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The celebrated Sakai’s theorem admits a successful “alter-ego” in the setting
of JB∗-triples

This is one of the first papers I studied as a Ph.D. student, around 1999, in
Granada.
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Later on.... I discovered the persons behind the names, I shared with Richard
several moments here, in Dublin, in London, Hong-Kong ...

Some of the preceding speakers knew Richard much closely than me; all
I can add is that he was a positive scientific and personal influence.
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At this stage I should confess that I have changed the title and subject of this
talk. The reason will be revealed very soon. Before presenting the new one, I
apologize for the inconveniences and I ask for certain patience. Let me conti-
nue from the previously commented theorem.
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At the same time that I discovered the mentioned Barton-Timoney theorem, I
was also exposed to the influence of Grothendieck’s contribution to Functional
Analysis.

Let me place you on the exact historic background....
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[A. Grothendieck,Résumé de la théorie métrique des produits tensoriels
topologiques’1956]

There exists a universal constant G > 0 satisfying that for every couple
(Ω1,Ω2) of compact Hausdorff spaces and every bounded bilinear form V on
C(Ω1)× C(Ω2) there exist two probability measures µ1 and µ2 on Ω1 and Ω2,
respectively, such that

|V (f ,g)| ≤ G‖V‖
(∫

Ω1

|f (t)|2dµ1(t)
) 1

2
(∫

Ω2

|g(s)|2dµ2(s)

) 1
2

for all f ∈ C(Ω1) and g ∈ C(Ω2).
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By identifying, via Riesz’s representation theorem, the probability measures
with norm-one positive functionals in C(Ωi )

∗ we have.....
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for all f ∈ C(Ω1) and g ∈ C(Ω2).

Grothendieck already conjectured in 1956 that a similar conclusion should
hold for general C∗-algebras......
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Grothendieck’s conjecture was confirmed almost 27 years later.

(Non-commutative Grothendieck inequality)

[G. Pisier, J. Funct. Anal.’1978, U. Haagerup, Adv. Math.’1985]

For every bounded bilinear form V on the cartesian product of two
C∗-algebras A and B, there exist two states φ in A∗ and ψ in B∗ satisfying

|V (x , y)| ≤ 4 ‖V‖φ
(

xx∗ + x∗x
2

) 1
2

ψ

(
yy∗ + y∗y

2

) 1
2

,

for all (x , y) ∈ A× B.
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probability measures  states

moduli of continuous functions  |x |2 =
xx∗ + x∗x

2
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(

xx∗ + x∗x
2

) 1
2

ψ

(
yy∗ + y∗y

2

) 1
2

,

for all (x , y) ∈ A× B.

In the non-commutative setting, the pre-Hilbertian semi-norms of the form

‖x‖2
φ := φ

(
xx∗ + x∗x

2

)
,

with φ running through the set of all states on a C∗-algebra, are valid to factor
all bounded bilinear forms.
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Pisier and Haagerup knew that Grothendieck’s inequality is “almost”
equivalent to the so-called “little Grothendieck’s inequality” established in the
following way....

(Little Grothendieck’s inequality)
[G. Pisier, J. Funct. Anal.’1978, U. Haagerup, Adv. Math.’1985]

Let A be a C∗-algebra and let H be a complex Hilbert space. Then for every
bounded linear operator T : A→ H there exists a state φ in A∗ satisfying

‖T (x)‖2 ≤ 4 ‖T‖2 φ

(
xx∗ + x∗x

2

)
,

for all x ∈ A.

That is, every C∗-algebra encodes enough information to control every
bounded linear operator from itself into an arbitrary complex Hilbert space. Its
algebraic structure hides all the Euclidean information.
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Grothendieck’s inequalities were studied in the setting of JB∗-triples by J.T.
Barton and Y. Friedman (1987), and C.H. Chu, B. Iouchum and G. Loupias
(1989).

First, we need to identify “appropriate” preHilbertian semi-norms.

Every C∗-algebra A is a JB∗-triple with respect to the triple product

{x , y , z} =
1
2

(xy∗z + zy∗x), (x , y , z ∈ A).

Actually the same triple product remains valid to produce an structure of
JB∗-triple on the space B(H,K ) of all bounded linear operators between
complex Hilbert spaces.

If ϕ is a state on A (ϕ(1) = ‖ϕ‖ = 1), then the preHilbert semi-norm

ϕ

(
xx∗ + x∗x

2

)
= ‖x‖2

ϕ

= ϕ{x , x ,1}

.
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Barton and Friedman (1987) proved that this is case in JB∗-triples too.

[Barton and Y. Friedman, J. London Math. Soc.’1987]

Let ϕ be a functional in the dual space E∗ of a JB∗-triple E , and let z be a
norm-one element in E∗∗ such that ϕ(z) = ‖ϕ‖. Then the mapping

(x , y) 7→ ϕ{x , y , z}, (x , y ∈ E)

is a semi-positive sesquilinear form on E which does not depend on the
choice of z. The corresponding semi-norm is denoted by ‖x‖2

ϕ = ϕ{x , x , z}.
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The corresponding Grothendieck’s inequalities for JB∗-triples were originally
formulated in the following way:

(Little Grothendieck’s inequality)
[Barton-Friedman, J. London Math. Soc.’1987]

For every bounded linear operator T from a complex JB∗-triple E into a
complex Hilbert space H there is a norm-one functional ϕ ∈ E∗ satisfying

‖T (x)‖ ≤
√

2‖T‖‖x‖ϕ for every x ∈ E .

(Grothendieck inequality) [Barton-Friedman, J. London Math. Soc.’1987]

[Chu-Iochum-Loupias, Math. Ann.’1989]

There exists a universal constant K ∈ [2,3 + 2
√

2] satisfying the following
property: for every bounded bilinear form V on the cartesian product of two
JB∗-triples E and F there exist norm-one functionals ϕ ∈ E∗ and ψ ∈ F ∗

satisfying
|V (x , y)| ≤ K ‖V‖ ‖x‖ϕ ‖y‖ψ, (1)

for all (x , y) ∈ E × F .
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LGT  GT !!
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Unfortunately, the original proof
of the LGT contains a gap!!!
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[Borut Zalar, MathSciNet, MR1851084]

“...its main importance is the discovery that some technical result from the
Banach space geometry on weak*-continuous bilinear forms is not true. A
counterexample is provided. Therefore, previously published results cannot be
considered fully proved. The present authors do not provide a
counter-example to the version of Grothendieck’s inequality for complex
JB∗-triples, which was given by Barton and Friedman.”

This is the beginning of the so-called Barton–Friedman conjecture.

[Pisier, Bull. Amer. Math. Soc.’2012]

“The problem of extending the non-commutative Grothendieck theorem from
C∗-algebras to JB∗-triples was considered notably by Barton and Friedman
around 1987, but seems to be still incomplete.”

Let me know introduce the real title of this talk.
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C∗-algebras to JB∗-triples was considered notably by Barton and Friedman
around 1987, but seems to be still incomplete.”

Let me know introduce the real title of this talk.
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The set of results in which Grothendieck’s inequalities played a central role
(strong∗-topology, weakly compact operators from and to a JB∗-triple....) had
non-zero measure and the doubts should be dissipated......

[Pe., Rodríguez, Proc. London Math. Soc.’2001]

Let K >
√

2 and ε > 0. Then, for every complex JBW∗-triple M, every complex
Hilbert space H, and every weak∗-continuous linear operator T : M → H,
there exist norm-one functionals ϕ1, ϕ2 ∈ M∗ such that the inequality

‖T (x)‖2 ≤ K 2 ‖T‖2 (‖x‖2
ϕ2

+ ε2 ‖x‖2
ϕ1

)
(2)

holds for all x ∈ M.
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‖T (x)‖2 ≤ K 2 ‖T‖2 (‖x‖2
ϕ2

+ ε2 ‖x‖2
ϕ1

)
(2)

holds for all x ∈ M.

This was enough to fix the problems for all consequences.... let me borrow
some words...

[Bunce, Quart. J. Math.’2001]

“The remarkable recent article [PeRodriguez’2001] (see also [Pe2001])
provides antidotes to some subtle difficulties in [BarFri87] and subsequent
work, including certain results on the important strong∗ topology of a
JBW∗-triple N.”
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ϕ1
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(2)
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Problem:
Does the inequality in (2) hold for some universal constant and ε = 0?
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In 2005, a partial positive answer to the Barton-Friedman conjecture appeared
in the setting of atomic JBW∗-triples (i.e. `∞-sums of Cartan factors).
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In 2005, a partial positive answer to the Barton-Friedman conjecture appeared
in the setting of atomic JBW∗-triples (i.e. `∞-sums of Cartan factors).

[Pe., Math. Inequal. Appl.’2005]

Let A be an atomic JBW∗-triple. Then for every weak∗-continuous linear
operator T from A into a complex Hilbert space there exists a norm-one
functional ϕ ∈ A∗ satisfying

‖T (x)‖ ≤ 32
√

2 ‖T‖ ‖x‖ϕ,

for all x ∈ A.
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In 2005, a partial positive answer to the Barton-Friedman conjecture appeared
in the setting of atomic JBW∗-triples (i.e. `∞-sums of Cartan factors).

[Pe., Math. Inequal. Appl.’2005]

Let V and W be atomic JBW∗-triples. Then for every separately
weak∗-continuous bilinear form U on V ×W , there exist norm-one functionals
ϕ ∈ V∗, and ψ ∈W∗ satisfying

|U(x , y)| ≤ 211 (1 + 2
√

3) ‖U‖ ‖x‖ϕ‖y‖ψ

for all (x , y) ∈ V ×W .
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Finally, after almost twenty years pursuing the Barton-Friedman conjecture,
today we can recover the status-quo valid from 1987 to 2001.

[Hamhalter, Kalenda, Pe., Pfitzner, arXiv:1903.08931]

Let M be a JBW∗-triple. Then given any two functionals ϕ1, ϕ2 in M∗, there
exists a norm-one functional ψ ∈ M∗ such that

‖x‖ϕ1,ϕ2
=
√
‖x‖2

ϕ1
+ ‖x‖2

ϕ2
≤
√

2 ·
√
‖ϕ1‖+ ‖ϕ2‖ · ‖x‖ψ ,

for all x ∈ M. Furthermore, given K > 2, for every complex Hilbert space H,
and every weak∗-to-weak continuous linear operator T : M → H, there exists
a norm-one functional ψ ∈ M∗ satisfying

‖T (x)‖ ≤ K ‖T‖ ‖x‖ψ

for all x ∈ M.
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We can now conclude that the Grothendieck’s inequality in the case of
JB∗-triples is valid for semi-norms given a single functional in the
corresponding dual spaces.

[Hamhalter, Kalenda, Pe., Pfitzner, arXiv:1903.08931]

Suppose G > 8(1 + 2
√

3). Let E and B be JB∗-triples. Then for every
bounded bilinear form V : E × B → C there exist norm-one functionals ϕ ∈ E∗

and ψ ∈ B∗ satisfying

|V (x , y)| ≤ G ‖V‖ ‖x‖ϕ ‖y‖ψ

for all (x , y) ∈ E × B.
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That was all I had in mind for today.
Thanks for your time!

email: aperalta@ugr.es
web: www.ugr.es/local/aperalta

Antonio M. Peralta (Universidad de Granada) The Barton-Friedman conjecture Dublin, May 8-10, 2019 17 / 19



BARTON, T., AND FRIEDMAN, Y.
Grothendieck’s inequality for JB∗-triples and applications.
J. London Math. Soc. 2, 3 (1987), 513–523.

CHU, C.-H., IOCHUM, B., AND LOUPIAS, G.
Grothendieck’s theorem and factorization of operators in Jordan triples.
Math. Ann. 284, 1 (1989), 41–53.

GROTHENDIECK, A.
Résumé de la théorie métrique des produits tensoriels topologiques.
Soc. de Matemática de São Paulo, 1956.

HAAGERUP, U.
The Grothendieck inequality for bilinear forms on C∗-algebras.
Adv. Math. 56, 2 (1985), 93–116.

PERALTA, A. M.
Little Grothendiecks theorem for real JB∗-triples.
Math. Z. 237, 3 (2001), 531–545.

Antonio M. Peralta (Universidad de Granada) The Barton-Friedman conjecture Dublin, May 8-10, 2019 18 / 19



PERALTA, A. M.
New advances on the Grothendieck’s inequality problem for bilinear forms on
JB∗-triples.
Math. Inequal. Appl 8 (2005), 7–21.

PERALTA, A. M., AND RODRÍGUEZ-PALACIOS, A.
Grothendieck’s inequalities for real and complex JBW∗-triples.
Proc. London Math. Soc. 83, 3 (2001), 605–625.

PISIER, G.
Grothendieck’s theorem for noncommutative C∗-algebras, with an appendix on
Grothendieck’s constants.
J. Funct. Anal. 29, 3 (1978), 397–415.

PISIER, G.
Grothendieck’s theorem, past and present.
Bulletin of the American Mathematical Society 49, 2 (2012), 237–323.

Antonio M. Peralta (Universidad de Granada) The Barton-Friedman conjecture Dublin, May 8-10, 2019 19 / 19


