The cb-norm approximations by two-sided multiplications and elementary operators

Ilja Gogić

University of Zagreb

Analysis, Geometry and Algebra Trinity College Dublin, 8-10th May 2019

based on the joint work with Richard M. Timoney

This research was in part supported by the Irish Research Council under grant GOIPD/2014/7 and

the Croatian Science Foundation under the project IP-2016-06-1046.

Ilja Gogić (University of Zagreb)

The cb-norm approximations

AGA, Dublin, 2019 1 / 18

12 N 4 12 N

< 17 > <

Preliminaries

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathsf{a}_{i},\mathsf{b}_{i}}$$

of two-sided multiplications $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in A$.

Preliminaries

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathbf{a}_{i}, \mathbf{b}_{i}}$$

of **two-sided multiplications** $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in A$. In fact, elementary operators are completely bounded (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$; $\phi_n([a_{ij}]) = [\phi(a_{ij})]$.

イロト イポト イヨト イヨト 二日

Preliminaries

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi : A \to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{\mathbf{a}_{i}, \mathbf{b}_{i}}$$

of **two-sided multiplications** $M_{a_i,b_i} : x \mapsto a_i x b_i$, where $a_i, b_i \in A$. In fact, elementary operators are completely bounded (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each *n*, ϕ_n is an induced map on $M_n(A)$; $\phi_n([a_{ij}]) = [\phi(a_{ij})]$. Moreover, we have the following estimate for their cb-norm:

$$\left\|\sum_{i} M_{a_{i},b_{i}}\right\|_{cb} \leq \left\|\sum_{i} a_{i} \otimes b_{i}\right\|_{h}, \qquad (1)$$

where $\|\cdot\|_h$ is the Haagerup tensor norm on $A \otimes A$, i.e.

$$\|u\|_{h} = \inf \left\{ \left\| \sum_{i} a_{i} a_{i}^{*} \right\|^{\frac{1}{2}} \left\| \sum_{i} b_{i}^{*} b_{i} \right\|^{\frac{1}{2}} : u = \sum_{i} a_{i} \otimes b_{i} \right\}.$$

where $\|\cdot\|_h$ is the Haagerup tensor norm on $A \otimes A$, i.e.

$$\|u\|_{h} = \inf \left\{ \left\| \sum_{i} a_{i} a_{i}^{*} \right\|^{\frac{1}{2}} \left\| \sum_{i} b_{i}^{*} b_{i} \right\|^{\frac{1}{2}} : u = \sum_{i} a_{i} \otimes b_{i} \right\}.$$

Hence, if by $\mathcal{E}\ell(A)$ we denote the set of all elementary operators on A and by ICB(A) the set of all completely bounded operators on A that preserve all ideals of A, inequality (1) implies that the mapping

$$(A \otimes A, \|\cdot\|_h) \to (\mathcal{E}\ell(A), \|\cdot\|_{cb})$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

is a well-defined contraction. Its continuous extension to the completed Haagerup tensor product $A \otimes_h A$ is known as a **canonical contraction** from $A \otimes_h A$ to ICB(A) and is denoted by θ_A .

イロト イポト イヨト イヨト 二日

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003) θ_A is isometric if and only if A is a prime C*-algebra.

E 6 4 E 6

A 🖓 h

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003) θ_A is isometric if and only if A is a prime C*-algebra.

Remark

If A is not prime, then the map $a \otimes b \mapsto M_{a,b}$ is not even injective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Haagerup 1980, Chatterjee-Sinclair 1992, Mathieu 2003) θ_A is isometric if and only if A is a prime C*-algebra.

Remark

If A is not prime, then the map $a \otimes b \mapsto M_{a,b}$ is not even injective.

We have the following general questions:

Question

Which operators $\phi \in ICB(A)$ admit a cb-norm approximation by

- (a) two-sided multiplications, or
- (b) elementary operators?

- 4 週 ト - 4 三 ト - 4 三 ト

Let $TM(A) = \{M_{a,b}: a, b \in A\}$ and let $\overline{TM(A)}$ be its operator norm closure. It is well-known that the cb-norm on TM(A) coincides with the usual operator norm.

< 同 ト く ヨ ト く ヨ ト

Let $TM(A) = \{M_{a,b}: a, b \in A\}$ and let $\overline{TM(A)}$ be its operator norm closure. It is well-known that the cb-norm on TM(A) coincides with the usual operator norm.

Theorem (G.-Timoney 2018)

If A is a prime C^* -algebra, then TM(A) is norm closed.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $TM(A) = \{M_{a,b}: a, b \in A\}$ and let $\overline{TM(A)}$ be its operator norm closure. It is well-known that the cb-norm on TM(A) coincides with the usual operator norm.

Theorem (G.-Timoney 2018)

If A is a prime C^{*}-algebra, then TM(A) is norm closed.

We now demonstrate that the above theorem fails even for relatively well-behaved C^* -algebras like homogeneous ones.

Definition

A C^* -algebra A is called (n-)homogeneous if all its irreducible representations are of the same finite dimension n.

イロト イポト イヨト イヨト 二日

Let $TM(A) = \{M_{a,b} : a, b \in A\}$ and let $\overline{TM(A)}$ be its operator norm closure. It is well-known that the cb-norm on TM(A) coincides with the usual operator norm.

Theorem (G.-Timoney 2018)

If A is a prime C^{*}-algebra, then TM(A) is norm closed.

We now demonstrate that the above theorem fails even for relatively well-behaved C^* -algebras like homogeneous ones.

Definition

A C^* -algebra A is called (n-)homogeneous if all its irreducible representations are of the same finite dimension n.

Example

If X is a LCH space, the C*-algebra $C_0(X, \mathbb{M}_n)$ is *n*-homogeneous.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

If A is an n-homogeneous C^{*}-algebra, then its (primitive) spectrum X is a LCH space and there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) = PU(n) = U(n)/\mathbb{S}^1$ such that A is isomorphic to the algebra $\Gamma_0(\mathcal{E})$ of sections of \mathcal{E} that vanish at infinity.

・ 何 ト ・ ヨ ト ・ ヨ ト

If A is an n-homogeneous C^* -algebra, then its (primitive) spectrum X is a LCH space and there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) = PU(n) = U(n)/\mathbb{S}^1$ such that A is isomorphic to the algebra $\Gamma_0(\mathcal{E})$ of sections of \mathcal{E} that vanish at infinity. Moreover, any two such algebras $A_i = \Gamma_0(\mathcal{E}_i)$ with spectra X_i are isomorphic if and only if there is a homeomorphism $f : X_1 \to X_2$ such that $\mathcal{E}_1 \cong f^*(\mathcal{E}_2)$ as bundles over X_1 .

イロト 不得下 イヨト イヨト 二日

If A is an n-homogeneous C*-algebra, then its (primitive) spectrum X is a LCH space and there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) = PU(n) = U(n)/\mathbb{S}^1$ such that A is isomorphic to the algebra $\Gamma_0(\mathcal{E})$ of sections of \mathcal{E} that vanish at infinity. Moreover, any two such algebras $A_i = \Gamma_0(\mathcal{E}_i)$ with spectra X_i are isomorphic if and only if there is a homeomorphism $f : X_1 \to X_2$ such that $\mathcal{E}_1 \cong f^*(\mathcal{E}_2)$ as bundles over X_1 .

Throughout this section A will denote an n-homogeneous C^* -algebra A with the primitive spectrum X and the associate \mathbb{M}_n -bundle \mathcal{E} . In this case every bounded linear map on A is completely bounded, so $\mathrm{ICB}(A) = \mathrm{IB}(A)$.

イロト イポト イヨト イヨト 二日

If A is an n-homogeneous C^* -algebra, then its (primitive) spectrum X is a LCH space and there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) = PU(n) = U(n)/\mathbb{S}^1$ such that A is isomorphic to the algebra $\Gamma_0(\mathcal{E})$ of sections of \mathcal{E} that vanish at infinity. Moreover, any two such algebras $A_i = \Gamma_0(\mathcal{E}_i)$ with spectra X_i are isomorphic if and only if there is a homeomorphism $f : X_1 \to X_2$ such that $\mathcal{E}_1 \cong f^*(\mathcal{E}_2)$ as bundles over X_1 .

Throughout this section A will denote an n-homogeneous C^* -algebra A with the primitive spectrum X and the associate \mathbb{M}_n -bundle \mathcal{E} . In this case every bounded linear map on A is completely bounded, so ICB(A) = IB(A).

Notation

For $x \in X$ let $A_x := A/x \cong \mathbb{M}_n$. For $\phi \in \mathrm{IB}(A)$ and $x \in X$ we write ϕ_x for the induced map on A_x (i.e. $\phi_x(a_x) = \phi(a)_x$).

If A is an n-homogeneous C^* -algebra, then its (primitive) spectrum X is a LCH space and there is a locally trivial bundle \mathcal{E} over X with fibre \mathbb{M}_n and structure group $\operatorname{Aut}(\mathbb{M}_n) = PU(n) = U(n)/\mathbb{S}^1$ such that A is isomorphic to the algebra $\Gamma_0(\mathcal{E})$ of sections of \mathcal{E} that vanish at infinity. Moreover, any two such algebras $A_i = \Gamma_0(\mathcal{E}_i)$ with spectra X_i are isomorphic if and only if there is a homeomorphism $f : X_1 \to X_2$ such that $\mathcal{E}_1 \cong f^*(\mathcal{E}_2)$ as bundles over X_1 .

Throughout this section A will denote an n-homogeneous C^* -algebra A with the primitive spectrum X and the associate \mathbb{M}_n -bundle \mathcal{E} . In this case every bounded linear map on A is completely bounded, so ICB(A) = IB(A).

Notation

For $x \in X$ let $A_x := A/x \cong \mathbb{M}_n$. For $\phi \in \mathrm{IB}(A)$ and $x \in X$ we write ϕ_x for the induced map on A_x (i.e. $\phi_x(a_x) = \phi(a)_x$). FTM(A) := { $\phi \in \mathrm{IB}(A) : \phi_x \in \mathrm{TM}(A_x) \ \forall x \in X \& (x \mapsto \|\phi_x\|) \in C_0(X)$ }.

We refer to the elements of FTM(A) as fiberwise two-sided multiplications.

(日) (周) (三) (三)

We refer to the elements of FTM(A) as fiberwise two-sided multiplications.

FTM(A) may seem as the most obvious candidate for the norm closure of TM(A) due to the following fact:

Proposition

 $\operatorname{FTM}(A)$ is norm closed and $\overline{\operatorname{TM}(A)} \subseteq \operatorname{FTM}(A)$.

過 ト イヨ ト イヨト

We refer to the elements of FTM(A) as fiberwise two-sided multiplications.

FTM(A) may seem as the most obvious candidate for the norm closure of TM(A) due to the following fact:

Proposition

 $\operatorname{FTM}(A)$ is norm closed and $\overline{\operatorname{TM}(A)} \subseteq \operatorname{FTM}(A)$.

Auxiliary notation

- $\operatorname{TM}_{\operatorname{nv}}(A) = \{ \phi \in \operatorname{TM}(A) : \phi_x \neq 0 \ \forall x \in X \};$
- $\operatorname{FTM}_{\operatorname{nv}}(A) = \{ \phi \in \operatorname{FTM}(A) : \operatorname{TM}(A_x) \ni \phi_x \neq 0 \ \forall x \in X \}.$

(nv signifies nowhere-vanishing)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

To each operator $\phi \in \operatorname{FTM}_{nv}(A)$ we can (canonically) associate a complex line subbundle \mathcal{L}_{ϕ} of \mathcal{E} with the property that

 $\phi \in TM_{nv}(A) \iff \mathcal{L}_{\phi}$ is a trivial bundle.

Further, is X is σ -compact, then for every complex line subbundle \mathcal{L} of \mathcal{E} we can find an operator $\phi_{\mathcal{L}} \in \mathrm{FTM}_{\mathrm{nv}}(\mathcal{A})$ such that $\mathcal{L}_{\phi_{\mathcal{L}}} = \mathcal{L}$.

イロト イポト イヨト イヨト 二日

To each operator $\phi \in \operatorname{FTM}_{nv}(A)$ we can (canonically) associate a complex line subbundle \mathcal{L}_{ϕ} of \mathcal{E} with the property that

 $\phi \in TM_{nv}(A) \iff \mathcal{L}_{\phi}$ is a trivial bundle.

Further, is X is σ -compact, then for every complex line subbundle \mathcal{L} of \mathcal{E} we can find an operator $\phi_{\mathcal{L}} \in \mathrm{FTM}_{\mathrm{nv}}(A)$ such that $\mathcal{L}_{\phi_{\mathcal{L}}} = \mathcal{L}$.

If X is paracompact, the locally trivial complex line bundles over X are classified by the homotopy classes from X to $\mathbb{C}P^{\infty}$, and/or by the elements of the second integral Čech cohomology $\check{H}^2(X;\mathbb{Z})$

To each operator $\phi \in \operatorname{FTM}_{nv}(A)$ we can (canonically) associate a complex line subbundle \mathcal{L}_{ϕ} of \mathcal{E} with the property that

 $\phi \in TM_{nv}(A) \iff \mathcal{L}_{\phi}$ is a trivial bundle.

Further, is X is σ -compact, then for every complex line subbundle \mathcal{L} of \mathcal{E} we can find an operator $\phi_{\mathcal{L}} \in \mathrm{FTM}_{\mathrm{nv}}(\mathcal{A})$ such that $\mathcal{L}_{\phi_{\mathcal{L}}} = \mathcal{L}$.

If X is paracompact, the locally trivial complex line bundles over X are classified by the homotopy classes from X to $\mathbb{C}P^{\infty}$, and/or by the elements of the second integral Čech cohomology $\check{H}^2(X;\mathbb{Z})$ Hence, for a homogeneous C^* -algebra A we can define a map

 $\psi: \mathrm{FTM}_{\mathrm{nv}}(A) \to \check{H}^2(X; \mathbb{Z})$

which sends an operator $\phi \in \operatorname{FTM}_{nv}(A)$ to the corresponding class of the bundle \mathcal{L}_{ϕ} in $\check{H}^2(X;\mathbb{Z})$. Then $\psi^{-1}(0) = \operatorname{TM}_{nv}(A)$ (by the latter theorem).

Corollary

If X is paracompact and $\check{H}^2(X;\mathbb{Z}) = 0$, then $\mathrm{FTM}_{\mathrm{nv}}(A) = \mathrm{TM}_{\mathrm{nv}}(A)$.

Corollary

If X is paracompact and $\check{H}^2(X;\mathbb{Z}) = 0$, then $\mathrm{FTM}_{\mathrm{nv}}(A) = \mathrm{TM}_{\mathrm{nv}}(A)$.

Theorem (G.-Timoney 2018)

Let X be a CH space with dim $X \le d < \infty$. For each $n \ge 1$ let $A_n = C(X, \mathbb{M}_n)$. If $p = \left\lceil \sqrt{(d+1)/2} \right\rceil$, then for every $n \ge p$ the mapping $\psi : \operatorname{FTM}_{nv}(A) \to \check{H}^2(X; \mathbb{Z})$ is surjective. In particular, if $\check{H}^2(X; \mathbb{Z}) \neq 0$, then $\operatorname{TM}_{nv}(A_n)$ is a proper subset of $\operatorname{FTM}_{nv}(A_n)$ for all $n \ge p$.

Corollary

If X is paracompact and $\check{H}^2(X;\mathbb{Z}) = 0$, then $\mathrm{FTM}_{\mathrm{nv}}(A) = \mathrm{TM}_{\mathrm{nv}}(A)$.

Theorem (G.-Timoney 2018)

Let X be a CH space with dim $X \leq d < \infty$. For each $n \geq 1$ let $A_n = C(X, \mathbb{M}_n)$. If $p = \left\lceil \sqrt{(d+1)/2} \right\rceil$, then for every $n \geq p$ the mapping $\psi : \operatorname{FTM}_{nv}(A) \to \check{H}^2(X; \mathbb{Z})$ is surjective. In particular, if $\check{H}^2(X; \mathbb{Z}) \neq 0$, then $\operatorname{TM}_{nv}(A_n)$ is a proper subset of $\operatorname{FTM}_{nv}(A_n)$ for all $n \geq p$.

Example

If
$$X = \mathbb{S}^2$$
 or $X = \mathbb{S}^1 \times \mathbb{S}^1$, then for $A = C(X, \mathbb{M}_n)$ we have $\mathrm{TM}_{\mathrm{nv}}(A) \subsetneq \mathrm{FTM}_{\mathrm{nv}}(A)$ for all $n \ge 2$.

Let $A = \Gamma_0(\mathcal{E})$ be a homogeneous C^* -algebra. Consider the following two conditions:

(a) $\forall U \subset X$ open, each complex line subbundle of $\mathcal{E}|_U$ is trivial.

(b) FTM(A) = TM(A).

Then (a) \Rightarrow (b). If A is separable, then (a) and (b) are equivalent.

Let $A = \Gamma_0(\mathcal{E})$ be a homogeneous C^* -algebra. Consider the following two conditions:

(a) $\forall U \subset X$ open, each complex line subbundle of $\mathcal{E}|_U$ is trivial.

(b) $\operatorname{FTM}(A) = \operatorname{TM}(A)$.

Then (a) \Rightarrow (b). If A is separable, then (a) and (b) are equivalent.

Corollary

Let A be an n-homogeneous C^* -algebra with $n \ge 2$.

- (a) If X is second-countable with dim X < 2, or if X is homeomorphic to a subset of a non-compact connected 2-manifold, then FTM(A) = TM(A).
- (b) If X is σ-compact and contains a nonempty open subset homeomorphic to (an open subset of) ℝ^d for some d ≥ 3, then TM(A) is a proper subset of FTM(A).

Let A be a homogeneous C^{*}-algebra. For a bounded linear map $\phi : A \to A$ the following two conditions are equivalent:

(a) $\phi \in \overline{\mathrm{TM}(A)}$.

(b) $\phi \in FTM(A)$ and for $coz(\phi) := \{x \in X : \phi_x \neq 0\}$ the bundle \mathcal{L}_{ϕ} is trivial on each compact subset of $coz(\phi)$.

イロト イポト イヨト イヨト 二日

Let A be a homogeneous C^{*}-algebra. For a bounded linear map $\phi : A \to A$ the following two conditions are equivalent:

(a) $\phi \in \overline{\mathrm{TM}(A)}$.

(b) $\phi \in FTM(A)$ and for $coz(\phi) := \{x \in X : \phi_x \neq 0\}$ the bundle \mathcal{L}_{ϕ} is trivial on each compact subset of $coz(\phi)$.

Definition

A locally trivial fibre bundle \mathcal{F} over a locally compact Hausdorff space X is said to be a **phantom bundle** if \mathcal{F} is not globally trivial, but is trivial on each compact subset of X.

イロト 不得下 イヨト イヨト 二日

Let A be a homogeneous C^{*}-algebra. For a bounded linear map $\phi : A \to A$ the following two conditions are equivalent:

(a) $\phi \in \overline{\mathrm{TM}(A)}$.

(b) $\phi \in FTM(A)$ and for $coz(\phi) := \{x \in X : \phi_x \neq 0\}$ the bundle \mathcal{L}_{ϕ} is trivial on each compact subset of $coz(\phi)$.

Definition

A locally trivial fibre bundle \mathcal{F} over a locally compact Hausdorff space X is said to be a **phantom bundle** if \mathcal{F} is not globally trivial, but is trivial on each compact subset of X.

Corollary

Let $A = \Gamma_0(\mathcal{E})$ be a homogeneous C^* -algebra. The set TM(A) is not norm closed if and only if there exists a σ -compact open subset U of X and a phantom complex line subbundle of $\mathcal{E}|_U$.

(4回) (4回) (4回)

Let G be a group and n a positive integer. Recall that a space X is called an **Eilenberg-MacLane** space of type K(G, n), if it's *n*-th homotopy group $\pi_n(X)$ is isomorphic to G and all other homotopy groups trivial. If n > 1 then G must be abelian (since for all n > 1, the homotopy groups $\pi_n(X)$ are abelian). We state some basic facts about Eilenberg-MacLane spaces:

Let G be a group and n a positive integer. Recall that a space X is called an **Eilenberg-MacLane** space of type K(G, n), if it's *n*-th homotopy group $\pi_n(X)$ is isomorphic to G and all other homotopy groups trivial. If n > 1 then G must be abelian (since for all n > 1, the homotopy groups $\pi_n(X)$ are abelian). We state some basic facts about Eilenberg-MacLane spaces:

 There exists a CW-complex K(G, n) for any group G at n = 1, and abelian group G at n > 1. Moreover such a CW-complex is unique up to homotopy type. Hence, by abuse of notation, it is common to denote any such space by K(G, n).

(4日) ト (二) ト (二)

Let G be a group and n a positive integer. Recall that a space X is called an **Eilenberg-MacLane** space of type K(G, n), if it's *n*-th homotopy group $\pi_n(X)$ is isomorphic to G and all other homotopy groups trivial. If n > 1 then G must be abelian (since for all n > 1, the homotopy groups $\pi_n(X)$ are abelian). We state some basic facts about Eilenberg-MacLane spaces:

- There exists a CW-complex K(G, n) for any group G at n = 1, and abelian group G at n > 1. Moreover such a CW-complex is unique up to homotopy type. Hence, by abuse of notation, it is common to denote any such space by K(G, n).
- Given a CW-complex X, there is a bijection between its cohomology group Hⁿ(X; G) and the homotopy classes [X, K(G, n)] of maps from X to K(G, n).

Let G be a group and n a positive integer. Recall that a space X is called an **Eilenberg-MacLane** space of type K(G, n), if it's *n*-th homotopy group $\pi_n(X)$ is isomorphic to G and all other homotopy groups trivial. If n > 1 then G must be abelian (since for all n > 1, the homotopy groups $\pi_n(X)$ are abelian). We state some basic facts about Eilenberg-MacLane spaces:

- There exists a CW-complex K(G, n) for any group G at n = 1, and abelian group G at n > 1. Moreover such a CW-complex is unique up to homotopy type. Hence, by abuse of notation, it is common to denote any such space by K(G, n).
- Given a CW-complex X, there is a bijection between its cohomology group Hⁿ(X; G) and the homotopy classes [X, K(G, n)] of maps from X to K(G, n).
- K(Z,2) ≅ CP[∞]. In particular, for each CW-complex X there is a bijection between [X, K(Z,2)] and isomorphism classes of complex line bundles over X.

Let us consider the Eilenberg-MacLane space $\mathcal{K}(\mathbb{Q}, 1)$.

Let us consider the Eilenberg-MacLane space $K(\mathbb{Q}, 1)$.

• The standard model of $K(\mathbb{Q},1)$ is the mapping telescope Δ of the sequence

$$\mathbb{S}^1 \xrightarrow{z} \mathbb{S}^1 \xrightarrow{z^2} \mathbb{S}^1 \xrightarrow{z^3} \cdots$$

Let us consider the Eilenberg-MacLane space $\mathcal{K}(\mathbb{Q}, 1)$.

• The standard model of $K(\mathbb{Q},1)$ is the mapping telescope Δ of the sequence

$$\mathbb{S}^1 \xrightarrow{z} \mathbb{S}^1 \xrightarrow{z^2} \mathbb{S}^1 \xrightarrow{z^3} \cdots$$

Applying H₁(−; ℤ) to the levels of this mapping telescope gives the system

$$\mathbb{Z} \xrightarrow{\times 1} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 3} \cdots$$

The colimit of this system is $H_1(\Delta; \mathbb{Z}) = \mathbb{Q}$ and all other integral homology groups are trivial. By the universal coefficient theorem for cohomology, each integral cohomology group of Δ is trivial, except for $H^2(\Delta; \mathbb{Z})$ which is isomorphic to $\text{Ext}(\mathbb{Q}; \mathbb{Z}) \cong \mathbb{R}$.

Let us consider the Eilenberg-MacLane space $\mathcal{K}(\mathbb{Q}, 1)$.

• The standard model of $K(\mathbb{Q},1)$ is the mapping telescope Δ of the sequence

$$\mathbb{S}^1 \xrightarrow{z} \mathbb{S}^1 \xrightarrow{z^2} \mathbb{S}^1 \xrightarrow{z^3} \cdots$$

Applying H₁(−; ℤ) to the levels of this mapping telescope gives the system

$$\mathbb{Z} \xrightarrow{\times 1} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 3} \cdots$$

The colimit of this system is $H_1(\Delta; \mathbb{Z}) = \mathbb{Q}$ and all other integral homology groups are trivial. By the universal coefficient theorem for cohomology, each integral cohomology group of Δ is trivial, except for $H^2(\Delta; \mathbb{Z})$ which is isomorphic to $\text{Ext}(\mathbb{Q}; \mathbb{Z}) \cong \mathbb{R}$.

 Therefore, there exist uncountably many mutually nontrivial complex line bundles over Δ. Each such bundle L is a phantom bundle, since all restrictions of L over finite subcomplexes of Δ are trivial.

Conclusion

Since Δ is a 2-complex, \mathcal{L} is a direct summand of a trivial bundle $\Delta \times \mathbb{C}^2$. In particular, if $A = C_0(\Delta, \mathbb{M}_2)$, then TM(A) is not norm closed.

3

< 回 ト < 三 ト < 三 ト

Conclusion

Since Δ is a 2-complex, \mathcal{L} is a direct summand of a trivial bundle $\Delta \times \mathbb{C}^2$. In particular, if $A = C_0(\Delta, \mathbb{M}_2)$, then TM(A) is not norm closed.

In private correspondence Prof. Mladen Bestvina (University of Utah) informed us that even inside \mathbb{R}^3 there are open subsets of type $\mathcal{K}(\mathbb{Q}, 1)$. Using this observation we were able to show the following fact:

Theorem (G.-Timoney 2018)

Let A be an n-homogeneous C^* -algebra with $n \ge 2$.

- (a) If X is second-countable with dim X < 2 or if X is (homeomorphic to) a subset of a non-compact connected 2-manifold, then TM(A) is not norm closed.
- (b) If there is a nonempty open subset of X homeomorphic to (an open subset of) ℝ^d for some d ≥ 3, then TM(A) fails to be norm closed.

イロト 不得 トイヨト イヨト 二日

Let *A* be a separable *n*-homogeneous *C*^{*}-algebra with $n \ge 2$ such that dim $X = d < \infty$. If *X* is a CW-complex or a subset of a *d*-manifold, the following relations between TM(A), $\overline{\overline{\text{TM}(A)}}$ and FTM(A) occur:

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A be a separable *n*-homogeneous C^* -algebra with $n \ge 2$ such that dim $X = d < \infty$. If X is a CW-complex or a subset of a *d*-manifold, the following relations between TM(A), $\overline{\text{TM}(A)}$ and FTM(A) occur:

(a) If d < 2 we always have $TM(A) = \overline{TM(A)} = FTM(A)$.

< 回 ト < 三 ト < 三 ト

Let A be a separable *n*-homogeneous C^* -algebra with $n \ge 2$ such that dim $X = d < \infty$. If X is a CW-complex or a subset of a *d*-manifold, the following relations between TM(A), $\overline{\overline{\text{TM}(A)}}$ and FTM(A) occur:

(a) If
$$d < 2$$
 we always have $TM(A) = \overline{TM(A)} = FTM(A)$.

(b1) $TM(A) = \overline{TM(A)} = FTM(A)$, if e.g. X is a subset of a non-compact connected 2-manifold.

< 回 ト < 三 ト < 三 ト

Let A be a separable *n*-homogeneous C^* -algebra with $n \ge 2$ such that dim $X = d < \infty$. If X is a CW-complex or a subset of a *d*-manifold, the following relations between TM(A), $\overline{\overline{\text{TM}(A)}}$ and FTM(A) occur:

(a) If
$$d < 2$$
 we always have $TM(A) = \overline{TM(A)} = FTM(A)$.
(b) If $d = 2$ we have four possibilities:

(b1) $TM(A) = \overline{TM(A)} = FTM(A)$, if e.g. X is a subset of a non-compact connected 2-manifold.

(b2)
$$\operatorname{TM}(A) = \overline{\operatorname{TM}(A)} \subsetneq \operatorname{FTM}(A)$$
, if e.g. $A = C(X, \mathbb{M}_n)$, where $X = \mathbb{S}^2$.

(4) ほう くほう くほう しほ

Let A be a separable *n*-homogeneous C^* -algebra with $n \ge 2$ such that dim $X = d < \infty$. If X is a CW-complex or a subset of a *d*-manifold, the following relations between TM(A), $\overline{\overline{\text{TM}(A)}}$ and FTM(A) occur:

(a) If
$$d < 2$$
 we always have $TM(A) = \overline{TM(A)} = FTM(A)$.

(b1)
$$TM(A) = \overline{TM(A)} = FTM(A)$$
, if e.g. X is a subset of a non-compact connected 2-manifold.

(b2)
$$\operatorname{TM}(A) = \overline{\operatorname{TM}(A)} \subsetneq \operatorname{FTM}(A)$$
, if e.g. $A = C(X, \mathbb{M}_n)$, where $X = \mathbb{S}^2$.

(b3)
$$\operatorname{TM}(A) \subsetneq \overline{\operatorname{TM}(A)} = \operatorname{FTM}(A)$$
, if e.g. $A = C_0(X, \mathbb{M}_n)$, where $X = \Delta$ is the standard model for $K(\mathbb{Q}, 1)$.

- 4 週 ト - 4 三 ト - 4 三 ト

Let A be a separable *n*-homogeneous C^* -algebra with $n \ge 2$ such that dim $X = d < \infty$. If X is a CW-complex or a subset of a *d*-manifold, the following relations between TM(A), $\overline{\overline{\text{TM}(A)}}$ and FTM(A) occur:

(a) If
$$d < 2$$
 we always have $TM(A) = \overline{TM(A)} = FTM(A)$.

(b) If
$$d = 2$$
 we have four possibilities:

(b1)
$$TM(A) = \overline{TM(A)} = FTM(A)$$
, if e.g. X is a subset of a non-compact connected 2-manifold.

(b2)
$$\operatorname{TM}(A) = \overline{\operatorname{TM}(A)} \subsetneq \operatorname{FTM}(A)$$
, if e.g. $A = C(X, \mathbb{M}_n)$, where $X = \mathbb{S}^2$.

(b3)
$$\operatorname{TM}(A) \subsetneq \overline{\operatorname{TM}(A)} = \operatorname{FTM}(A)$$
, if e.g. $A = C_0(X, \mathbb{M}_n)$, where $X = \Delta$ is the standard model for $K(\mathbb{Q}, 1)$.

(b4) $\operatorname{TM}(A) \subsetneq \overline{\operatorname{TM}(A)} \subsetneq \operatorname{FTM}(A)$, if e.g. $A = C_0(X, \mathbb{M}_n)$, where X is the topological disjoint union of \mathbb{S}^2 and Δ .

- 本部 とくき とくき とうき

Let A be a separable *n*-homogeneous C^* -algebra with $n \ge 2$ such that dim $X = d < \infty$. If X is a CW-complex or a subset of a *d*-manifold, the following relations between TM(A), $\overline{\overline{\text{TM}(A)}}$ and FTM(A) occur:

(a) If
$$d < 2$$
 we always have $TM(A) = \overline{TM(A)} = FTM(A)$.

(b) If d = 2 we have four possibilities:

(b1)
$$TM(A) = \overline{TM(A)} = FTM(A)$$
, if e.g. X is a subset of a non-compact connected 2-manifold.

(b2)
$$\operatorname{TM}(A) = \overline{\operatorname{TM}(A)} \subsetneq \operatorname{FTM}(A)$$
, if e.g. $A = C(X, \mathbb{M}_n)$, where $X = \mathbb{S}^2$.

(b3)
$$\operatorname{TM}(A) \subsetneq \overline{\operatorname{TM}(A)} = \operatorname{FTM}(A)$$
, if e.g. $A = C_0(X, \mathbb{M}_n)$, where $X = \Delta$ is the standard model for $K(\mathbb{Q}, 1)$.

(b4) $\operatorname{TM}(A) \subsetneq \overline{\operatorname{TM}(A)} \subsetneq \operatorname{FTM}(A)$, if e.g. $A = C_0(X, \mathbb{M}_n)$, where X is the topological disjoint union of \mathbb{S}^2 and Δ .

(c) If d > 2 we always have $TM(A) \subsetneq \overline{TM(A)} \subsetneq FTM(A)$.

- 本間 と えき と えき とうき

The cb-norm approximations of derivations and automorphisms by elementary operators

It is well-known that all derivations and *-automorphisms of C^* -algebras A are completely bounded. In light of our previous discussion, we may ask which derivations and automorphisms of A lie in the cb-norm closure $\overline{\overline{\mathcal{E\ell}(A)}}_{cb}$ of $\mathcal{E\ell}(A)$?

The cb-norm approximations of derivations and automorphisms by elementary operators

It is well-known that all derivations and *-automorphisms of C^* -algebras A are completely bounded. In light of our previous discussion, we may ask which derivations and automorphisms of A lie in the cb-norm closure $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ of $\mathcal{E}\ell(A)$?

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation δ of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if δ is an inner derivation.

< 回 ト < 三 ト < 三 ト

The cb-norm approximations of derivations and automorphisms by elementary operators

It is well-known that all derivations and *-automorphisms of C^* -algebras A are completely bounded. In light of our previous discussion, we may ask which derivations and automorphisms of A lie in the cb-norm closure $\overline{\overline{\mathcal{E\ell}(A)}}_{cb}$ of $\mathcal{E\ell}(A)$?

Theorem (G. 2013)

If A is a unital C^{*}-algebra whose every Glimm ideal is prime, then a derivation δ of A lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if δ is an inner derivation.

Recall that the **Glimm ideals** of *A* are the ideals of *A* generated by the maximal ideals of Z(A). By the Hewitt-Cohen Factorization Theorem, each Glimm ideal of *A* is of the form *mA* for some maximal ideal *m* of Z(A).

イロト 不得 トイヨト イヨト 二日

The class of C^* -algebras whose every Glimm ideal is prime includes: prime C^* -algebras, C^* -algebras with Hausdorff primitive spectrum, quotients of AW^* -algebras, and local multiplier algebras.

(人間) トイヨト イヨト ニヨ

The class of C^* -algebras whose every Glimm ideal is prime includes: prime C^* -algebras, C^* -algebras with Hausdorff primitive spectrum, quotients of AW^* -algebras, and local multiplier algebras.

For prime C^* -algebras we also have the following result:

Theorem (G. 2019)

If A is a prime C^{*}-algebra then an algebra epimorphism $\sigma : A \to A$ lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if σ is an inner automorphism of A.

イロト イポト イヨト イヨト 二日

The class of C^* -algebras whose every Glimm ideal is prime includes: prime C^* -algebras, C^* -algebras with Hausdorff primitive spectrum, quotients of AW^* -algebras, and local multiplier algebras.

For prime C^* -algebras we also have the following result:

Theorem (G. 2019)

If A is a prime C^{*}-algebra then an algebra epimorphism $\sigma : A \to A$ lies in $\overline{\overline{\mathcal{E}\ell(A)}}_{cb}$ if and only if σ is an inner automorphism of A.

In a contrast to the similar result for derivations, the above result cannot be extended even to homogeneous C^* -algebras, which admit only inner derivations by Sproston's Theorem from 1976:

Example

For $n \ge 2$ let $A_n = C(PU(n), \mathbb{M}_n)$. Then A_n admits outer automorphisms that are simultaneously elementary operators.

< 17 ▶

-

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ that consists of all $a \in B$ such that If

$$\mathsf{a}(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \qquad (n \in \mathbb{N}).$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

イロト イポト イヨト イヨト 二日

Moreover, if the primitive spectrum of a C^* -algebra A is rather pathological, it can happen that A admits both outer derivations and outer automorphisms that are simultaneously elementary operators:

Example

Let A be a C*-subalgebra of $B = C([1,\infty],\mathbb{M}_2)$ that consists of all $a \in B$ such that If

$$a(n) = \left[egin{array}{cc} \lambda_n(a) & 0 \ 0 & \lambda_{n+1}(a) \end{array}
ight] \qquad (n \in \mathbb{N}).$$

for some convergent sequence $(\lambda_n(a))$ of complex numbers. Then A admits outer derivations and outer automorphisms that are also elementary operators. In fact, there are outer derivations of A of the form $\delta = M_{a,b} - M_{b,a}$ for suitable $a, b \in A$.

Problem

If an automorphism σ of a von Neumann algebra A is also an elementary operator, is σ necessarily inner?

- 3

(日) (同) (日) (日) (日)