Bohr's phenomenon for functions on the Boolean cube

8-10th May 2019, Trinity College Dublin
A talk dedicated to the memory of Richard Timoney

Bohr's power series theorem, 1914

For every $f \in H_{\infty}(\mathbb{D})$

$$
\sum_{n=0}^{\infty}\left|\frac{f^{(n)}(0)}{n!}\right| \frac{1}{3^{n}} \leq\|f\|_{\mathbb{D}},
$$

and here the so-called Bohr radius $r=\frac{1}{3}$ is optimal.

Bohr's power series theorem, 1914

For every $f \in H_{\infty}(\mathbb{D})$

$$
\sum_{n=0}^{\infty}\left|\frac{f^{(n)}(0)}{n!}\right| \frac{1}{3^{n}} \leq\|f\|_{\mathbb{D}},
$$

and here the so-called Bohr radius $r=\frac{1}{3}$ is optimal.
In terms of Fourier analysis
For every $f \in H_{\infty}(\mathbb{T})$

$$
\sum_{n=0}^{\infty}|\widehat{f}(n)| \frac{1}{3^{n}} \leq\|f\|_{\mathbb{T}}
$$

Harald Bohr, 1887-1951

Bohr-Bohnenblust-Hille Theorem, 1931:

Bohr-Bohnenblust-Hille Theorem, 1931:

Bohr's vision ...

Two important papers of Richard and Sean

- Absolute bases, tensor products, and a theorem of Bohr, Studia Math. 1989
- On a problem of Bohr, Bull. Soc. Roy. Sci. Liége 1991

Two important papers of Richard and Sean

- Absolute bases, tensor products, and a theorem of Bohr, Studia Math. 1989
- On a problem of Bohr, Bull. Soc. Roy. Sci. Liége 1991

Problem of Richard and Sean

For each N, describe the set of all $\boldsymbol{r} \in[0,1]^{N}$ such that for any $f \in H_{\infty}\left(\mathbb{T}^{N}\right)$

$$
\sum_{\alpha \in \mathbb{N}_{0}^{N}}|\widehat{f}(\alpha)| \boldsymbol{r}^{\alpha} \leq\|f\|_{\mathbb{T}^{N}}
$$

Definition - Harald Bohr radius:

$$
K^{N}:=\sup \left\{0<\boldsymbol{r}<1: \sum_{\alpha \in \mathbb{N}_{0}^{N}}|\widehat{f}(\alpha)| \boldsymbol{r}^{|\alpha|} \leq\|f\|_{\mathbb{T}^{N}}, f \in H_{\infty}\left(\mathbb{T}^{N}\right)\right\}
$$

Definition - Harald Bohr radius:

$$
K^{N}:=\sup \left\{0<\boldsymbol{r}<1: \sum_{\alpha \in \mathbb{N}_{0}^{N}}|\widehat{f}(\alpha)| \boldsymbol{r}^{|\alpha|} \leq\|f\|_{\mathbb{T}^{N}}, f \in H_{\infty}\left(\mathbb{T}^{N}\right)\right\}
$$

Bohr radius of $\mathcal{F}_{N} \subset H_{\infty}\left(\mathbb{T}^{N}\right)$

$$
K\left(\mathcal{F}_{N}\right):=\sup \left\{0<\boldsymbol{r}<1: \sum_{\alpha \in \mathbb{N}_{0}^{N}}|\widehat{f}(\alpha)| \boldsymbol{r}^{|\alpha|} \leq\|f\|_{\mathbb{T}^{N}}, f \in \mathcal{F}_{N}\right\}
$$

Definition - Harald Bohr radius:

$$
K^{N}:=\sup \left\{0<\boldsymbol{r}<1: \sum_{\alpha \in \mathbb{N}_{0}^{N}}|\widehat{f}(\alpha)| \boldsymbol{r}^{|\alpha|} \leq\|f\|_{\mathbb{T}^{N}}, f \in H_{\infty}\left(\mathbb{T}^{N}\right)\right\}
$$

Bohr radius of $\mathcal{F}_{N} \subset H_{\infty}\left(\mathbb{T}^{N}\right)$

$$
K\left(\mathcal{F}_{N}\right):=\sup \left\{0<\boldsymbol{r}<1: \sum_{\alpha \in \mathbb{N}_{0}^{N}}|\widehat{f}(\alpha)| \boldsymbol{r}^{|\alpha|} \leq\|f\|_{\mathbb{T}^{N}}, f \in \mathcal{F}_{N}\right\}
$$

Bohr's power series theorem

$$
K^{1}=K\left(H_{\infty}(\mathbb{T})\right)=\frac{1}{3}
$$

Definition - Niels Bohr radius

The Bohr radius is a physical constant, approximately equal to the most probable distance between the center of a nuclide and the electron in an atom in its ground state.

Definition - Niels Bohr radius

The Bohr radius is a physical constant, approximately equal to the most probable distance between the center of a nuclide and the electron in an atom in its ground state.

Harald and Niels

Multidimensional challenges

functions	Bohr radius
$H_{\infty}\left(\mathbb{T}^{N}\right)$	K^{N}
$\mathcal{P}\left(\mathbb{T}^{N}\right)$	$K_{\text {pol }}^{N}$
$\mathcal{P}_{\text {hom }}\left(\mathbb{T}^{N}\right)$	$K_{\text {hom }}^{N}$
$\mathcal{P}_{\leq d}\left(\mathbb{T}^{N}\right)$	$K_{\leq d}^{N}$
$\mathcal{P}_{=d}\left(\mathbb{T}^{N}\right)$	$K_{=d}^{N}$

Multidimensional challenges

functions	Bohr radius
$H_{\infty}\left(\mathbb{T}^{N}\right)$	K^{N}
$\mathcal{P}\left(\mathbb{T}^{N}\right)$	$K_{\text {pol }}^{N}$
$\mathcal{P}_{\text {hom }}\left(\mathbb{T}^{N}\right)$	$K_{\text {hom }}^{N}$
$\mathcal{P}_{\leq d}\left(\mathbb{T}^{N}\right)$	$K_{\leq d}^{N}$
$\mathcal{P}_{=d}\left(\mathbb{T}^{N}\right)$	$K_{=d}^{N}$

Asymtotics?

Highlight

$$
\lim _{N \rightarrow \infty} \frac{K^{N}}{\sqrt{\frac{\log N}{N}}}=1
$$

Highlight

$$
\lim _{N \rightarrow \infty} \frac{K^{N}}{\sqrt{\frac{\log N}{N}}}=1
$$

Dineen-Timoney 1989, Boas-Khavinson 1997, Defant-Frerick 2006, Bayart-Matheron 2008, Defant-Frerick-Ortega-Ounaies-Seip 2011, Pellegrino-Bayart-Seoane 2014

Highlight

$$
\lim _{N \rightarrow \infty} \frac{K^{N}}{\sqrt{\frac{\log N}{N}}}=1
$$

Dineen-Timoney 1989, Boas-Khavinson 1997, Defant-Frerick 2006, Bayart-Matheron 2008, Defant-Frerick-Ortega-Ounaies-Seip 2011, Pellegrino-Bayart-Seoane 2014

Crucial case - Defant-Frerick-Ortega-Ounaies-Seip 2011

$$
K_{\leq d}^{N} \sim \begin{cases}\sqrt{\frac{\log N}{N}} & \log N \leq d \\ \left(\frac{d}{N}\right)^{\frac{d-1}{2 d}} & d<\log N\end{cases}
$$

Crucial tool - Bohneblust-Hille-inequality, 1931

- $\forall f \in \mathcal{P}_{\leq d}\left(\mathbb{T}^{N}\right):\left(\sum_{|\alpha| \leq d}|\widehat{f}(\alpha)|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C(d)\|f\|_{\mathbb{T}^{N}}$
- The exponent $\frac{2 d}{d+1}$ is optimal

Crucial tool - Bohneblust-Hille-inequality, 1931

- $\forall f \in \mathcal{P}_{\leq d}\left(\mathbb{T}^{N}\right):\left(\sum_{|\alpha| \leq d}|\widehat{f}(\alpha)|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C(d)\|f\|_{\mathbb{T}^{N}}$
- The exponent $\frac{2 d}{d+1}$ is optimal

Notation

$$
\mathrm{BH}_{\mathbb{T}}^{\leq d}:=\text { best constant } C(d)
$$

Original estimate from 1931:

$$
\mathrm{BH}_{\mathbb{T}}^{\leq d} \leq 2^{\frac{d-1}{2}} \frac{\frac{d}{d+\frac{d+1}{2 d}}_{(d!)^{\frac{d+1}{2 d}}}}{\frac{d}{}}
$$

Original estimate from 1931:

$$
\mathrm{BH}_{\mathbb{T}}^{\leq d} \leq 2^{\frac{d-1}{2}} \frac{\frac{d}{d+\frac{d+1}{2 d}}_{(d!)^{\frac{d+1}{2 d}}}}{\frac{1}{2}}
$$

Defant-Frerick-Ortega-Ounaies-Seip 2011:

$$
\mathrm{BH}_{\mathbb{T}}^{\leq d} \leq \sqrt{2}^{d}
$$

Original estimate from 1931:

$$
\mathrm{BH}_{\mathbb{T}}^{\leq d} \leq 2^{\frac{d-1}{2}} \frac{\frac{d}{d+\frac{d+1}{2 d}}_{(d!)^{\frac{d+1}{2 d}}}}{\frac{1}{2}}
$$

Defant-Frerick-Ortega-Ounaies-Seip 2011:

$$
\mathrm{BH}_{\mathbb{T}}^{\leq d} \leq \sqrt{2}^{d}
$$

Best result so far - Bayart-Pellegrino-Seoane 2014:

$$
\mathrm{BH}_{\mathbb{T}}^{\leq d} \leq C^{\sqrt{d \log d}}
$$

In particular:

$$
\varlimsup_{d} \sqrt[d]{\mathrm{BH}_{\mathbb{T}}^{\leq d}}=1
$$

Real Bohr radii?

Is there any $\boldsymbol{r}>0$ such that for all real polynomials $f=\sum_{n=0}^{d} c_{n} x^{n}$

$$
\sum_{n=0}^{d}\left|c_{n}\right| r^{n} \leq\|f\|_{[-1,1]} ?
$$

Real Bohr radii?

Is there any $\boldsymbol{r}>0$ such that for all real polynomials $f=\sum_{n=0}^{d} c_{n} x^{n}$

$$
\sum_{n=0}^{d}\left|c_{n}\right| \boldsymbol{r}^{\boldsymbol{n}} \leq\|f\|_{[-1,1]} ?
$$

Consider

$$
f(x)=1-x^{2}
$$

This example shows that the Bohr radius of all real polynomials on $[-1,1]$ is 0 . Then also all real polynomials on $[-1,1]^{N}$ have no positive Bohr radius. What about smaller classes of such polynomials?

Real BH-inequality ?

Is there some constant $C(d)>0$ such that for every real degree- d polynomial $f(x)=\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}, x \in \mathbb{R}^{N}$

$$
\left(\sum_{|\alpha| \leq d}\left|c_{\alpha}\right|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C(d)\|f\|_{[-1,1]^{N}} ?
$$

Real BH-inequality ?

Is there some constant $C(d)>0$ such that for every real degree- d polynomial $f(x)=\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}, x \in \mathbb{R}^{N}$

$$
\left(\sum_{|\alpha| \leq d}\left|c_{\alpha}\right|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C(d)\|f\|_{[-1,1]^{N}} ?
$$

Yes - Klimek 1995:

For every degree d polynomial $P: \mathbb{C}^{N} \rightarrow \mathbb{C}$

$$
\|P\|_{\mathbb{D}^{N}} \leq(1+\sqrt{2})^{d}\|P\|_{[-1,1]^{N}}
$$

Real BH-inequality ?

Is there some constant $C(d)>0$ such that for every real degree- d polynomial $f(x)=\sum_{|\alpha| \leq d} c_{\alpha} x^{\alpha}, x \in \mathbb{R}^{N}$

$$
\left(\sum_{|\alpha| \leq d}\left|c_{\alpha}\right|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C(d)\|f\|_{[-1,1]^{N}} ?
$$

Yes - Klimek 1995:

For every degree d polynomial $P: \mathbb{C}^{N} \rightarrow \mathbb{C}$

$$
\|P\|_{\mathbb{D}^{N}} \leq(1+\sqrt{2})^{d}\|P\|_{[-1,1]^{N}}
$$

Defant-Mastyło-Pérez 2018

$$
\varlimsup_{d} \sqrt[d]{\mathrm{BH}_{[-1,1]}^{\leq d}}=1+\sqrt{2}
$$

Boolean radii and the BH-inequality on the Boolean cube

George Boole, 1815-1864

Fourier analysis of functions on the Boolean cube

$$
f:\{ \pm 1\}^{N} \rightarrow \mathbb{R}, \quad N \in \mathbb{N}
$$

Fourier analysis of functions on the Boolean cube

$$
f:\{ \pm 1\}^{N} \rightarrow \mathbb{R}, \quad N \in \mathbb{N}
$$

Applications

- Theoretical computer sciences
- Combinatorics
- Graph theory
- Social choice theory
- Cryptography
- Quantum computation

Fourier analysis of functions on the Boolean cube

$$
f:\{ \pm 1\}^{N} \rightarrow \mathbb{R}, \quad N \in \mathbb{N}
$$

Applications

- Theoretical computer sciences
- Combinatorics
- Graph theory
- Social choice theory
- Cryptography
- Quantum computation

Example - majority function

$$
\operatorname{Maj}(x)=\operatorname{sign}\left(x_{1}+\ldots+x_{N}\right)
$$

Fourier analysis of functions on Boolean cubes $\{ \pm 1\}^{N}$

- $G=\{ \pm 1\}^{N}$ compact abelian group
- Fourier-Walsh expansion:

$$
f(x)=\sum_{S \subset\{1, \ldots, N\}} \widehat{f}(S) \prod_{n \in S} x_{n}
$$

Fourier analysis of functions on Boolean cubes $\{ \pm 1\}^{N}$

- $G=\{ \pm 1\}^{N}$ compact abelian group
- Fourier-Walsh expansion:

$$
f(x)=\sum_{S \subset\{1, \ldots, N\}} \widehat{f}(S) \prod_{n \in S} x_{n}
$$

degree- d functions

$$
\text { degree of } f:=\max \{|S|: \hat{f}(S) \neq 0\} \leq d
$$

d-homogeneous functions

$$
\hat{f}(S) \neq 0 \text { only if }|S|=d
$$

Finding Fourier coefficients of functions on the Boolean cube may not be easy:

$$
\widehat{\operatorname{Maj}}(S)=\left\{\begin{array}{lll}
0 & |S| & \text { even } \\
(-1)^{\frac{|S|-1}{2}} \frac{1}{2^{N-1}}\binom{N-1}{\frac{N-1}{2}}\binom{\frac{N-1}{2 \mid-1}}{\frac{\mid-1}{2}}\binom{N-1}{|S|-1}^{-1} & |S| & \text { odd }
\end{array}\right.
$$

Finding Fourier coefficients of functions on the Boolean cube may not be easy:

$$
\widehat{\operatorname{Maj}}(S)=\left\{\begin{array}{lll}
0 & |S| & \text { even } \\
(-1)^{\frac{|S|-1}{2}} \frac{1}{2^{N-1}}\binom{N-1}{\frac{N-1}{2}}\left(\frac{N-1}{\frac{|S|-1}{2}}\right)\binom{N-1}{|S|-1}^{-1} & |S| & \text { odd }
\end{array}\right.
$$

Definition - Boolean radius

$$
\rho\left(\mathcal{F}_{N}\right):=\sup \left\{0<\boldsymbol{\rho}<1: \sum_{S}|\widehat{f}(S)| \boldsymbol{\rho}^{|S|} \leq\|f\|_{\{ \pm 1\}^{N}}, f \in \mathcal{F}_{N}\right\},
$$

where \mathcal{F}_{N} is a subset of functions $f:\{ \pm 1\}^{N} \rightarrow \mathbb{R}$.

Question

Is there any hope for a positive Boolean radius $\rho\left(\mathcal{F}_{N}\right)$?

Question

Is there any hope for a positive Boolean radius $\rho\left(\mathcal{F}_{N}\right)$?

Yes...

In this case:

$$
\sup _{x \in\{ \pm 1\}^{N}}|f(x)|=\sup _{x \in[-1,1]^{N}}\left|L_{f}(x)\right|
$$

For what?

- Can Bohr's world offer techniques unknown in Boole's world, and vice versa?
- Is there any hope to connect Bohr's world with the topic of quantum information theory?

For what?

- Can Bohr's world offer techniques unknown in Boole's world, and vice versa?
- Is there any hope to connect Bohr's world with the topic of quantum information theory?

Two recent articles ...

- Defant-Mastyło-Pérez: Bohr's phenomenon for functions on the Boolean cube, JFA 2018
- Defant-Mastyło-Pérez: On the Fourier spectrum of functions on the Boolean cube, Math. Ann. 2019

Comparing Bohr and Boolean radii - Defant-Mastyło-Pérez 2018

	Bohr	Boole
all functions	$\sqrt{\frac{\log N}{N}}$	$2^{1 / N}-1$
all degree-d fct.	$\begin{cases}\sqrt{\frac{\log N}{N}} & \log N \leq d \\ \left(\frac{d}{N}\right)^{\frac{d-1}{2 d}} & d<\log N\end{cases}$	$\frac{1}{\sqrt{d N}}$
all d-homo. fct.	$\left(\frac{d}{N}\right)^{\frac{d-1}{2 d}}$	$\left(\frac{N}{\binom{N}{d}}\right)^{\frac{1}{2 d}}$
all homo. fct.	$\sqrt{\frac{\log N}{N}}$	$\sqrt{\frac{\log N}{N}}$

Crucial for the last two cases:

A Bohnenblust-Hille inequality for functions on the Boolean cube with good control of the constants...

Crucial for the last two cases:

A Bohnenblust-Hille inequality for functions on the Boolean cube with good control of the constants...

Blei, 2003

- $\forall f:\{ \pm 1\}^{N} \rightarrow \mathbb{R}$ of degree d :

$$
\left(\sum_{S}|\widehat{f}(S)|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C(d)\|f\|_{\{ \pm 1\}^{N}}
$$

- The exponent $\frac{2 d}{d+1}$ is optimal

Crucial for the last two cases:

A Bohnenblust-Hille inequality for functions on the Boolean cube with good control of the constants...

Blei, 2003

- $\forall f:\{ \pm 1\}^{N} \rightarrow \mathbb{R}$ of degree d :

$$
\left(\sum_{S}|\widehat{f}(S)|^{\frac{2 d}{d+1}}\right)^{\frac{d+1}{2 d}} \leq C(d)\|f\|_{\{ \pm 1\}^{N}}
$$

- The exponent $\frac{2 d}{d+1}$ is optimal

But the constants are bad

$$
\mathrm{BH}_{\{ \pm 1\}}^{\leq d} \ll(d+1)^{\frac{d+1}{2 d}}(d!)^{\frac{d-1}{2 d}} \sqrt{d}{ }^{d+1}(2 e)^{d}
$$

What about d th roots?

Are the d th roots of the constants $\mathrm{BH}_{\{ \pm 1\}}^{\leq d}$ subexponential? Recall that this does not hold for the constants $\mathrm{BH}_{[-1,1]}^{\leq d}$.

What about d th roots?

Are the d th roots of the constants $\mathrm{BH}_{\{ \pm 1\}}^{\leq d}$ subexponential? Recall that this does not hold for the constants $\mathrm{BH}_{[-1,1]}^{\leq d}$.

Defant-Mastyło-Pérez 2019

There exists a constant $C>0$ such that for all d

$$
\mathrm{BH}_{\{ \pm 1\}}^{\leq d} \leq C^{\sqrt{d \log d}}
$$

In particular,

$$
\overline{\lim }_{d} \sqrt[d]{\mathrm{BH}_{\{ \pm 1\}}^{\leq d}}=1
$$

Problem, Montanaro 2013

$$
? \quad \exists C \geq 1 \forall d: \quad \mathrm{BH}_{\{ \pm 1\}}^{\leq d} \leq d^{C} \quad ?
$$

Problem, Montanaro 2013

$$
? \quad \exists C \geq 1 \forall d: \quad \mathrm{BH}_{\{ \pm 1\}}^{\leq d} \leq d^{C} \quad ?
$$

Why this problem?

Problem, Montanaro 2013

$$
? \quad \exists C \geq 1 \forall d: \quad \mathrm{BH}_{\{ \pm 1\}}^{\leq d} \leq d^{C} \quad \text { ? }
$$

Why this problem?

The need for structure in quantum speedups...

- Quantum computers can offer superpolynomial speedups over classical computers, but only for certain structured problems.
- For every unstructured problem the quantum complexity and the classical complexity are polynomially related?

All this is true if the answer to the following so-called

 AA-conjecture is yes:Given $f:\{ \pm 1\}^{N} \rightarrow[-1,1]$ of degree d, is there some $1 \leq j \leq N$ such that

$$
\left(\frac{\sum_{S \neq \emptyset} \widehat{f}(S)^{2}}{d}\right)^{O(1)} \leq \sum_{S: j \in S} \widehat{f}(S)^{2} ?
$$

All this is true if the answer to the following so-called AA-conjecture is yes:

Given $f:\{ \pm 1\}^{N} \rightarrow[-1,1]$ of degree d, is there some $1 \leq j \leq N$ such that

$$
\left(\frac{\sum_{S \neq \emptyset} \widehat{f}(S)^{2}}{d}\right)^{O(1)} \leq \sum_{S: j \in S} \widehat{f}(S)^{2} ?
$$

O'Donnell: Analysis of Boolean functions

If true, this conjecture would have significant consequences regarding the limitations of efficient quantum computation.

All this is true if the answer to the following so-called AA-conjecture is yes:

Given $f:\{ \pm 1\}^{N} \rightarrow[-1,1]$ of degree d, is there some $1 \leq j \leq N$ such that

$$
\left(\frac{\sum_{S \neq \emptyset} \widehat{f}(S)^{2}}{d}\right)^{O(1)} \leq \sum_{S: j \in S} \widehat{f}(S)^{2} ?
$$

O'Donnell: Analysis of Boolean functions

If true, this conjecture would have significant consequences regarding the limitations of efficient quantum computation.

Hope

There is some hope/evidence that a positive answer to Montanaro's problem on the BH-inequality for functions on the Boolean cube implies the AA-conjecture...

