
Bohr’s phenomenon for functions on the

Boolean cube

8-10th May 2019, Trinity College Dublin

A talk dedicated to the memory of Richard Timoney

1



Bohr’s power series theorem, 1914

For every f ∈ H∞(D)

∞∑
n=0

∣∣∣f (n)(0)
n!

∣∣∣ 1

3n
1

3n
1

3n
≤ ‖f‖D ,

and here the so-called Bohr radius r = 1
3

r = 1
3r = 1
3 is optimal.

In terms of Fourier analysis ...

For every f ∈ H∞(T)
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n=0
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3n
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Harald Bohr, 1887-1951
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Bohr-Bohnenblust-Hille Theorem, 1931:

-
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Two important papers of Richard and Sean

• Absolute bases, tensor products, and a theorem of Bohr, Studia

Math. 1989

• On a problem of Bohr, Bull. Soc. Roy. Sci. Liége 1991

Problem of Richard and Sean

For each N , describe the set of all rrr ∈ [0, 1]N such that for any

f ∈ H∞(TN ) ∑
α∈NN

0

|f̂(α)|rrrα ≤ ‖f‖TN .
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Definition – Harald Bohr radius:

KN := sup
{
0 < rrr < 1 :

∑
α∈NN

0

|f̂(α)|rrr|α| ≤ ‖f‖TN , f ∈ H∞(TN )
}

Bohr radius of FN ⊂ H∞(TN )FN ⊂ H∞(TN )FN ⊂ H∞(TN )

K(FN ) := sup
{
0 < rrr < 1 :

∑
α∈NN

0

|f̂(α)|rrr|α| ≤ ‖f‖TN , f ∈ FN
}

Bohr’s power series theorem

K1 = K(H∞(T)) =
1

3
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Definition – Niels Bohr radius

The Bohr radius is a physical constant, approximately equal to the most

probable distance between the center of a nuclide and the electron in an

atom in its ground state.

Harald and Niels
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Multidimensional challenges

functions Bohr radius

H∞(TN ) KN

P(TN ) KN
pol

Phom(TN ) KN
hom

P≤d(TN ) KN
≤d

P=d(TN ) KN
=d

Asymtotics?
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Highlight

lim
N→∞

KN√
logN
N

= 1

Dineen-Timoney 1989, Boas-Khavinson 1997, Defant-Frerick 2006,

Bayart-Matheron 2008, Defant-Frerick-Ortega-Ounaies-Seip 2011,

Pellegrino-Bayart-Seoane 2014

Crucial case – Defant-Frerick-Ortega-Ounaies-Seip 2011

KN
≤d ∼


√

logN
N logN ≤ d(

d
N

) d−1
2d d < logN
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Crucial tool – Bohneblust-Hille-inequality, 1931

• ∀ f ∈ P≤d(TN ) :
(∑

|α|≤d |f̂(α)|
2d

d+1

) d+1
2d ≤ C(d) ‖f‖TN

• The exponent 2d
d+1 is optimal

Notation

BH≤dT : = best constant C(d)
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Original estimate from 1931:

BH≤dT ≤ 2
d−1
2
dd+

d+1
2d

(d!)
d+1
2d

Defant-Frerick-Ortega-Ounaies-Seip 2011:

BH≤dT ≤
√
2
d

Best result so far – Bayart-Pellegrino-Seoane 2014:

BH≤dT ≤ C
√
d log d

In particular:

limd
d

√
BH≤dT = 1
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Real Bohr radii?

Is there any rrr > 0 such that for all real polynomials f =
∑d
n=0 cnx

n

d∑
n=0

|cn|rnrnrn ≤ ‖f‖[−1,1] ???

Consider

f(x) = 1− x2

This example shows that the Bohr radius of all real polynomials on

[−1, 1] is 0. Then also all real polynomials on [−1, 1]N have no positive

Bohr radius. What about smaller classes of such polynomials?
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Real BH-inequality ?

Is there some constant C(d) > 0 such that for every real degree-d

polynomial f(x) =
∑
|α|≤d cαx

α, x ∈ RN

( ∑
|α|≤d

|cα|
2d

d+1

) d+1
2d ≤ C(d) ‖f‖[−1,1]N ???

Yes – Klimek 1995:

For every degree d polynomial P : CN → C

‖P‖DN ≤ (1 +
√
2)d‖P‖[−1,1]N

Defant-Masty lo-Pérez 2018

limd
d

√
BH≤d[−1,1] = 1 +

√
2
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Boolean radii and the

BH-inequality on the Boolean

cube



George Boole, 1815-1864
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Fourier analysis of functions on the Boolean cube

f : {±1}N → R , N ∈ N

Applications

• Theoretical computer sciences

• Combinatorics

• Graph theory

• Social choice theory

• Cryptography

• Quantum computation

Example – majority function

Maj(x) = sign(x1 + . . .+ xN )
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Fourier analysis of functions on Boolean cubes {±1}N{±1}N{±1}N

• G = {±1}N compact abelian group

• Fourier-Walsh expansion:

f(x) =
∑

S⊂{1,...,N}

f̂(S)
∏
n∈S

xn

degree-ddd functions

degree of f := max{|S| : f̂(S) 6= 0} ≤ d

ddd-homogeneous functions

f̂(S) 6= 0 only if |S| = d
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Finding Fourier coefficients of functions on the Boolean cube may

not be easy:

M̂aj(S) =


0 |S| even

(−1)
|S|−1

2
1

2N−1

(N−1
N−1

2

)( N−1
2

|S|−1
2

)(
N−1
|S|−1

)−1 |S| odd

Definition – Boolean radius

ρ(FN ) := sup
{
0 < ρρρ < 1 :

∑
S

|f̂(S)|ρ|S|ρ|S|ρ|S| ≤ ‖f‖{±1}N , f ∈ FN
}
,

where FN is a subset of functions f : {±1}N → R.
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Question

Is there any hope for a positive Boolean radius ρ(FN )?

Yes...

{±1}N RN

Rf Lf (x) =
∑

S⊂{1,...,N}

f̂(S)
∏
k∈S

xk

In this case:

sup
x∈{±1}N

|f(x)| = sup
x∈[−1,1]N

|Lf (x)|

18
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For what?

• Can Bohr’s world offer techniques unknown in Boole’s world, and

vice versa?

• Is there any hope to connect Bohr’s world with the topic of quantum

information theory?

Two recent articles ...

• Defant-Masty lo-Pérez: Bohr’s phenomenon for functions on the

Boolean cube, JFA 2018

• Defant-Masty lo-Pérez: On the Fourier spectrum of functions on the

Boolean cube, Math. Ann. 2019
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Comparing Bohr and Boolean radii – Defant-Masty lo-Pérez 2018

Bohr Boole

all functions
√

logN
N

√
logN
N

√
logN
N 21/N − 121/N − 121/N − 1

all degree-d fct.


√

logN
N logN ≤ d(

d
N

) d−1
2d d < logN


√

logN
N logN ≤ d(

d
N

) d−1
2d d < logN


√

logN
N logN ≤ d(

d
N

) d−1
2d d < logN

1√
dN

1√
dN
1√
dN

all d-homo. fct.
(
d
N

) d−1
2d

(
d
N

) d−1
2d

(
d
N

) d−1
2d

(
N

(Nd)

) 1
2d

(
N

(Nd)

) 1
2d

(
N

(Nd)

) 1
2d

all homo. fct.
√

logN
N

√
logN
N

√
logN
N

√
logN
N

√
logN
N

√
logN
N
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Crucial for the last two cases:

A Bohnenblust-Hille inequality for functions on the Boolean cube with

good control of the constants...

Blei, 2003

• ∀ f : {±1}N → R of degree d :(∑
S

|f̂(S)|
2d

d+1

) d+1
2d ≤ C(d) ‖f‖{±1}N

• The exponent 2d
d+1 is optimal

But the constants are bad . . .

BH≤d{±1} � (d+ 1)
d+1
2d (d!)

d−1
2d

√
d
d+1

(2e)d
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What about dddth roots ???

Are the dth roots of the constants BH≤d{±1} subexponential? Recall that

this does not hold for the constants BH≤d[−1,1].

Defant-Masty lo-Pérez 2019

There exists a constant C > 0 such that for all d

BH≤d{±1} ≤ C
√
d log d

In particular,

limd
d

√
BH≤d{±1} = 1 .

22
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Problem, Montanaro 2013

? ∃ C ≥ 1 ∀ d : BH≤d{±1} ≤ d
C ?? ∃ C ≥ 1 ∀ d : BH≤d{±1} ≤ d
C ?? ∃ C ≥ 1 ∀ d : BH≤d{±1} ≤ d
C ?

Why this problem ?

The need for structure in quantum speedups...

• Quantum computers can offer superpolynomial speedups over

classical computers, but only for certain structured problems.

• For every unstructured problem the quantum complexity and the

classical complexity are polynomially related???
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All this is true if the answer to the following so-called

AA–conjecture is yes:

Given f : {±1}N → [−1, 1] of degree d, is there some 1 ≤ j ≤ N such

that (∑
S 6=∅ f̂(S)

2

d

)O(1)

≤
∑
S:j∈S

f̂(S)2 ???

O’Donnell: Analysis of Boolean functions

If true, this conjecture would have significant consequences regarding

the limitations of efficient quantum computation.

Hope

There is some hope/evidence that a positive answer to Montanaro’s

problem on the BH-inequality for functions on the Boolean cube implies

the AA-conjecture...
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