Bivariate interpolation and cubature on the even-odd product nodes

Prof. Lawrence Harris
Mathematics Department
University of Kentucky
larry@uky.edu

Conference in Memory of Prof. Richard Timoney, Trinity College Dublin

May 8, 2019

Even-odd nodes

Given $h_{0}>h_{1}>\cdots>h_{m}, \quad \tilde{h}_{0}>\tilde{h}_{1}>\cdots>\tilde{h}_{m}$

$$
\mathcal{N}=\left\{\left(h_{n}, \tilde{h}_{q}\right): 0 \leq n, q \leq m\right\} \quad \text { (product nodes) }
$$

Lagrange polys degree $\leq 2 m$

$$
P_{n, q}(s, t)=\prod_{j \neq n} \frac{s-h_{j}}{h_{n}-h_{j}} \prod_{j \neq q} \frac{t-\tilde{h}_{j}}{\tilde{h}_{q}-\tilde{h}_{j}}
$$

Choose subsets so that Lagrange polys have degree $\leq m$.
$\mathcal{N}_{0}=\left\{\left(h_{n}, \tilde{h}_{q}\right) \in \mathcal{N}: n, q\right.$ same parity $\} \quad$ even nodes
$\mathcal{N}_{1}=\left\{\left(h_{n}, \tilde{h}_{q}\right) \in \mathcal{N}: n, q\right.$ opposite parity $\} \quad$ odd nodes
$\mathcal{N}=\mathcal{N}_{0} \cup \mathcal{N}_{1}, \quad \mathcal{N}_{0} \cap \mathcal{N}_{1}=\emptyset, \quad 0 \leq n\left(\mathcal{N}_{0}\right)-n\left(\mathcal{N}_{1}\right) \leq 1$

Application

Chebyshev nodes - case $h_{n}=\tilde{h}_{n}=\cos \left(\frac{n \pi}{m}\right), 0 \leq n \leq m$
Morrow-Patterson 1978, Yuan Xu 1996, Bojanov-Petrova 1997 obtained Lagrange polys and cubature for the Chebyshev nodes

Markov's theorem for Banach spaces follows from the alternation of the directional derivative of Lagrange polynomials on rows of even and odd Chebyshev nodes (2010)

Objective is to extend theorems on Lagrange polys and cubature to arbitrary even and odd nodes.

Combined notation for even and odd nodes
$\mathcal{N}_{k}=\left\{\left(h_{n}, \tilde{h}_{q}\right):(n, q) \in Q_{k}\right\}, \quad k=0,1$
$Q_{k}=\{(n, q): 0 \leq n, q \leq m, \quad n-q=k \bmod 2\} \quad$ index set

Orthogonal polynomials

Let μ be a measure on \mathbb{R} with $\int_{\mathbb{R}}|x|^{n} d \mu<\infty$ for all $n=0,1, \ldots$. $\mathcal{P}(\mathbb{R})$ - all real polynomials of single variable

Define $(p, q)=\int_{\mathbb{R}} p q d \mu$ for $p, q \in \mathcal{P}_{m}(\mathbb{R})$
Suppose $(p, p)=0$ implies $p=0$ for $p \in \mathcal{P}_{m}(\mathbb{R})$
Def. $\left\{p_{n}\right\}$ is a finite or infinite sequence of orthogonal polys if $p_{0}=1, p_{n}$ has degree n,

$$
\left(p_{n}, p_{m}\right)=0 \text { when } n \neq m
$$

Can start with basis of polys (eg. x^{n}) and apply Gram-Schmidt
Ex Chebyshev polynomials $T_{n}(\cos \theta)=\cos n \theta$

$$
\begin{aligned}
& d \mu=\frac{2 d x}{\pi \sqrt{1-x^{2}}} d x \text { on }(-1,1) \\
& T_{0}(x)=1, T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \text { for } n \geq 1
\end{aligned}
$$

3-term recurrence

Theorem If $\left\{p_{n}\right\}$ is a sequence of orthogonal polynomials then

$$
\begin{gathered}
p_{0}(x)=1, \quad p_{1}(x)=a_{0} x+b_{0} \\
p_{n+1}(x)=\left(a_{n} x+b_{n}\right) p_{n}(x)-c_{n} p_{n-1}(x), \quad n \geq 1 \\
a_{0}>0, \quad a_{n}, c_{n}>0
\end{gathered}
$$

Conversely, a sequence of polynomials satisfying the above is orthogonal with respect to some measure μ. (Favard 1935)

Christoffel-Darboux formula $\quad H_{n}=\left(p_{n}, p_{n}\right)$

$$
\sum_{n=0}^{N} \frac{p_{n}(x) p_{n}(y)}{H_{n}}=\frac{p_{N+1}(x) p_{N}(y)-p_{N}(x) p_{N+1}(y)}{a_{N} H_{N}(x-y)}
$$

Theorem The zeros of p_{n} are real and simple and interlace with those of p_{n+1}.

Alternation points

Chebyshev points $\quad h_{n}=\cos \left(\frac{n \pi}{m}\right), \quad n=0,1, \ldots, m$

$$
T_{m}\left(h_{n}\right)=(-1)^{n}
$$

Def. Numbers $h_{0}>h_{1}>\cdots>h_{m}$ are alternation points for orthogonal polynomials $p_{0}, p_{1}, \ldots, p_{m}$ if

$$
p_{m-j}\left(h_{n}\right)=(-1)^{n} p_{j}\left(h_{n}\right), \quad j, n=0, \ldots, m
$$

The h_{n} 's are the roots of $\pi_{m}=p_{1} p_{m}-p_{m-1}$
Theorem Any $m+1$ numbers $h_{0}>h_{1}>\cdots>h_{m}$ are alternation points for some orthogonal polynomials $p_{0}, p_{1}, \ldots, p_{m}$.

By the alternation property, the polys below vanish on \mathcal{N}_{k} :

$$
\begin{aligned}
& X_{j}(s, t)=p_{m-j}(s) \tilde{p}_{j}(t)-(-1)^{k} p_{j}(s) \tilde{p}_{m-j}(t), \quad 0 \leq j \leq m, \\
& Y_{0}(s, t)=p_{1}(s) p_{m}(s)-p_{m-1}(s)=\pi_{m}(s) \\
& Y_{j}(s, t)=p_{m-j+1}(s) \tilde{p}_{j}(t)-(-1)^{k} p_{j-1}(s) \tilde{p}_{m-j}(t), \quad 1 \leq j \leq m
\end{aligned}
$$

Construction of Lagrange polynomials

There exist orthogonal polys p_{0}, \ldots, p_{m} and $\tilde{p}_{0}, \ldots, \tilde{p}_{m}$ with
$p_{m-j}\left(h_{n}\right)=(-1)^{n} p_{j}\left(h_{n}\right), \quad \tilde{p}_{m-j}\left(\tilde{h}_{n}\right)=(-1)^{n} \tilde{p}_{j}\left(\tilde{h}_{n}\right)$
Choose $c_{j}=1$, so $H_{j}=a_{0} H_{0} / a_{j}$ and similarly for \tilde{c}_{j} and \tilde{H}_{j}
$K_{n}(s, t, u, v)=\sum_{i=0}^{n} \sum_{j=0}^{i} \frac{p_{i-j}(s) \tilde{p}_{j}(t) p_{i-j}(u) \tilde{p}_{j}(v)}{H_{i-j} \tilde{H}_{j}}, \quad 0 \leq n \leq m$
Define $2 G_{m}(s, t, u, v)=K_{m-1}(s, t, u, v)+K_{m}(s, t, u, v)$

$$
+A_{m} p_{m}(s) p_{m}(u)+\tilde{A}_{m} \tilde{p}_{m}(t) \tilde{p}_{m}(v)
$$

$$
\text { where } A_{m}=\frac{1}{\tilde{H}_{0}}\left(\frac{1}{H_{0}}-\frac{1}{H_{m}}\right), \quad \tilde{A}_{m}=\frac{1}{H_{0}}\left(\frac{1}{\tilde{H}_{0}}-\frac{1}{\tilde{H}_{m}}\right)
$$

$P_{n, q}(s, t)=\lambda_{n, q} G_{m}\left(s, t, h_{n}, \tilde{h}_{q}\right), \quad \lambda_{n, q}=G_{m}\left(h_{n}, \tilde{h}_{q}, h_{n}, \tilde{h}_{q}\right)^{-1}$.
Theorem (2018) Let $k=0$ or $k=1$ and let $(n, q) \in Q_{k}$. Then $P_{n, q}$ is a polynomial of degree m satisfying $P_{n, q}\left(h_{n}, \tilde{h}_{q}\right)=1$ and $P_{n, q}(x)=0$ for all $x \in \mathcal{N}_{k}$ with $x \neq\left(h_{n}, \tilde{h}_{q}\right)$.

2-dim Christoffel-Darboux identity

Define

$$
\begin{aligned}
& U_{m}(s, t, u, v)=\frac{Y_{m}(s, t) \tilde{p}_{m}(v)}{\tilde{H}_{0}} \\
& \quad+\sum_{j=0}^{m-1} \frac{\left[X_{j}(s, t) p_{m-j+1}(u)+Y_{j}(s, t) p_{m-j}(u)\right] \tilde{p}_{j}(v)}{\tilde{H}_{j}}
\end{aligned}
$$

Then $U_{m}(s, t, u, v)=0$ when $(s, t) \in \mathcal{N}_{k}$ and

$$
2 a_{0} H_{0}(s-u) G_{m}(s, t, u, v)=U_{m}(s, t, u, v)-U_{m}(u, v, s, t)
$$

The RHS vanishes when $(s, t)=\left(h_{n^{\prime}}, \tilde{h}_{q^{\prime}}\right)$ and $(u, v)=\left(h_{n}, \tilde{h}_{q}\right)$
Thus if $h_{n^{\prime}} \neq h_{n}$ then $G_{m}\left(h_{n^{\prime}}, \tilde{h}_{q^{\prime}}, h_{n}, \tilde{h}_{q}\right)=0$
The same conclusion holds when $\tilde{h}_{q^{\prime}} \neq \tilde{h}_{q}$ by symmetry.

Cubature lemma

Define orthogonal polynomials of degree m by
$\mathcal{S}_{m}=\left\{p \in \mathcal{P}_{m}\left(\mathbb{R}^{k}\right):(p, q)=0\right.$ for all $\left.q \in \mathcal{P}_{m-1}\left(\mathbb{R}^{k}\right)\right\}$
Lemma (2015) Let $\left\{x_{i}\right\}_{i=1}^{n}$ be n distinct points of \mathbb{R}^{k} having Lagrange polys $\left\{P_{i}\right\}_{i=1}^{n}$ in $\mathcal{P}_{m}\left(\mathbb{R}^{k}\right)$.
Conditions (a) and (b) below are equivalent.
a) If $p \in \mathcal{P}_{m}\left(\mathbb{R}^{k}\right)$ and $p\left(x_{i}\right)=0$ for all i then $p \in \mathcal{S}_{m}$. For each i, there is an $S_{i} \in \mathcal{S}_{m}$ with

$$
P_{i}(x)=\lambda_{i} K_{m-1}\left(x, x_{i}\right)+S_{i}(x), \quad x \in \mathbb{R}^{k} .
$$

b)

$$
\int_{\mathbb{R}^{k}} p(x) d \mu(x)=\sum_{i=1}^{n} \lambda_{i} p\left(x_{i}\right)
$$

for all $p \in \mathcal{P}_{2 m-1}\left(\mathbb{R}^{k}\right)$.

Cubature theorem

This representation of Lagrange polys implies
Theorem (2018) Let μ and $\tilde{\mu}$ be measures corresponding to the two decreasing sequences used to define the even-odd nodes. Then

$$
\iint_{\mathbb{R}^{2}} p(s, t) d(\mu \times \tilde{\mu})(s, t)=\sum_{(n, q) \in Q_{k}} \lambda_{n, q} p\left(h_{n}, \tilde{h}_{q}\right)
$$

for all bivariate polys p of degree at most $2 m-1$ and for $k=0,1$.
Applies to $T_{n}, U_{n}, V_{n}, W_{n}, k_{n} \quad$ Unusual
Theorem $\lambda_{n, q}=2 \lambda_{n} \tilde{\lambda}_{q} \quad 0 \leq n, q \leq m$

$$
\lambda_{n}=\frac{H_{0} w_{n}}{\sum_{n=0}^{m} w_{n}}, \quad w_{n}=\frac{(-1)^{n}}{\prod_{j \neq n}\left(h_{n}-h_{j}\right)}
$$

Discrete measure ν in which p_{0}, \ldots, p_{m} are orthogonal

$$
\nu=\sum_{n=0}^{m} w_{n} \delta_{h_{n}}, \quad \delta_{x}=\text { Dirac measure at } x
$$

Algorithm

$P:=\prod_{n \text { even }}\left(x-h_{n}\right) ; \quad Q:=\prod_{n \text { odd }}\left(x-h_{n}\right) ;$
$S:=\sum_{n=0}^{m}(-1)^{n} h_{n}$;
if m is even then $s_{0}:=1 ; \quad t_{0}:=0 ; \quad s_{1}:=x-S ; \quad t_{1}:=1$ else $s_{0}:=1 ; \quad t_{0}:=-1 ; \quad s_{1}:=1 ; \quad t_{1}:=1$ end(if)
$k:=[(m+1) / 2]$;
$p_{k}:=s_{0} Q-t_{0} P ; \quad p_{k-1}:=s_{1} Q-t_{1} P ;$
if m is even then $p_{k+1}:=s_{1} Q+t_{1} P$ end(if)
\# Main loop
for $j:=2$ to k do

$$
\begin{aligned}
& \quad q:=\text { quotient }\left(p_{k-j+2}, p_{k-j+1}\right) ; \quad \# \text { linear } \\
& s_{j}:=\left(q s_{j-1}-s_{j-2}\right) / c_{k-j+1} ; \\
& t_{j}:=\left(q t_{j-1}-t_{j-2}\right) / c_{k-j+1} ; \\
& p_{k-j}:=s_{j} Q-t_{j} P ; \\
& p_{m-k+j}:=s_{j} Q+t_{j} P \\
& \text { end(do) } \\
& \text { for } j=0 \text { to } m \text { do } p_{j}:=p_{j} / p_{0} \text { end(do) }
\end{aligned}
$$

References

C. R. Morrow and T. N. L. Patterson, Construction of algebraic cubature rules using polynomial ideal theory, SIAM J. Numer. Anal. 15 (1978), 953-976.
Y. Xu, Common Zeros of Polynomials in Several Variables and Higher-dimensional Quadrature, Pitman research notes in mathematics, Longman, Essex 1994.
L. A. Harris, Lagrange polynomials, reproducing kernels and cubature in two dimensions, J. Approx. Theory 195 (2015), 43-56.
L. A. Harris, Alternation points and bivariate Lagrange interpolation, J. Comput. Appl. Math. 340C (2018) pp. 43-52

