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Conditions and Examples
The essential spectral radius

The spectrum

Throughout this talk E stands for a complex Banach space of
arbitrary dimension and BE = {x ∈ E : ‖x‖ < 1} for its open unit
ball. Moreover, let ϕ : BE → BE be an analytic mapping and
u ∈ H(BE), where H(BE) is the space of analytic functions on
BE .
Recall that a mapping is analytic if it is Fréchet differentiable at
every point in its domain.
Each such pair (ϕ, u) induces via composition and multiplication a
weighted composition operator

uCϕ(f)(x) = u(x)
(
(f ◦ ϕ)(x)

)
, x ∈ BE

which preserves H(BE).
Our object of study is the operator uCϕ acting on a Banach space,
X(BE), of analytic functions on BE ; specifically, its spectrum
σ(uCϕ). We focus in the case of ϕ(0) = 0.
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The spectrum

In earlier research on the spectrum there were some common
elements: the appearance of the essential spectral radius, the
decomposition of the space provided by the Taylor series of the
function variable and a crucial Lemma that is a nice sharpening by
C. Cowen and B. MacCluer [CM] of H. Kamowitz technique [Ka]
that has been further exploited by many other authors
[AL],[BGL],[GGL], [GM1],[MS], [Ze]. And also the availability of
interpolating sequences.
In order that this pieces fit together, we need to know some
information about the space X(BE). Such is collected in a number
of conditions that we check is satisfied by very natural and
common Banach spaces of analytic functions like the weighted
Bergman spaces, Apα(BN ), the Hardy spaces, Hp(BN ),
1 ≤ p <∞, and, even in the infinite dimensional setting, the
weighted spaces of analytic functions H∞υ (BE) as we will see.
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The spectrum

Recall that

Hb(BE) := {f : BE → C : f anal. & bdd. on balls of radius < 1}

is a Fréchet algebra when endowed with the topology of uniform
convergence on balls of radius less than 1.
By H∞(BE) we denote the subspace of Hb(BE) of bounded
functions endowed with the topology of uniform convergence on
BE .
We deal with a vector space X(BE) of analytic functions on BE
and a norm on it ‖ · ‖, that renders X(BE) a Banach space. As
usual, for each x ∈ BE , δx is the evaluation functional defined by
δx(f) = f(x) for all f ∈ X(BE). We assume that X(BE)
contains the constant functions, so then all δx are non-zero.
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The spectrum

Conditions on X(BE)

(I) For every x ∈ BE , δx : X(BE) → C is a linear bounded func-
tional, and the closed unit ball B = {f ∈ X(BE) : ||f || ≤ 1} of
X(BE) is compact with respect to the compact-open topology τ0.
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Conditions on X(BE)

(I) For every x ∈ BE , δx : X(BE) → C is a linear bounded func-
tional, and the closed unit ball B = {f ∈ X(BE) : ||f || ≤ 1} of
X(BE) is compact with respect to the compact-open topology τ0.

In particular, for each x ∈ BE there is a fx ∈ X(BE) with ||fx|| ≤ 1
such that ||δx||X = fx(x). Moreover, by the Dixmier-Ng theorem,
there is a Banach space ∗X(BE) whose dual space is isometrically
isomorphic to X(BE) and further, the mapping x ∈ BE 7→ δx ∈
∗X(BE) is holomorphic because it is weakly holomorphic. Actually,
∗X(BE) is the subspace of X(BE)∗ of the elements that are τ0-
continuous on bounded sets.
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tional, and the closed unit ball B = {f ∈ X(BE) : ||f || ≤ 1} of
X(BE) is compact with respect to the compact-open topology τ0.

(II) For every g ∈ H∞(BE) and f ∈ X(BE), the function fg ∈
X(BE).

If both (I) and (II) hold, the multiplication operator Mg(f) = fg is
continuous on X(BE), thanks to the closed graph theorem. A sub-
sequent application of the closed graph theorem shows the existence
of a constant MX > 0 such that ‖Mg‖ ≤MX‖g‖∞.
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(I) For every x ∈ BE , δx : X(BE) → C is a linear bounded func-
tional, and the closed unit ball B = {f ∈ X(BE) : ||f || ≤ 1} of
X(BE) is compact with respect to the compact-open topology τ0.

(II) For every g ∈ H∞(BE) and f ∈ X(BE), the function fg ∈
X(BE).
(III) X(BE) ⊂ Hb(BE).
This inclusion mapping is a continuous embedding thanks to the
closed graph theorem.
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Denote by Pnf the n-th term of the Taylor series at 0 of the analytic
function f ∈ X(BE). For m ∈ N, let

Xm(BE) = {f ∈ X(BE) : Pnf = 0 for n = 0, 1, . . . ,m− 1} .

That is, a function in X(BE) belongs to Xm(BE) if the first m− 1
terms of its Taylor series at 0 vanish. Equivalently, f ∈ X(BE) be-

longs to Xm(BE) if, and only if, f(x)
‖x‖m is bounded in some punctured

ball centered at 0.
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(II) For every g ∈ H∞(BE) and f ∈ X(BE), the function fg ∈
X(BE).
(III) X(BE) ⊂ Hb(BE).

(IV) For each m ∈ N there is a constant c(m) > 0 (depending also
on the norm of X(BE)) such that for all x ∈ BE we have

||δx||Xm ≤ c(m)||x||m||δx||,

where Xm(BE) is endowed with norm of X(BE) and ‖δx‖Xm de-
notes the norm of δx restricted to Xm.
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(II) For every g ∈ H∞(BE) and f ∈ X(BE), the function fg ∈
X(BE).
(III) X(BE) ⊂ Hb(BE).

(IV) For each m ∈ N there is a constant c(m) > 0 (depending also
on the norm of X(BE)) such that for all x ∈ BE we have

||δx||Xm ≤ c(m)||x||m||δx||.

(V) For every 0 < r < 1, consider Kr(f)(x) = f(rx). The operator
Kr : X(BE) → X(BE) is well-defined and ‖Kr‖ ≤ 1. In case
dimE <∞, the operator Kr is compact.
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Examples

(a) The weighted space of analytic functions

H∞υ (BE) := {f : BE → C : f anal. & ‖f‖υ = sup
x∈BE

υ(x)|f(x)| <∞}

is a Banach space when endowed with the ‖ · ‖υ norm.
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(a) The weighted space of analytic functions

H∞υ (BE) := {f : BE → C : f anal. & ‖f‖υ = sup
x∈BE

υ(x)|f(x)| <∞}

is a Banach space when endowed with the ‖ · ‖υ norm.

Here υ : BE → (0,∞) is a weight, that is, a continuous,
bounded and norm non-increasing function, in particular, υ(x) =
υ(y) if ‖x‖ = ‖y‖. For example, υα(x) = (1− ||x||2)α with α > 0
is such a weight. Notice that for the constant weight υ(x) = 1,
H∞υ (BE) = H∞(BE).
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(b) The standard weighted Bergman space Apα(BN ), α > −1, p ≥ 1,
is the set of all analytic functions on BN such that

||f ||p
Apα

=

∫
BN
|f(z)|pcα(1− |z|2)αdv(z) <∞,

where dv(z) is the normalized volume measure on BN and cα =
Γ(N+α+1)
N !Γ(α+1) .

P. Galindo Spectra of weighted composition operators



Conditions and Examples
The essential spectral radius

The spectrum

Examples

(c) The Hardy spaces , 1 ≤ p <∞, are defined by

Hp(BN ) = {f ∈ H(BN ) : ||f ||pHp = sup
0<r<1

∫
SN
|f(rζ)|pdσ(ζ) <∞},

where SN denotes the unit sphere in CN and σ is the normalized
surface measure on it.
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(d) The weighted Hardy spaces of bounded type H(BN ) introduced
by Cowen and MacCluer in [CM]. These are Hilbert spaces of an-
alytic functions that include the classical Hardy space H2(BN ) and
the classical Bergman space A2

0(BN ).
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Recall that for the essential spectral radius of an operator T we have
that re(T ) = infn

n
√
‖Tn‖e.

One reason for the appearance of the essential spectral radius in
studying σ(T ) is that if λ ∈ σ(T ) and |λ| > re(T ), then λ is an
eigenvalue.

P. Galindo Spectra of weighted composition operators



Conditions and Examples
The essential spectral radius

The spectrum

Recall that for the essential spectral radius of an operator T we have
that re(T ) = infn

n
√
‖Tn‖e.

One reason for the appearance of the essential spectral radius in
studying σ(T ) is that if λ ∈ σ(T ) and |λ| > re(T ), then λ is an
eigenvalue.
By ϕn we denote the n-fold iterate of ϕ, so that ϕn = ϕ◦ϕ◦ ....◦ϕ
(n times).
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Proposition

Assume that ϕ(BE) is a relatively compact subset of E. For the
weighted composition operator uCϕ : X(BE)→ H∞v (BE), we
have that

‖uCϕ‖e ≤ 2 lim
s→1

sup
‖ϕ(x)‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖

.
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Proposition

Assume that ϕ(BE) is a relatively compact subset of E. For the
weighted composition operator uCϕ : X(BE)→ H∞v (BE), we
have that

‖uCϕ‖e ≤ 2 lim
s→1

sup
‖ϕ(x)‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖

.

Proposition

Assume that ϕ(BE) is a relatively compact subset of E. There
exists MX > 0 such that for uCϕ : H∞v (BE)→ X(BE), we have

‖uCϕ‖e ≥M−1
X lim

s→1
sup

‖ϕ(x)‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖

.
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Corollary

Assume that ϕ(BE) is a relatively compact subset of E. For the
weighted composition operator uCϕ acting on H∞v (BE), we have
that

re(uCϕ) = lim inf
n

n

√
lim
s→1

sup
‖ϕn(x)‖≥s

‖δϕn(x)‖|u(x) · ... · u(ϕn(x))|
‖δx‖

.
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Corollary

Assume that ϕ(BE) is a relatively compact subset of E. For the
weighted composition operator uCϕ acting on H∞v (BE), we have
that

re(uCϕ) = lim inf
n

n

√
lim
s→1

sup
‖ϕn(x)‖≥s

‖δϕn(x)‖|u(x) · ... · u(ϕn(x))|
‖δx‖

.

This extends [Le, Theorem 2.5] to the weighted spaces case.
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The following lower estimate is easier to prove

Proposition

Assume that ||δx|| → ∞ when ||x|| → 1 and that the continuous
polynomials are dense in X(BE). Then for the weighted
composition operator uCϕ acting on X(BE), we have that

‖uCϕ‖e ≥ lim
s→1

sup
‖x‖≥s

|u(x)|‖δϕ(x)‖
‖δx‖

.
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Let S be an operator on a direct sum of Banach spaces X = X1 ⊕
...⊕Xm. Such an operator leaves invariant each direct subsum Xk⊕
...⊕Xm if and only if it has a lower triangular matrix representation

S =


S11 0 0 . . . 0
S21 S22 0 . . . 0

...
. . . . . . . . . Sm−1,m−1 0
Sm1 Sm2 . . . Sm,m−1 Smm

 ,

where Sjk : Xj → Xk.
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Theorem [GGL, Corollary 2.4]

Let X = X1 ⊕ ...⊕Xm be a direct sum of Banach spaces, and let
S be an operator on X with a lower triangular matrix
representation. If X is infinite dimensional, and the operators
S11, .., Sm−1,m−1 are Riesz operators, then
σ(S) = σ(S11) ∪ ... ∪ σ(Smm).
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Theorem [GGL, Corollary 2.4]

Let X = X1 ⊕ ...⊕Xm be a direct sum of Banach spaces, and let
S be an operator on X with a lower triangular matrix
representation. If X is infinite dimensional, and the operators
S11, .., Sm−1,m−1 are Riesz operators, then
σ(S) = σ(S11) ∪ ... ∪ σ(Smm).

Recall that an operator S is called a Riesz operator if re(S) = 0.
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The Taylor series expansion at 0 of each element f in X(BE) yields
a direct sum decomposition of X(BE),

X(BE) = P0 ⊕ . . .⊕ Pm−1 ⊕Xm(BE)

because the mapping f ∈ X(BE) 7→ Pk(f) ∈ Pk is a continuous
projection of X(BE) thanks to conditions (II) and (III).

Consequently, uCϕ has a lower triangular matrix representation

uCϕ =


C11 0 0 . . . 0
C21 C22 0 . . . 0

...
. . . . . . . . . Cm−1,m−1 0
Cm1 Cm2 . . . Cm,m−1 Cm,


where the operator Cm is the restriction of uCϕ to Xm(BE).
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Proposition

For every f ∈ Pk,

Ckk(f)(x) = u(0)f̂
(
ϕ′(0)(x), · · · , ϕ′(0)(x)

)
,

where f̂ is the k-linear symmetric mapping determining f.

Now we apply Lemma 3.1 in [GGL] to obtain

Lemma

σ
(
Ckk

)
= {u(0) · λ1 · · ·λk : λj ∈ σ(ϕ′(0)), 1 ≤ j ≤ k}.
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Lemma ([GM])

Let E be a complex Banach space and let ϕ : BE → BE be
analytic such that ϕ(0) = 0 and ‖ϕ′(0)‖ < 1. Suppose that there
exist W ⊂ BE ,with ϕ(W ) ⊂W, δ > 0 and ε > 0 such that

1− ‖ϕ(x)‖
1− ‖x‖

≥ 1 + ε, for all x ∈W such that ‖x‖ ≥ δ . (3.1)

Then, there exists a constant M ≥ 1 which depends only on ε,
such that any finite iteration sequence {x0, x1, ..., xN} satisfying
x0 ∈W and ‖xN‖ ≥ δ is an interpolating sequence for H∞(BE)
with interpolation constant not greater than M .

We will refer to inequalities of the form (3.1) as Julia-type estimates.
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Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√lim
s→1

sup
‖ϕn(x)‖≥s
x∈W

‖δϕn(x)‖X |u(x) · ... · u(ϕn(x))|
‖δx‖X
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Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√lim
s→1

sup
‖ϕn(x)‖≥s
x∈W

‖δϕn(x)‖X |u(x) · ... · u(ϕn(x))|
‖δx‖X

Crucial Lemma

Consider the weighted composition operator uCϕ acting on
X(BE). Assume that ϕ(0) = 0, ‖ϕ′(0)‖ < 1 and that ϕ(BE) is a
relatively compact subset of E. Suppose also that ||ϕn|| = 1 for all
n ∈ N and that there exists W ⊆ BE with ϕ(W ) ⊆W and such
that a Julia-type estimate holds for some ε, δ > 0. If λ 6= 0 satifies
|λ| < γ(uCϕ;W ), then λ ∈ σ(uCϕ).
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Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√lim
s→1

sup
‖ϕn(x)‖≥s
x∈W

‖δϕn(x)‖X |u(x) · ... · u(ϕn(x))|
‖δx‖X

Theorem

Consider the weighted composition operator uCϕ acting on
X(BE). Assume that ϕ(0) = 0, ‖ϕ′(0)‖ < 1 and that ϕ(BE) is a
relatively compact subset of E. Suppose that there exists W ⊆ BE
with ϕ(W ) ⊆W such that a Julia-type estimate holds for some
ε, δ > 0. Then

{u(0)} ∪ {u(0)λ1 · · ·λk : λj ∈ σ(ϕ′(0)), 1 ≤ j ≤ k, k ≥ 1}∪

{λ : |λ| ≤ γ(uCϕ;W )} ⊂ σ(uCϕ).
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Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√lim
s→1

sup
‖ϕn(x)‖≥s
x∈W

‖δϕn(x)‖X |u(x) · ... · u(ϕn(x))|
‖δx‖X

Corollary

Let p ≥ 1 and α > −1. If uCϕ is a bounded operator on H(BN ),
Apα(BN ) and Hp(BN ) respectively, with ϕ(0) = 0 and
‖ϕ′(0)‖ < 1, then

{u(0)} ∪ {u(0)λ1 · · ·λk : λj ∈ σ(ϕ′(0)), 1 ≤ j ≤ k, k ≥ 1}∪

{λ : |λ| ≤ γ
(
uCϕ;BN )} ⊂ σ(uCϕ).
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Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√lim
s→1

sup
‖ϕn(x)‖≥s
x∈W

‖δϕn(x)‖X |u(x) · ... · u(ϕn(x))|
‖δx‖X

Corollary

Let E be a Hilbert space or E = C0(X ), X a locally compact
Hausdorff topological space. Assume that
uCϕ : H∞υ (BE)→ H∞υ (BE) is bounded with ϕ(0) = 0 and
‖ϕ′(0)‖ < 1. Suppose that ϕ(BE) is a relatively compact subset of
E. Then{

λ ∈ C : |λ| ≤ γ(uCϕ;ϕ(BE))} ∪ σp(uCϕ)⊂ σ(uCϕ).
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Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√lim
s→1

sup
‖ϕn(x)‖≥s
x∈W

‖δϕn(x)‖X |u(x) · ... · u(ϕn(x))|
‖δx‖X

Corollary

Let BE be either the n-ball BN or the n-polydisc ∆N . Assume
that uCϕ : H∞υ (BE)→ H∞υ (BE) is bounded with ϕ(0) = 0 and
‖ϕ′(0)‖ < 1. Then{

λ ∈ C : |λ| ≤ re(uCϕ)
}
∪ σp(uCϕ) = σ(uCϕ).
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Denote

γ(uCϕ;W ) := lim inf
n

n

√√√√lim
s→1

sup
‖ϕn(x)‖≥s
x∈W

‖δϕn(x)‖X |u(x) · ... · u(ϕn(x))|
‖δx‖X

Corollary

Let BE be either the n-ball BN or the n-polydisc ∆N . Assume
that uCϕ : H∞υ (BE)→ H∞υ (BE) is bounded with ϕ(0) = 0 and
‖ϕ′(0)‖ < 1. Then{

λ ∈ C : |λ| ≤ re(uCϕ)
}
∪ σp(uCϕ) = σ(uCϕ).

This holds essentially because on this case,

re(uCϕ) = γ
(
uCϕ;ϕ(BE)

)
.
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Since also the equality re(uCϕ) = γ
(
uCϕ;ϕ(BE)

)
holds for

H∞(BE), we have

Corollary

If uCϕ : H∞(BE)→ H∞(BE) is bounded with ϕ(0) = 0 and
‖ϕ′(0)‖ < 1. Then{

λ ∈ C : |λ| ≤ re(uCϕ)
}
∪ σp(uCϕ) = σ(uCϕ).

Thus from here, we recover the main results concerning the
spectrum in [GGL], [GM1] and [YZ].
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