g_{-a}(b)
ight\|$$
 for $a,b\in\mathbb{B}_X.$

In particular, $ho(a,0) = anh^{-1} \|a\|$.

Definition 2 Let \mathbb{B}_X be a bounded symmetric domain realized as the open unit ball of a JB^* -triple X. A function $f \in H(\mathbb{B}_X, \mathbb{C})$ is called a Bloch function if

$$\sup\{Q_f(z):z\in \mathbb{B}_X\}<\infty,$$

where

$$Q_f(z):= \sup\left\{rac{|Df(z)x|}{\kappa(z,x)}: x\in X\setminus\{0\}
ight\}.$$

In finite dimensions, this definition coincides with the one in Timoney [35, Definition 3.3], where Q_f^h was defined in terms of the Bergman metric.

For each $f \in H(\mathbb{B}_X, \mathbb{C})$, we define the *Bloch semi-norm* of f by

 $\|f\|_{\mathcal{B}(\mathbb{B}_X),s} := \sup \{\|D(f \circ g)(0)\| : g \in \operatorname{Aut}(\mathbb{B}_X)\}.$

For each $f \in H(\mathbb{B}_X, \mathbb{C})$, we define the *Bloch semi-norm* of f by

 $\|f\|_{\mathcal{B}(\mathbb{B}_X),s} := \sup \{\|D(f \circ g)(0)\| : g \in \operatorname{Aut}(\mathbb{B}_X)\}.$

For finite dimensional domains \mathbb{B}_X , the Bloch semi-norm $\|\cdot\|_{\mathcal{B}(\mathbb{B}_X),s}$ defined above is equivalent to the Bloch 'norm' defined in Timoney [35, Definition 4.1], by Lemma 1 and the following lemma.

For each $f \in H(\mathbb{B}_X, \mathbb{C})$, we define the *Bloch semi-norm* of f by

 $\|f\|_{\mathcal{B}(\mathbb{B}_X),s} := \sup \left\{ \|D(f \circ g)(0)\| : g \in \operatorname{Aut}(\mathbb{B}_X) \right\}.$

For finite dimensional domains \mathbb{B}_X , the Bloch semi-norm $\|\cdot\|_{\mathcal{B}(\mathbb{B}_X),s}$ defined above is equivalent to the Bloch 'norm' defined in Timoney [35, Definition 4.1], by Lemma 1 and the following lemma.

Lemma 3 Given $f \in H(\mathbb{B}_X, \mathbb{C})$, we have

 $\|f\|_{\mathcal{B}(\mathbb{B}_X),s} = \sup\{Q_f(z): z\in \mathbb{B}_X\}.$
We equip $\mathcal{B}(\mathbb{B}_X)$ with a norm,

called the Bloch norm, defined by

$$\|f\|_{\mathcal{B}(\mathbb{B}_X)}:=|f(0)|+\|f\|_{\mathcal{B}(\mathbb{B}_X),s}\quad (f\in\mathcal{B}(\mathbb{B}_X))$$

and call $\mathcal{B}(\mathbb{B}_X)$ the *Bloch space* on \mathbb{B}_X , which is a Banach space.

Definition 4 Let $f : \mathbb{B}_X \to \mathbb{C}$ be a holomorphic function. A disc $\Delta = \{w \in \mathbb{C} : |w - w_0| < r\}$, where $w_0 \in \mathbb{C}$ and r > 0, is called a schlicht disc in the range of f

\Leftrightarrow

there exists a holomorphic map $h : \mathbb{U} \to \mathbb{B}_X$ so that $f \circ h$ maps \mathbb{U} biholomorphically onto Δ . **Definition 4** Let $f : \mathbb{B}_X \to \mathbb{C}$ be a holomorphic function. A disc $\Delta = \{w \in \mathbb{C} : |w - w_0| < r\}$, where $w_0 \in \mathbb{C}$ and r > 0, is called a schlicht disc in the range of f

\Leftrightarrow

there exists a holomorphic map $h : \mathbb{U} \to \mathbb{B}_X$ so that $f \circ h$ maps \mathbb{U} biholomorphically onto Δ .

For each $z_0 \in \mathbb{B}_X$, we define a family $F_f(z_0)$ of functions on \mathbb{B}_X by

$$F_f(z_0) = \{f \circ g - (f \circ g)(z_0) : g \in \operatorname{Aut}(\mathbb{B}_X)\}.$$

We recall that a family $\mathcal{F} \subset H(\mathbb{U},\mathbb{C})$ is said to be normal if every sequence in \mathcal{F} admits a subsequence which converges uniformly on compact subsets of \mathbb{U} . We recall that a family $\mathcal{F} \subset H(\mathbb{U},\mathbb{C})$ is said to be normal if every sequence in \mathcal{F} admits a subsequence which converges uniformly on compact subsets of \mathbb{U} .

A classical result states that \mathcal{F} is normal if and only if it is uniformly bounded on compact sets in \mathbb{U} (cf. Ahlfors [1, p. 216]). We recall that a family $\mathcal{F} \subset H(\mathbb{U}, \mathbb{C})$ is said to be normal if every sequence in \mathcal{F} admits a subsequence which converges uniformly on compact subsets of \mathbb{U} .

A classical result states that \mathcal{F} is normal if and only if it is uniformly bounded on compact sets in \mathbb{U} (cf. Ahlfors [1, p. 216]).

The next our theorem give some characterisations, which is a generalization of Timoney [35, Theorem 3.4] to infinite dimensional bounded symmetric domains.

Chu, Hamada, Honda, Kohr (J. Fuct. Anal. (2017))

Theorem 5 Let \mathbb{B}_X be a bounded symmetric domain realized as the open unit ball of a JB*-triple X and let $f \in H(\mathbb{B}_X, \mathbb{C})$. The following conditions are equivalent:

- (1) f is a Bloch function.
- (2) The radii of the schlicht discs in the range of f are bounded above.
- (3) f is uniformly continuous as a function from the metric space (\mathbb{B}_X, ρ) to the metric space $(\mathbb{C}, |\cdot|_e)$.
- (4) The family $F_f(z_0)$ is bounded on $\mathbb{B}(0,r)$ for 0 < r < 1and $z_0 \in \mathbb{B}_X$.

- $(5) \ \|f\|_{\mathcal{B}(\mathbb{B}_X),s} < \infty.$
- (6) The family $\{f \circ h : h \in H(\mathbb{U}, \mathbb{B}_X)\}$ consists of Bloch functions on \mathbb{U} with uniformly bounded Bloch seminorm.
- (7) The family $\{f \circ h (f \circ h)(0) : h \in H(\mathbb{U}, \mathbb{B}_X)\}$ is normal.
- (8) $\sup\{Q_f(z):z\in\mathbb{B}_X\}<\infty,$ where

$$Q_f(z):= \sup\left\{rac{|Df(z)x|}{\kappa(z,x)}: x\in X\setminus\{0\}
ight\}.$$

Corollary 6 (C-H-H-K (CpxAnal. Oper. Theory (2019))) Let f be a Bloch function on \mathbb{B}_X . Then we have

$$\|f\|_{\mathcal{B}(\mathbb{B}_X),s} = \sup_{z
eq w} rac{|f(z)-f(w)|}{
ho(z,w)}.$$

Corollary 6 (C-H-H-K (CpxAnal. Oper. Theory (2019))) Let f be a Bloch function on \mathbb{B}_X . Then we have

$$\|f\|_{\mathcal{B}(\mathbb{B}_X),s} = \sup_{z
eq w} rac{|f(z)-f(w)|}{
ho(z,w)}.$$

Using Corollary 6, we obtain the following generalization of Blasco, Galindo and Miralles [2, Theorem 3.3] to infinite dimensional bounded symmetric domains. **Theorem 7** Let $\{f_n\}$ be a sequence of Bloch functions on a bounded symmetric domain \mathbb{B}_X converging uniformly on compact subsets of \mathbb{B}_X to some $f \in H(\mathbb{B}_X, \mathbb{C})$. **Theorem 7** Let $\{f_n\}$ be a sequence of Bloch functions on a bounded symmetric domain \mathbb{B}_X converging uniformly on compact subsets of \mathbb{B}_X to some $f \in H(\mathbb{B}_X, \mathbb{C})$.

If the sequence $\{ \| f_n \|_{\mathcal{B}(\mathbb{B}_X),s} \}$ is bounded,

then f is a Bloch function and

$$\|f\|_{\mathcal{B}(\mathbb{B}_X),s} \leq \liminf_{n o \infty} \|f_n\|_{\mathcal{B}(\mathbb{B}_X),s}.$$

In other words, the Bloch seminorm $\|\cdot\|_{\mathcal{B}(\mathbb{B}_X),s}$ on $\mathcal{B}(\mathbb{B}_X)$ is lower semi-continuous in the compact open topology.

Holland-Walsh's characterization

Holland-Walsh's characterization

1986 Holland and Walsh

 \Leftrightarrow

Bloch functions on the open unit disc ${\mathbb U}$ in ${\mathbb C}$

$$\sup_{z,w\in\mathbb{U},z
eq w}(1-|z|^2)^{1/2}(1-|w|^2)^{1/2}rac{|f(z)-f(w)|}{|z-w|}<\infty$$

Holland-Walsh's characterization

1986 Holland and Walsh

 \Leftrightarrow

Bloch functions on the open unit disc ${\mathbb U}$ in ${\mathbb C}$

$$\sup_{z,w\in\mathbb{U},z
eq w}(1-|z|^2)^{1/2}(1-|w|^2)^{1/2}rac{|f(z)-f(w)|}{|z-w|}<\infty$$

Let \mathbb{B} be the open unit ball of a complex Banach space. For $f \in H(\mathbb{B}, \mathbb{C})$, we define

$$S(f):= \sup_{z,w\in \mathbb{B}, z
eq w} (1\!-\!\|z\|^2)^{1/2} (1\!-\!\|w\|^2)^{1/2} rac{|f(z)-f(w)|}{\|z-w\|}.$$

2005 Ren and Tu

f is a Bloch function on the Euclidean balls in \mathbb{C}^n

 $\iff \quad S(f) < \infty$

2005 Ren and Tu

f is a Bloch function on the Euclidean balls in \mathbb{C}^n $\iff S(f) < \infty$

C-H-H-K (Cpx Anal.Oper.Theory (2019))

Theorem 8 Let \mathbb{B}_H be a Hilbert ball and $f \in H(\mathbb{B}_H, \mathbb{C})$. Then f is a Bloch function $\iff S(f) < \infty$.

2005 Ren and Tu

f is a Bloch function on the Euclidean balls in \mathbb{C}^n $\iff S(f) < \infty$

C-H-H-K (Cpx Anal.Oper.Theory (2019))

Theorem 8 Let \mathbb{B}_H be a Hilbert ball and $f \in H(\mathbb{B}_H, \mathbb{C})$. Then f is a Bloch function $\iff S(f) < \infty$.

Hilbert space case 2014 Blasco, Galindo and Miralles [3] f: a Bloch function on $\mathbb{B}_H \iff$

$$\|f\|_{\mathcal{B}(\mathbb{B}_{H}),s} := \sup_{z\in\mathbb{B}_{H}}(1-\|z\|^{2})\|Df(z)\|<\infty$$

$$S(f)<\infty \Longleftrightarrow \sup_{z\in \mathbb{B}}(1-\|z\|^2)\|Df(z)\|<\infty.$$

$$S(f)<\infty \Longleftrightarrow \sup_{z\in \mathbb{B}}(1-\|z\|^2)\|Df(z)\|<\infty.$$

Bounded Symmetric Domain \mathbb{B}_X **Case**

$$S(f)<\infty \Longleftrightarrow \sup_{z\in \mathbb{B}}(1-\|z\|^2)\|Df(z)\|<\infty.$$

Bounded Symmetric Domain \mathbb{B}_X **Case**

 $f: \operatorname{\mathsf{Bloch}} \operatorname{\mathsf{ft}} \operatorname{\mathsf{on}} \mathbb{B}_X \Rightarrow \sup_{z\in \mathbb{B}_X} (1\!-\!\|z\|^2) \|Df(z)\| < \infty.$

$$S(f)<\infty \Longleftrightarrow \sup_{z\in \mathbb{B}}(1-\|z\|^2)\|Df(z)\|<\infty.$$

Bounded Symmetric Domain \mathbb{B}_X **Case**

 $f: \operatorname{\mathsf{Bloch}}\operatorname{\mathsf{ft}}\operatorname{\mathsf{on}}\mathbb{B}_X \Rightarrow \sup_{z\in\mathbb{B}_X}(1{-}\|z\|^2)\|Df(z)\|<\infty.$

The following result follows from this and Lemma 9. **Proposition 10** Let f be a Bloch function on a bounded symmetric domain \mathbb{B}_X . $\Longrightarrow S(f) < \infty$.

$$S(f)<\infty \Longleftrightarrow \sup_{z\in \mathbb{B}}(1-\|z\|^2)\|Df(z)\|<\infty.$$

Bounded Symmetric Domain \mathbb{B}_X **Case**

 $f: \operatorname{\mathsf{Bloch}}\operatorname{\mathsf{ft}}\operatorname{\mathsf{on}}\mathbb{B}_X \Rightarrow \sup_{z\in\mathbb{B}_X}(1{-}\|z\|^2)\|Df(z)\|<\infty.$

The following result follows from this and Lemma 9. **Proposition 10** Let f be a Bloch function on a bounded symmetric domain \mathbb{B}_X . $\Longrightarrow S(f) < \infty$.

Question. Is the converse of the previous result O.K. ?

Question. that is, $S(f) < \infty \Longrightarrow$?

f is a Bloch function on a bdd symmetric domain \mathbb{B}_X .

Question. that is, $S(f) < \infty \Longrightarrow$?

f is a Bloch function on a bdd symmetric domain \mathbb{B}_X .

We recall that the Bergman operator $B(z,z)^{-1/2}$ for the bidisc $\mathbb{D} = \mathbb{U} \times \mathbb{U} \subset \mathbb{C}^2$ is given by

$$B(z,z)^{-1/2}(x) = igg(rac{x_1}{1-|z_1|^2}, rac{x_2}{1-|z_2|^2}igg)$$

for $z=(z_1,z_2)\in\mathbb{U} imes\mathbb{U}$ and $x=(x_1,x_2)\in\mathbb{C}^2.$

Example 11 (counter-example)

Let $\mathbb{D} = \mathbb{U} \times \mathbb{U}$ be the bidisc and let $f : \mathbb{D} \to \mathbb{C}$ be defined by

$$f(z_1,z_2)=(1-z_2)\lograc{1}{1-z_1} \qquad (z_1,z_2)\in\mathbb{D}.$$

Then we have $S(f) < \infty$, but f is not a Bloch function.

Example 11 (counter-example)

Let $\mathbb{D} = \mathbb{U} \times \mathbb{U}$ be the bidisc and let $f : \mathbb{D} \to \mathbb{C}$ be defined by

$$f(z_1,z_2)=(1-z_2)\lograc{1}{1-z_1} \qquad (z_1,z_2)\in\mathbb{D}.$$

Then we have $S(f) < \infty$, but f is not a Bloch function.

This **counter-example** for the bidisc suggests that the criterion of Bloch functions in Theorem 8 for Hilbert balls is atypical for bounded symmetric domains.

Thank you for your attention ! We pray Prof. Richard Timoney rest in peace.

References

- [1] L.V. Ahlfors. An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938) 359–364.
- [2] R.F. Allen and F. Colonna, On the isometric composition operators on the Bloch space in \mathbb{C}^n . J. Math. Anal. Appl. 355, 675–688 (2009)
- [3] O. Blasco, P. Galindo and A. Miralles, Bloch functions on the unit ball of an infinite dimensional Hilbert space, J. Funct. Anal. 267 (2014), 1188–1204.
- [4] A. Bloch, Les theoremes de M. Valiron sur les fonctions entieres et la theorie de l'uniformisation, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 17 (3) (1925), 1 – 22
- [5] M. Bonk, On Bloch's constant, Proc. Amer. Math. Soc. 110 (1990) 889–894.

- [6] M. Bonk, D. Minda and H. Yanagihara, Distortion theorems for locally univalent Bloch functions, J. Anal. Math. 69 (1996) 73–95.
- [7] É. Cartan, Sur les domaines bornés homogènes de l'espace den variables complexes, Abh. Math. Sem. Univ. Hamburg 11 (1935) 116–162.
- [8] H. Chen and P. Gauthier, On Bloch's constant, J. Anal. Math. 69 (1996) 275–291.
- [9] C.-H. Chu, Jordan structures in geometry and analysis, in: Cambridge Tracts in Mathematics, vol. 190, Cambridge University Press, Cambridge, 2012.
- [10] C.-H. Chu, H. Hamada, T. Honda and G. Kohr, Distortion theorems for convex mappings on homogeneous balls, J. Math. Anal. Appl. 369 (2010) 437–442.
- [11] C.-H. Chu, H. Hamada, T. Honda and G. Kohr, Distortion of locally biholomorphic Bloch mappings on bounded symmetric domains, J. Math. Anal. Appl. 441 (2016), 830 – 843.

- [12] C.-H. Chu, H. Hamada, T. Honda and G. Kohr, Bloch functions on bounded symmetric domains, J. Fuct. Anal. 272 (2017), 2412 – 2441.
- [13] C.-H. Chu, H. Hamada, T. Honda and G. Kohr, Bloch space of a bounded symmetric domain and composition operators Complex Anal. Oper. Theory, to appear.
- [14] C.H. FitzGerald and S. Gong, The Bloch theorem in several complex variables, J. Geom. Anal. 4 (1994) 35–58.
- [15] K.T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and the Bloch theorem, Canad. J. Math. 27 (1975) 446–458.
- [16] H. Hamada, A distortion theorem and the Bloch constant for Bloch mappings in \mathbb{C}^n , J. Anal. Math., to appear.
- [17] H. Hamada, T. Honda and G. Kohr, Linear invariance of locally biholomorphic mappings in the unit ball of a JB*-triple, J. Math. Anal. Appl. 385 (2012) 326–339.

- [18] H. Hamada, T. Honda and G. Kohr, Trace-order and a distortion theorem for linearly invariant families on the unit ball of a finite dimensional JB*-triple, J. Math. Anal. Appl. 396 (2012) 829– 843.
- [19] H. Hamada, T. Honda and G. Kohr, Growth and distortion theorems for linearly invariant families on homogeneous unit balls in \mathbb{C}^n , J. Math. Anal. Appl. 407 (2013) 398–412.
- [20] H. Hamada and G. Kohr, Pluriharmonic mappings in \mathbb{C}^n and complex Banach spaces, J. Math. Anal. Appl. 426 (2015) 635–658.
- [21] Hamada, H., Kohr, G.: Pluriharmonic mappings in \mathbb{C}^n and complex Banach spaces. J. Math. Anal. Appl. 426, 635–658 (2015)
- [22] L. A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, in: T.L. Hayden, T.J. Suffridge(Eds.), Proceedings on Infinite Dimensional Holomorphy, Internat. Conf., Univ. Kentucky, Lexington, KY,

1973, in: Lecture Notes in Mathematics, Vol. 364 (1974), Springer, Berlin, pp. 13–40.

- [23] F. Holland and D. Walsh, Criteria for membership of Bloch space and its subspace, BMOA. Math. Ann. 273, 317–335 (1986)
- [24] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Translations of Mathematical Monographs, vol. 6, American Mathematical Society, Providence, RI, 1963.
- [25] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967) 508–520.
- [26] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983) 503–529.
- [27] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, World Scientific, Singapore, 2005.

- [28] X.Y. Liu, Bloch functions of several complex variables, Pacific J. Math. 152 (1992) 347–363.
- [29] X.Y. Liu and D. Minda, Distortion theorems for Bloch functions, Trans. Amer. Math. Soc. 333 (1992) 325–338.
- [30] O. Loos, Bounded symmetric domains and Jordan pairs, University of California, Irvine, 1977.
- [31] Ren, G., Tu, C.: Bloch space in the unit ball of \mathbb{C}^n . Proc. Amer. Math. Soc. 133, 719–726 (2005)
- [32] G. Roos, Jordan triple systems, pp.425–534, in J. Faraut, S. Kaneyuki, A. Koranyi, Q.-k. Lu, G. Roos, Analysis and geometry on complex homogeneous domains. Progress in Mathematics, 185. Birkhauser Boston, Inc., Boston, MA, 2000.
- [33] W. Seidel and J. L. Walsh, "On the derivatives of functions analytic in the unit circle and their radii of univalence and p-valence ", Trans. Amer. Math. Soc., 52 (1942), 128–216.

- [34] Stroethoff, K.: The Bloch space and Besov spaces of analytic functions. Bull. Austral. Math. Soc. 54, 211–219 (1996)
- [35] R.M. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980) 241–267.
- [36] Timoney, R.M.: Bloch functions in several complex variables, II. J. Reine Angew. Math. 319 (1980), 1–22.
- [37] H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras, North-Holland Mathematics Studies, 104, Amsterdam, 1985.
- [38] J.F. Wang, Distortion theorem for locally biholomorphic Bloch mappings on the unit ball Bⁿ. Bull. Malays. Math. Sci. Soc. (2) 38 (2015) 1657–1667.
- [39] J.F. Wang and T.S. Liu, Bloch constant of holomorphic mappings on the unit ball of \mathbb{C}^n , Chin. Ann. Math. Ser. B 28 (2007) 677–684.

- [40] J.F. Wang and T.S. Liu, Bloch constant of holomorphic mappings on the unit polydisk of \mathbb{C}^n , Sci. China Ser. A 51 (2008) 652–659.
- [41] C.Xiong, Norm of composition operators on the Bloch space. Bull. Austral. Math. Soc. 70, 293–299 (2004)
- [42] K. Zhu, Operator theory in function spaces. Monographs and Textbooks in Pure and Applied Mathematics, 139, Marcel Dekker, Inc., New York, 1990.
- [43] K. Zhu, Spaces of holomorphic functions in the unit ball. Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.
Thank you for your attention !