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Even-odd nodes

Given h0 > h1 > · · · > hm, h̃0 > h̃1 > · · · > h̃m

N = {(hn, h̃q) : 0 ≤ n, q ≤ m} (product nodes)

Lagrange polys degree ≤ 2m

Pn,q(s, t) =
∏
j 6=n

s − hj
hn − hj

∏
j 6=q

t − h̃j

h̃q − h̃j

Choose subsets so that Lagrange polys have degree ≤ m.

N 0 = {(hn, h̃q) ∈ N : n, q same parity} even nodes

N 1 = {(hn, h̃q) ∈ N : n, q opposite parity} odd nodes

N = N 0 ∪N 1, N 0 ∩N 1 = ∅, 0 ≤ n(N 0)− n(N 1) ≤ 1





Application

Chebyshev nodes – case hn = h̃n = cos(nπm ), 0 ≤ n ≤ m

Morrow-Patterson 1978, Yuan Xu 1996, Bojanov-Petrova 1997
obtained Lagrange polys and cubature for the Chebyshev nodes

Markov’s theorem for Banach spaces follows from the alternation
of the directional derivative of Lagrange polynomials on rows of
even and odd Chebyshev nodes (2010)

Objective is to extend theorems on Lagrange polys and cubature to
arbitrary even and odd nodes.

Combined notation for even and odd nodes

N k = {(hn, h̃q) : (n, q) ∈ Qk}, k = 0, 1

Qk = {(n, q) : 0 ≤ n, q ≤ m, n − q = k mod 2} index set



Orthogonal polynomials

Let µ be a measure on R with
∫
R |x |

n dµ <∞ for all n = 0, 1, . . ..

P(R) - all real polynomials of single variable

Define (p, q) =
∫
R pq dµ for p, q ∈ Pm(R)

Suppose (p, p) = 0 implies p = 0 for p ∈ Pm(R)

Def. {pn} is a finite or infinite sequence of orthogonal polys if

p0 = 1, pn has degree n,

(pn, pm) = 0 when n 6= m

Can start with basis of polys (eg. xn) and apply Gram-Schmidt

Ex Chebyshev polynomials Tn(cos θ) = cos nθ

dµ = 2 dx

π
√

1− x2
dx on (−1, 1)

T0(x) = 1, Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1



3-term recurrence

Theorem If {pn} is a sequence of orthogonal polynomials then

p0(x) = 1, p1(x) = a0x + b0,

pn+1(x) = (anx + bn)pn(x)− cnpn−1(x), n ≥ 1,

a0 > 0, an, cn > 0.

Conversely, a sequence of polynomials satisfying the above is
orthogonal with respect to some measure µ. (Favard 1935)

Christoffel-Darboux formula Hn = (pn, pn)

N∑
n=0

pn(x)pn(y)

Hn
=

pN+1(x)pN(y)− pN(x)pN+1(y)

aNHN(x − y)

Theorem The zeros of pn are real and simple and interlace with
those of pn+1.



Alternation points

Chebyshev points hn = cos(nπm ), n = 0, 1, . . . ,m

Tm(hn) = (−1)n

Def. Numbers h0 > h1 > · · · > hm are alternation points for
orthogonal polynomials p0, p1, . . . , pm if

pm−j(hn) = (−1)npj(hn), j , n = 0, . . . ,m

The hn’s are the roots of πm = p1pm − pm−1

Theorem Any m + 1 numbers h0 > h1 > · · · > hm are alternation
points for some orthogonal polynomials p0, p1, . . . , pm. (2018)

By the alternation property, the polys below vanish on N k :

Xj(s, t) = pm−j(s)p̃j(t)− (−1)k pj(s)p̃m−j(t), 0 ≤ j ≤ m,

Y0(s, t) = p1(s)pm(s)− pm−1(s) = πm(s),

Yj(s, t) = pm−j+1(s)p̃j(t)− (−1)k pj−1(s)p̃m−j(t), 1 ≤ j ≤ m



Construction of Lagrange polynomials

There exist orthogonal polys p0, . . . , pm and p̃0, . . . , p̃m with

pm−j(hn) = (−1)npj(hn), p̃m−j(h̃n) = (−1)np̃j(h̃n)

Choose cj = 1, so Hj = a0H0/aj and similarly for c̃j and H̃j

Kn(s, t, u, v) =
n∑

i=0

i∑
j=0

pi−j(s)p̃j(t)pi−j(u)p̃j(v)

Hi−j H̃j

, 0 ≤ n ≤ m

Define 2Gm(s, t, u, v) = Km−1(s, t, u, v) + Km(s, t, u, v)

+ Ampm(s)pm(u) + Ãmp̃m(t)p̃m(v),

where Am = 1
H̃0

(
1
H0
− 1

Hm

)
, Ãm = 1

H0

(
1
H̃0
− 1

H̃m

)
Pn,q(s, t) = λn,qGm(s, t, hn, h̃q), λn,q = Gm(hn, h̃q, hn, h̃q)−1.

Theorem (2018) Let k = 0 or k = 1 and let (n, q) ∈ Qk . Then
Pn,q is a polynomial of degree m satisfying Pn,q(hn, h̃q) = 1 and
Pn,q(x) = 0 for all x ∈ N k with x 6= (hn, h̃q).



2-dim Christoffel-Darboux identity

Define

Um(s, t, u, v) =
Ym(s, t)p̃m(v)

H̃0

+
m−1∑
j=0

[Xj(s, t)pm−j+1(u) + Yj(s, t)pm−j(u)]p̃j(v)

H̃j

Then Um(s, t, u, v) = 0 when (s, t) ∈ N k and

2a0H0(s − u)Gm(s, t, u, v) = Um(s, t, u, v)− Um(u, v , s, t)

The RHS vanishes when (s, t) = (hn′ , h̃q′) and (u, v) = (hn, h̃q)

Thus if hn′ 6= hn then Gm(hn′ , h̃q′ , hn, h̃q) = 0

The same conclusion holds when h̃q′ 6= h̃q by symmetry.



Cubature lemma

Define orthogonal polynomials of degree m by

Sm = {p ∈ Pm(Rk) : (p, q) = 0 for all q ∈ Pm−1(Rk)}

Lemma (2015) Let {xi}ni=1 be n distinct points of Rk having
Lagrange polys {Pi}ni=1 in Pm(Rk).

Conditions (a) and (b) below are equivalent.

a) If p ∈ Pm(Rk) and p(xi ) = 0 for all i then p ∈ Sm.
For each i , there is an Si ∈ Sm with

Pi (x) = λiKm−1(x , xi ) + Si (x), x ∈ Rk .

b) ∫
Rk

p(x) dµ(x) =
n∑

i=1

λip(xi )

for all p ∈ P2m−1(Rk).



Cubature theorem
This representation of Lagrange polys implies

Theorem (2018) Let µ and µ̃ be measures corresponding to the
two decreasing sequences used to define the even-odd nodes. Then∫ ∫

R2
p(s, t) d(µ× µ̃)(s, t) =

∑
(n,q)∈Qk

λn,q p(hn, h̃q)

for all bivariate polys p of degree at most 2m − 1 and for k = 0, 1.

Applies to Tn, Un, Vn, Wn, kn Unusual

Theorem λn,q = 2λnλ̃q 0 ≤ n, q ≤ m

λn =
H0wn∑m
n=0 wn

, wn =
(−1)n∏

j 6=n(hn − hj)

Discrete measure ν in which p0, . . . , pm are orthogonal

ν =
m∑

n=0

wnδhn , δx = Dirac measure at x



Algorithm

P :=
∏

n even(x − hn) ; Q :=
∏

n odd(x − hn) ;

S :=
∑m

n=0(−1)nhn;
if m is even then s0 := 1; t0 := 0; s1 := x − S ; t1 := 1

else s0 := 1; t0 := −1; s1 := 1; t1 := 1 end(if)
k := [(m + 1)/2];
pk := s0Q − t0P; pk−1 := s1Q − t1P;
if m is even then pk+1 := s1Q + t1P end(if)

# Main loop
for j := 2 to k do

q := quotient(pk−j+2, pk−j+1); # linear
sj := (qsj−1 − sj−2)/ck−j+1;
tj := (qtj−1 − tj−2)/ck−j+1;
pk−j := sjQ − tjP;
pm−k+j := sjQ + tjP

end(do)
for j = 0 to m do pj := pj/p0 end(do)
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